Intertype superconductivity evoked by the interplay of disorder and multiple bands

P. M. Marychev, A. A. Shanenko, A. V. Vagov

PDF(3175 KB)
PDF(3175 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43205. DOI: 10.1007/s11467-023-1379-y
RESEARCH ARTICLE

Intertype superconductivity evoked by the interplay of disorder and multiple bands

Author information +
History +

Abstract

Nonmagnetic impurity scattering is known to shift up the Ginzburg−Landau parameter κ of a superconductor. In this case, when the system is initially in type I, it can change its magnetic response, crossing the intertype domain with κ1 between the two standard superconductivity types and arriving at type II. In the present work we demonstrate that the impact of disorder can be much more profound in the presence of the multiband structure of the charge carrier states. In particular, when the band diffusivities differ from each other, the intertype domain tends to expand significantly, including points with κ1 that belong to deep type-II in conventional single-band superconductors. Our finding sheds light on the nontrivial disorder effect and significantly complements earlier results on the enlargement of the intertype domain in clean multiband superconductors.

Graphical abstract

Keywords

superconductivity / disorder / intertype superconductivity / two-band model

Cite this article

Download citation ▾
P. M. Marychev, A. A. Shanenko, A. V. Vagov. Intertype superconductivity evoked by the interplay of disorder and multiple bands. Front. Phys., 2024, 19(4): 43205 https://doi.org/10.1007/s11467-023-1379-y

References

[1]
J.B. KettersonS.N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
[2]
J. Auer , Y. Ullmaier . Magnetic behavior of type-II superconductors with small Ginzburg‒Landau parameters. Phys. Rev. B, 1973, 7(1): 136
CrossRef ADS Google scholar
[3]
U. Krägeloh . Flux line lattices in the intermediate state of superconductors with Ginzburg‒Landau parameters near 1/2. Phys. Lett. A, 1969, 28(9): 657
CrossRef ADS Google scholar
[4]
U. Essmann . Observation of the mixed state. Physica, 1971, 55: 83
CrossRef ADS Google scholar
[5]
U. Kumpf . Magnetisierungskurven von Supraleitern zweiter Art mit kleinen Ginzburg‒Landau‒Parametern. Phys. Status Solidi B, 1971, 44(2): 829
CrossRef ADS Google scholar
[6]
A. E. Jacobs . First-order transitions at Hc1 and Hc2 in type II superconductors. Phys. Rev. Lett., 1971, 26(11): 629
CrossRef ADS Google scholar
[7]
Yu. N. Ovchinnikov . Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg‒Landau parameter κ close to 1. J. Exp. Theor. Phys., 1999, 88(2): 398
CrossRef ADS Google scholar
[8]
I. Luk’yanchuk . Theory of superconductors with κ close to 1/2. Phys. Rev. B, 2001, 63(17): 174504
CrossRef ADS Google scholar
[9]
M. Laver , C. J. Bowell , E. M. Forgan , A. B. Abrahamsen , D. Fort , C. D. Dewhurst , S. Mühlbauer , D. K. Christen , J. Kohlbrecher , R. Cubitt , S. Ramos . Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study. Phys. Rev. B, 2009, 79(1): 014518
CrossRef ADS Google scholar
[10]
E. H. Brandt , M. P. Das . Attractive vortex interaction and the intermediate mixed state of superconductors. J. Supercond. Nov. Magn., 2011, 24(1−2): 57
CrossRef ADS Google scholar
[11]
A. Pautrat , A. Brûlet . Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering. J. Phys.: Condens. Matter, 2014, 26(23): 232201
CrossRef ADS Google scholar
[12]
J. Y. Ge , J. Gutierrez , A. Lyashchenko , V. Filipov , J. Li , V. V. Moshchalkov . Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point. Phys. Rev. B, 2014, 90(18): 184511
CrossRef ADS Google scholar
[13]
T. Reimann , S. Mühlbauer , M. Schulz , B. Betz , A. Kaestner , V. Pipich , P. Böni , C. Grünzweig . Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat. Commun., 2015, 6(1): 8813
CrossRef ADS Google scholar
[14]
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , V. M. Vinokur , J. A. Aguiar , F. M. Peeters . Superconductivity between standard types: Multiband versus single-band materials. Phys. Rev. B, 2016, 93(17): 174503
CrossRef ADS Google scholar
[15]
J. Y. Ge , V. N. Gladilin , N. E. Sluchanko , A. Lyashenko , V. Filipov , J. O. Indekeu , V. V. Moshchalkov . Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex−vortex interactions. New J. Phys., 2017, 19(9): 093020
CrossRef ADS Google scholar
[16]
T. Reimann , M. Schulz , D. F. R. Mildner , M. Bleuel , A. Brûlet , R. P. Harti , G. Benka , A. Bauer , P. Böni , S. Mühlbauer . Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex‒vortex interaction. Phys. Rev. B, 2017, 96(14): 144506
CrossRef ADS Google scholar
[17]
S. Wolf , A. Vagov , A. A. Shanenko , V. M. Axt , J. A. Aguiar . Vortex matter stabilized by many-body interactions. Phys. Rev. B, 2017, 96(14): 144515
CrossRef ADS Google scholar
[18]
A. Backs , M. Schulz , V. Pipich , M. Kleinhans , P. Böni , S. Mühlbauer . Universal behavior of the intermediate mixed state domain formation in superconducting niobium. Phys. Rev. B, 2019, 100(6): 064503
CrossRef ADS Google scholar
[19]
T. T. Saraiva , A. Vagov , V. M. Axt , J. A. Aguiar , A. A. Shanenko . Anisotropic superconductors between types I and II. Phys. Rev. B, 2019, 99(2): 024515
CrossRef ADS Google scholar
[20]
A. Vagov , S. Wolf , M. D. Croitoru , A. A. Shanenko . Universal flux patterns and their interchange in superconductors between types I and II. Commun. Phys., 2020, 3(1): 58
CrossRef ADS Google scholar
[21]
S. Ooi , M. Tachiki , T. Konomi , T. Kubo , A. Kikuchi , S. Arisawa , H. Ito , K. Umemori . Observation of intermediate mixed state in high-purity cavity-grade Nb by magneto-optical imaging. Phys. Rev. B, 2021, 104(6): 064504
CrossRef ADS Google scholar
[22]
X. S. Brems , S. Mühlbauer , W. Y. Córdoba-Camacho , A. A. Shanenko , A. Vagov , J. Albino Aguiar , R. Cubitt . Current-induced self-organisation of mixed superconducting states. Supercond. Sci. Technol., 2022, 35(3): 035003
CrossRef ADS Google scholar
[23]
P. J. Curran , W. M. Desoky , M. V. Milǒsevíc , A. Chaves , J. B. Lalöe , J. S. Moodera , S. J. Bending . Spontaneous symmetry breaking in vortex systems with two repulsive length scales. Sci. Rep., 2015, 5(1): 15569
CrossRef ADS Google scholar
[24]
S.WolfA.VagovA.A. ShanenkoV.M. AxtA.PeraliJ.A. Aguiar, BCS‒BEC crossover induced by a shallow band: Pushing standard superconductivity types apart, Phys. Rev. B 95(9), 094521 (2017)
[25]
P. J. F. Cavalcanti , T. T. Saraiva , J. A. Aguiar , A. Vagov , M. D. Croitoru , A. A. Shanenko . Multiband superconductors with degenerate excitation gaps. J. Phys.: Condens. Matter, 2020, 32(45): 455702
CrossRef ADS Google scholar
[26]
A. Gurevich . Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B, 2003, 67(18): 184515
CrossRef ADS Google scholar
[27]
A. E. Jacobs . Theory of inhomogeneous superconductors near T = Tc. Phys. Rev. B, 1971, 4(9): 3016
CrossRef ADS Google scholar
[28]
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , F. M. Peeters . Extended Ginzburg‒Landau formalism: Systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 85(1): 014502
CrossRef ADS Google scholar
[29]
A. A. Shanenko , M. V. Milǒsevíc , F. M. Peeters , A. V. Vagov . Extended Ginzburg‒Landau formalism for two-band superconductors. Phys. Rev. Lett., 2011, 106(4): 047005
CrossRef ADS Google scholar
[30]
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , F. M. Peeters . Two-band superconductors: Extended Ginzburg‒Landau formalism by a systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 86(14): 144514
CrossRef ADS Google scholar
[31]
A. A. Golubov , J. Kortus , O. V. Dolgov , O. Jepsen , Y. Kong , O. K. Andersen , B. J. Gibson , K. Ahn , R. K. Kremer . Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. J. Phys.: Condens. Matter, 2002, 14(6): 1353
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors gratefully acknowledge support from the Basic Research Program of the HSE University used to obtain the extended Ginzburg−Landau theory for strongly disordered superconductors. A.A.Sh. and A.V.V. thank the Ministry of Science and Higher Education of the Russian Federation (Project FSMG-2023-0014) and the Russian Science Foundation (Grant No. 23-7230004) for the support that helped to perform investigations of the intertype domain phase diagram.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3175 KB)

Accesses

Citations

Detail

Sections
Recommended

/