Intertype superconductivity evoked by the interplay of disorder and multiple bands
P. M. Marychev, A. A. Shanenko, A. V. Vagov
Intertype superconductivity evoked by the interplay of disorder and multiple bands
Nonmagnetic impurity scattering is known to shift up the Ginzburg−Landau parameter of a superconductor. In this case, when the system is initially in type I, it can change its magnetic response, crossing the intertype domain with between the two standard superconductivity types and arriving at type II. In the present work we demonstrate that the impact of disorder can be much more profound in the presence of the multiband structure of the charge carrier states. In particular, when the band diffusivities differ from each other, the intertype domain tends to expand significantly, including points with that belong to deep type-II in conventional single-band superconductors. Our finding sheds light on the nontrivial disorder effect and significantly complements earlier results on the enlargement of the intertype domain in clean multiband superconductors.
superconductivity / disorder / intertype superconductivity / two-band model
[1] |
J.B. KettersonS.N. Song, Superconductivity, Cambridge: Cambridge University Press, 1999
|
[2] |
J. Auer , Y. Ullmaier . Magnetic behavior of type-II superconductors with small Ginzburg‒Landau parameters. Phys. Rev. B, 1973, 7(1): 136
CrossRef
ADS
Google scholar
|
[3] |
U. Krägeloh . Flux line lattices in the intermediate state of superconductors with Ginzburg‒Landau parameters near 1/2. Phys. Lett. A, 1969, 28(9): 657
CrossRef
ADS
Google scholar
|
[4] |
U. Essmann . Observation of the mixed state. Physica, 1971, 55: 83
CrossRef
ADS
Google scholar
|
[5] |
U. Kumpf . Magnetisierungskurven von Supraleitern zweiter Art mit kleinen Ginzburg‒Landau‒Parametern. Phys. Status Solidi B, 1971, 44(2): 829
CrossRef
ADS
Google scholar
|
[6] |
A. E. Jacobs . First-order transitions at Hc1 and Hc2 in type II superconductors. Phys. Rev. Lett., 1971, 26(11): 629
CrossRef
ADS
Google scholar
|
[7] |
Yu. N. Ovchinnikov . Generalized Ginzburg-Landau equation and the properties of superconductors with Ginzburg‒Landau parameter κ close to 1. J. Exp. Theor. Phys., 1999, 88(2): 398
CrossRef
ADS
Google scholar
|
[8] |
I. Luk’yanchuk . Theory of superconductors with κ close to 1/2. Phys. Rev. B, 2001, 63(17): 174504
CrossRef
ADS
Google scholar
|
[9] |
M. Laver , C. J. Bowell , E. M. Forgan , A. B. Abrahamsen , D. Fort , C. D. Dewhurst , S. Mühlbauer , D. K. Christen , J. Kohlbrecher , R. Cubitt , S. Ramos . Structure and degeneracy of vortex lattice domains in pure superconducting niobium: A small-angle neutron scattering study. Phys. Rev. B, 2009, 79(1): 014518
CrossRef
ADS
Google scholar
|
[10] |
E. H. Brandt , M. P. Das . Attractive vortex interaction and the intermediate mixed state of superconductors. J. Supercond. Nov. Magn., 2011, 24(1−2): 57
CrossRef
ADS
Google scholar
|
[11] |
A. Pautrat , A. Brûlet . Temperature dependence of clusters with attracting vortices in superconducting niobium studied by neutron scattering. J. Phys.: Condens. Matter, 2014, 26(23): 232201
CrossRef
ADS
Google scholar
|
[12] |
J. Y. Ge , J. Gutierrez , A. Lyashchenko , V. Filipov , J. Li , V. V. Moshchalkov . Direct visualization of vortex pattern transition in ZrB12 with Ginzburg-Landau parameter close to the dual point. Phys. Rev. B, 2014, 90(18): 184511
CrossRef
ADS
Google scholar
|
[13] |
T. Reimann , S. Mühlbauer , M. Schulz , B. Betz , A. Kaestner , V. Pipich , P. Böni , C. Grünzweig . Visualizing the morphology of vortex lattice domains in a bulk type-II superconductor. Nat. Commun., 2015, 6(1): 8813
CrossRef
ADS
Google scholar
|
[14] |
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , V. M. Vinokur , J. A. Aguiar , F. M. Peeters . Superconductivity between standard types: Multiband versus single-band materials. Phys. Rev. B, 2016, 93(17): 174503
CrossRef
ADS
Google scholar
|
[15] |
J. Y. Ge , V. N. Gladilin , N. E. Sluchanko , A. Lyashenko , V. Filipov , J. O. Indekeu , V. V. Moshchalkov . Paramagnetic Meissner effect in ZrB12 single crystal with non-monotonic vortex−vortex interactions. New J. Phys., 2017, 19(9): 093020
CrossRef
ADS
Google scholar
|
[16] |
T. Reimann , M. Schulz , D. F. R. Mildner , M. Bleuel , A. Brûlet , R. P. Harti , G. Benka , A. Bauer , P. Böni , S. Mühlbauer . Domain formation in the type-II/1 superconductor niobium: Interplay of pinning, geometry, and attractive vortex‒vortex interaction. Phys. Rev. B, 2017, 96(14): 144506
CrossRef
ADS
Google scholar
|
[17] |
S. Wolf , A. Vagov , A. A. Shanenko , V. M. Axt , J. A. Aguiar . Vortex matter stabilized by many-body interactions. Phys. Rev. B, 2017, 96(14): 144515
CrossRef
ADS
Google scholar
|
[18] |
A. Backs , M. Schulz , V. Pipich , M. Kleinhans , P. Böni , S. Mühlbauer . Universal behavior of the intermediate mixed state domain formation in superconducting niobium. Phys. Rev. B, 2019, 100(6): 064503
CrossRef
ADS
Google scholar
|
[19] |
T. T. Saraiva , A. Vagov , V. M. Axt , J. A. Aguiar , A. A. Shanenko . Anisotropic superconductors between types I and II. Phys. Rev. B, 2019, 99(2): 024515
CrossRef
ADS
Google scholar
|
[20] |
A. Vagov , S. Wolf , M. D. Croitoru , A. A. Shanenko . Universal flux patterns and their interchange in superconductors between types I and II. Commun. Phys., 2020, 3(1): 58
CrossRef
ADS
Google scholar
|
[21] |
S. Ooi , M. Tachiki , T. Konomi , T. Kubo , A. Kikuchi , S. Arisawa , H. Ito , K. Umemori . Observation of intermediate mixed state in high-purity cavity-grade Nb by magneto-optical imaging. Phys. Rev. B, 2021, 104(6): 064504
CrossRef
ADS
Google scholar
|
[22] |
X. S. Brems , S. Mühlbauer , W. Y. Córdoba-Camacho , A. A. Shanenko , A. Vagov , J. Albino Aguiar , R. Cubitt . Current-induced self-organisation of mixed superconducting states. Supercond. Sci. Technol., 2022, 35(3): 035003
CrossRef
ADS
Google scholar
|
[23] |
P. J. Curran , W. M. Desoky , M. V. Milǒsevíc , A. Chaves , J. B. Lalöe , J. S. Moodera , S. J. Bending . Spontaneous symmetry breaking in vortex systems with two repulsive length scales. Sci. Rep., 2015, 5(1): 15569
CrossRef
ADS
Google scholar
|
[24] |
S.WolfA.VagovA.A. ShanenkoV.M. AxtA.PeraliJ.A. Aguiar, BCS‒BEC crossover induced by a shallow band: Pushing standard superconductivity types apart, Phys. Rev. B 95(9), 094521 (2017)
|
[25] |
P. J. F. Cavalcanti , T. T. Saraiva , J. A. Aguiar , A. Vagov , M. D. Croitoru , A. A. Shanenko . Multiband superconductors with degenerate excitation gaps. J. Phys.: Condens. Matter, 2020, 32(45): 455702
CrossRef
ADS
Google scholar
|
[26] |
A. Gurevich . Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors. Phys. Rev. B, 2003, 67(18): 184515
CrossRef
ADS
Google scholar
|
[27] |
A. E. Jacobs . Theory of inhomogeneous superconductors near T = Tc. Phys. Rev. B, 1971, 4(9): 3016
CrossRef
ADS
Google scholar
|
[28] |
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , F. M. Peeters . Extended Ginzburg‒Landau formalism: Systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 85(1): 014502
CrossRef
ADS
Google scholar
|
[29] |
A. A. Shanenko , M. V. Milǒsevíc , F. M. Peeters , A. V. Vagov . Extended Ginzburg‒Landau formalism for two-band superconductors. Phys. Rev. Lett., 2011, 106(4): 047005
CrossRef
ADS
Google scholar
|
[30] |
A. Vagov , A. A. Shanenko , M. V. Milǒsevíc , V. M. Axt , F. M. Peeters . Two-band superconductors: Extended Ginzburg‒Landau formalism by a systematic expansion in small deviation from the critical temperature. Phys. Rev. B, 2012, 86(14): 144514
CrossRef
ADS
Google scholar
|
[31] |
A. A. Golubov , J. Kortus , O. V. Dolgov , O. Jepsen , Y. Kong , O. K. Andersen , B. J. Gibson , K. Ahn , R. K. Kremer . Specific heat of MgB2 in a one- and a two-band model from first-principles calculations. J. Phys.: Condens. Matter, 2002, 14(6): 1353
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |