Self organizing optimization and phase transition in reinforcement learning minority game system
Si-Ping Zhang, Jia-Qi Dong, Hui-Yu Zhang, Yi-Xuan Lü, Jue Wang, Zi-Gang Huang
Self organizing optimization and phase transition in reinforcement learning minority game system
Whether the complex game system composed of a large number of artificial intelligence (AI) agents empowered with reinforcement learning can produce extremely favorable collective behaviors just through the way of agent self-exploration is a matter of practical importance. In this paper, we address this question by combining the typical theoretical model of resource allocation system, the minority game model, with reinforcement learning. Each individual participating in the game is set to have a certain degree of intelligence based on reinforcement learning algorithm. In particular, we demonstrate that as AI agents gradually becomes familiar with the unknown environment and tries to provide optimal actions to maximize payoff, the whole system continues to approach the optimal state under certain parameter combinations, herding is effectively suppressed by an oscillating collective behavior which is a self-organizing pattern without any external interference. An interesting phenomenon is that a first-order phase transition is revealed based on some numerical results in our multi-agents system with reinforcement learning. In order to further understand the dynamic behavior of agent learning, we define and analyze the conversion path of belief mode, and find that the self-organizing condensation of belief modes appeared for the given trial and error rates in the AI system. Finally, we provide a detection method for period-two oscillation collective pattern emergence based on the Kullback−Leibler divergence and give the parameter position where the period-two appears.
oscillatory evolution / collective behaviors / phase transition / reinforcement learning / minority game
[1] |
D.J. Sumpter, Collective Animal Behavior, Princeton University Press, 2010
|
[2] |
A. Procaccini , A. Orlandi , A. Cavagna , I. Giardina , F. Zoratto , D. Santucci , F. Chiarotti , C. K. Hemelrijk , E. Alleva , G. Parisi , C. Carere , Propagating waves in starling . Sturnus vulgaris, flocks under predation. Anim. Behav., 2011, 82(4): 759
CrossRef
ADS
Google scholar
|
[3] |
H. King , S. Ocko , L. Mahadevan . Termite mounds harness diurnal temperature oscillations for ventilation. Proc. Natl. Acad. Sci. USA, 2015, 112(37): 11589
CrossRef
ADS
Google scholar
|
[4] |
C. R. Reid , T. Latty . Collective behaviour and swarm intelligence in slime moulds. FEMS Microbiol. Rev., 2016, 40(6): 798
CrossRef
ADS
Google scholar
|
[5] |
Y. T. Lin , X. P. Han , B. K. Chen , J. Zhou , B. H. Wang . Evolution of innovative behaviors on scale-free networks. Front. Phys., 2018, 13(4): 130308
CrossRef
ADS
Google scholar
|
[6] |
L. M. Ying , J. Zhou , M. Tang , S. G. Guan , Y. Zou . Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs. Front. Phys., 2018, 13(1): 130201
CrossRef
ADS
Google scholar
|
[7] |
N. T. Ouellette . A physics perspective on collective animal behavior. Phys. Biol., 2022, 19(2): 021004
CrossRef
ADS
Google scholar
|
[8] |
H. Murakami , M. S. Abe , Y. Nishiyama . Toward comparative collective behavior to discover fundamental mechanisms underlying behavior in human crowds and nonhuman animal groups. J. Robot. Mechatron., 2023, 35(4): 922
CrossRef
ADS
Google scholar
|
[9] |
I. B. Muratore , S. Garnier . Ontogeny of collective behaviour. Philos. Trans. R. Soc. Lond. B, 2023, 378(1874): 20220065
CrossRef
ADS
Google scholar
|
[10] |
Y. Liang , J. P. Huang . Robustness of critical points in a complex adaptive system: Effects of hedge behavior. Front. Phys., 2013, 8(4): 461
CrossRef
ADS
Google scholar
|
[11] |
W.B. Arthur, Inductive reasoning and bounded rationality, Am. Econ. Rev. 84(2), 406 (1994), 106th Annual Meeting of the American-Economic-Association, BOSTON, MA, JAN 03-05, 1994
|
[12] |
D. Challet , Y. Zhang . Emergence of cooperation and organization in an evolutionary game. Physica A, 1997, 246(3‒4): 407
CrossRef
ADS
Google scholar
|
[13] |
T. Zhou , B. H. Wang , P. L. Zhou , C. X. Yang , J. Liu . Self-organized Boolean game on networks. Phys. Rev. E, 2005, 72(4): 046139
CrossRef
ADS
Google scholar
|
[14] |
Z. G. Huang , J. Q. Zhang , J. Q. Dong , L. Huang , Y. C. Lai . Emergence of grouping in multi-resource minority game dynamics. Sci. Rep., 2012, 2(1): 703
CrossRef
ADS
Google scholar
|
[15] |
J. Q. Zhang , Z. G. Huang , J. Q. Dong , L. Huang , Y. C. Lai . Controlling collective dynamics in complex minority-game resource-allocation systems. Phys. Rev. E, 2013, 87(5): 052808
CrossRef
ADS
Google scholar
|
[16] |
J. Q. Dong , Z. G. Huang , L. Huang , Y. C. Lai . Triple grouping and period-three oscillations in minority-game dynamics. Phys. Rev. E, 2014, 90(6): 062917
CrossRef
ADS
Google scholar
|
[17] |
A. Cuesta , O. Abreu , D. Alvear . Methods for measuring collective behaviour in evacuees. Saf. Sci., 2016, 88: 54
CrossRef
ADS
Google scholar
|
[18] |
X. H. Li , G. Yang , J. P. Huang . Chaotic−periodic transition in a two-sided minority game. Front. Phys., 2016, 11(4): 118901
CrossRef
ADS
Google scholar
|
[19] |
L. Chen . Complex network minority game model for the financial market modeling and simulation. Complexity, 2020, 2020: 8877886
CrossRef
ADS
Google scholar
|
[20] |
S. Biswas , A. K. Mandal . Parallel Minority Game and its application in movement optimization during an epidemic. Physica A, 2021, 561: 125271
CrossRef
ADS
Google scholar
|
[21] |
T. Ritmeester , H. Meyer-Ortmanns . Minority games played by arbitrageurs on the energy market. Physica A, 2021, 573: 125927
CrossRef
ADS
Google scholar
|
[22] |
B. Majumder , T. G. Venkatesh . Mobile data offloading based on minority game theoretic framework. Wirel. Netw., 2022, 28(7): 2967
CrossRef
ADS
Google scholar
|
[23] |
J. Linde , D. Gietl , J. Sonnemans , J. Tuinstra . The effect of quantity and quality of information in strategy tournaments. J. Econ. Behav. Organ., 2023, 211: 305
CrossRef
ADS
Google scholar
|
[24] |
D. Carlucci , P. Renna , S. Materi , G. Schiuma . Intelligent decision-making model based on minority game for resource allocation in cloud manufacturing. Manage. Decis., 2020, 58(11): 2305
CrossRef
ADS
Google scholar
|
[25] |
A. Swain , W. E. Fagan . Group size and decision making: experimental evidence for minority games in fish behaviour. Anim. Behav., 2019, 155: 9
CrossRef
ADS
Google scholar
|
[26] |
T. Ritmeester , H. Meyer-Ortmanns . The cavity method for minority games between arbitrageurs on financial markets. J. Stat. Mech., 2022, 2022(4): 043403
CrossRef
ADS
Google scholar
|
[27] |
Y. Deng , F. Bao , Y. Kong , Z. Ren , Q. Dai . Deep direct reinforcement learning for financial signal representation and trading. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28(3): 653
CrossRef
ADS
Google scholar
|
[28] |
Z.JiangD.XuJ.Liang, A deep reinforcement learning framework for the financial Portfolio management problem, arXiv: 1706.10059 (2017)
|
[29] |
H.YangX.Y. LiuS.ZhongA.Walid, in: Proceedings of the First ACM International Conference on AI in Finance, ICAIF’20, Association for Computing Machinery, New York, NY, USA, 2021
|
[30] |
J. A. Cruz , D. S. Wishart . Applications of machine learning in cancer prediction and prognosis. Cancer Inform., 2007, 2: 59
CrossRef
ADS
Google scholar
|
[31] |
J. J. Tompson , A. Jain , Y. LeCun , C. Bregler . Joint training of a convolutional network and a graphical model for human pose estimation. Proc. 27th Int. Conf. Neural Inf. Process. Syst., 2014, 1: 1799
CrossRef
ADS
Google scholar
|
[32] |
D. Silver , A. Huang , C. J. Maddison , A. Guez , L. Sifre , G. van den Driessche , J. Schrittwieser , I. Antonoglou , V. Panneershelvam , M. Lanctot , S. Dieleman , D. Grewe , J. Nham , N. Kalchbrenner , I. Sutskever , T. Lillicrap , M. Leach , K. Kavukcuoglu , T. Graepel , D. Hassabis . Mastering the game of Go with deep neural networks and tree search. Nature, 2016, 529(7587): 484
CrossRef
ADS
Google scholar
|
[33] |
V. Mnih , K. Kavukcuoglu , D. Silver , A. A. Rusu , J. Veness , M. G. Bellemare , A. Graves , M. Riedmiller , A. K. Fidjeland , G. Ostrovski , S. Petersen , C. Beattie , A. Sadik , I. Antonoglou , H. King , D. Kumaran , D. Wierstra , S. Legg , D. Hassabis . Human-level control through deep reinforcement learning. Nature, 2015, 518(7540): 529
CrossRef
ADS
Google scholar
|
[34] |
H. Huang , Y. Cai , H. Xu , H. Yu . A multiagent minority-game-based demand-response management of smart buildings toward peak load reduction. IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., 2017, 36(4): 573
CrossRef
ADS
Google scholar
|
[35] |
M.HesselJ.ModayilH.Van HasseltT.SchaulG.OstrovskiW.DabneyD.HorganB.PiotM.AzarD.Silver, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32 (2018)
|
[36] |
S. P. Zhang , J. Q. Zhang , L. Chen , X. D. Liu . Oscillatory evolution of collective behavior in evolutionary games played with reinforcement learning. Nonlinear Dyn., 2020, 99(4): 3301
CrossRef
ADS
Google scholar
|
[37] |
L. Wang , D. Jia , L. Zhang , P. Zhu , M. Perc , L. Shi , Z. Wang . Lévy noise promotes cooperation in the prisoner’s dilemma game with reinforcement learning. Nonlinear Dyn., 2022, 108(2): 1837
CrossRef
ADS
Google scholar
|
[38] |
J. Xu , L. Wang , Y. Liu , H. Xue . Event-triggered optimal containment control for multi-agent systems subject to state constraints via reinforcement learning. Nonlinear Dyn., 2022, 109(3): 1651
CrossRef
ADS
Google scholar
|
[39] |
S. P. Zhang , J. Q. Dong , L. Liu , Z. G. Huang , L. Huang , Y. C. Lai . Reinforcement learning meets minority game: Toward optimal resource allocation. Phys. Rev. E, 2019, 99(3): 032302
CrossRef
ADS
Google scholar
|
[40] |
S. P. Zhang , J. Q. Zhang , Z. G. Huang , B. H. Guo , Z. X. Wu , J. Wang . Collective behavior of artificial intelligence population: Transition from optimization to game. Nonlinear Dyn., 2019, 95(2): 1627
CrossRef
ADS
Google scholar
|
[41] |
S. P. Zhang , J. Q. Zhang , L. Chen , X. D. Liu . Oscillatory evolution of collective behavior in evolutionary games played with reinforcement learning. Nonlinear Dyn., 2020, 99(4): 3301
CrossRef
ADS
Google scholar
|
[42] |
A.V. BanerjeeE.Duflo, Poor economics: A radical rethinking of the way to fight global poverty, Public Affairs, 2012
|
[43] |
C. J. Watkins , P. Dayan . Q-learning. Mach. Learn., 1992, 8: 279
CrossRef
ADS
Google scholar
|
[44] |
M. Cao , A. S. Morse , B. D. Anderson . Coordination of an asynchronous multi-agent system via averaging. IFAC Proceedings Volumes, 2005, 38(1): 17
CrossRef
ADS
Google scholar
|
[45] |
H. L. Zeng , M. Alava , E. Aurell , J. Hertz , Y. Roudi . Maximum likelihood reconstruction for Ising models with asynchronous updates. Phys. Rev. Lett., 2013, 110(21): 210601
CrossRef
ADS
Google scholar
|
[46] |
J. Q. Zhang , Z. G. Huang , Z. X. Wu , R. Su , Y. C. Lai . Controlling herding in minority game systems. Sci. Rep., 2016, 6(1): 20925
CrossRef
ADS
Google scholar
|
[47] |
K. Binder . Theory of first-order phase transitions. Rep. Prog. Phys., 1987, 50(7): 783
CrossRef
ADS
Google scholar
|
[48] |
K. Binder . Applications of Monte Carlo methods to statistical physics. Rep. Prog. Phys., 1997, 60(5): 487
CrossRef
ADS
Google scholar
|
[49] |
G. Grégoire , H. Chaté . Onset of collective and cohesive motion. Phys. Rev. Lett., 2004, 92(2): 025702
CrossRef
ADS
Google scholar
|
[50] |
M. Nagy , I. Daruka , T. Vicsek . New aspects of the continuous phase transition in the scalar noise model (SNM) of collective motion. Physica A, 2007, 373: 445
CrossRef
ADS
Google scholar
|
[51] |
J. M. Encinas , C. E. Fiore . Influence of distinct kinds of temporal disorder in discontinuous phase transitions. Phys. Rev. E, 2021, 103(3): 032124
CrossRef
ADS
Google scholar
|
[52] |
A.D. Sokal, Course 16 - Simulation of Statistical Mechanics Models, Elsevier, 2006
|
/
〈 | 〉 |