Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate

V. A. Tomilin, L. V. Il’ichov

PDF(4174 KB)
PDF(4174 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 41201. DOI: 10.1007/s11467-023-1375-2
RESEARCH ARTICLE

Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate

Author information +
History +

Abstract

We present a novel feedback control method for quantum systems. Feedback does not affect the controlled system itself. Instead, it controls the unravelling of the quantum channel of interaction between the system and its environment. This interaction can be represented as a history of events. If their informational content is changed, their back-action on the system is also modified. Feedback action is trigged by the events, thus granting the system the degree of control over its own state. The efficiency of the proposed scheme is demonstrated on the example of two-mode atomic Bose-Einstein condensate, with one of its modes subject to phase-contrast imaging in a Mach−Zehnder interferometer. The histories of photocounts in the output channels of the interferometer are used for feedback. Its capabilities of state engineering are studied for different settings of the feedback loop and different numbers of events in the recorded histories.

Graphical abstract

Keywords

quantum feedback control / quantum measurements / two-mode Bose−Einstein condensates

Cite this article

Download citation ▾
V. A. Tomilin, L. V. Il’ichov. Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate. Front. Phys., 2024, 19(4): 41201 https://doi.org/10.1007/s11467-023-1375-2

References

[1]
N.Wiener, Cybernetics: Control and Communication in the Animal and the Machine, 2nd Ed., MIT Press, Cambridge, 1961
[2]
J. Zhang, Y. Liu, R. B. Wu, K. Jacobs, F. Nori. Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
CrossRef ADS Google scholar
[3]
S. Lloyd. Coherent quantum feedback. Phys. Rev. A, 2000, 62(2): 022108
CrossRef ADS Google scholar
[4]
A. C. Doherty, K. Jacobs. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A, 1999, 60(4): 2700
CrossRef ADS Google scholar
[5]
M.R. JamesH. I. NurdinI.R. Petersen, H control of linear quantum stochastic systems, IEEE Trans. Automat. Contr. 53(8), 1787 (2008)
[6]
V. A. Tomilin, L. V. Il’ichov. Quantum feedback control outside of the controlled system. JETP Lett., 2022, 116(9): 649
CrossRef ADS Google scholar
[7]
A. M. Brańczyk, P. E. M. F. Mendonça, A. Gilchrist, A. C. Doherty, S. D. Bartlett. Quantum control of a single qubit. Phys. Rev. A, 2007, 75(1): 012329
CrossRef ADS Google scholar
[8]
G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida, M. Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D. Bartlett, A. G. White. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett., 2010, 104(8): 080503
CrossRef ADS Google scholar
[9]
L. C. Wang, X. L. Huang, X. X. Yi. Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A, 2008, 78(5): 052112
CrossRef ADS Google scholar
[10]
Y. Yan, J. Zou, B. M. Xu, J. G. Li, B. Shao. Measurement-based direct quantum feedback control in an open quantum system. Phys. Rev. A, 2013, 88(3): 032320
CrossRef ADS Google scholar
[11]
Y. Cao, G. Tian, Z. C. Zhang, Y. H. Yang, Q. Y. Wen, F. Gao. Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A, 2017, 95(3): 032313
CrossRef ADS Google scholar
[12]
H.UysH. BassaP.du ToitS.GhoshT.Konrad, Quantum control through measurement feedback, Phys. Rev. A 97, 060102(R) (2018)
[13]
D. B. Horoshko, S. Ya. Kilin. Direct detection feedback for preserving quantum coherence in an open cavity. Phys. Rev. Lett., 1997, 78(5): 840
CrossRef ADS Google scholar
[14]
A.R. R. CarvalhoJ.J. Hope, Stabilizing entanglement by quantum-jump-based feedback, Phys. Rev. A 76, 010301(R) (2007)
[15]
A. Barchielli, M. Gregoratti, M. Licciardo. Feedback control of the fluorescence light squeezing. Europhys. Lett., 2009, 85(1): 14006
CrossRef ADS Google scholar
[16]
C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. M. Raimond, S. Haroche. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
CrossRef ADS Google scholar
[17]
S. M. Cavaletto, Z. Harman, T. Pfeifer, C. H. Keitel. Deterministic strong-field quantum control. Phys. Rev. A, 2017, 95(4): 043413
CrossRef ADS Google scholar
[18]
P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, B. Huard. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X, 2013, 3: 021008
CrossRef ADS Google scholar
[19]
R. Ruskov, K. Schwab, A. N. Korotkov. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 2005, 71(23): 235407
CrossRef ADS Google scholar
[20]
V.A. TomilinL.V. Il’ichov, Λ-scheme feedback spectroscopy, Opt. Commun. 391, 57 (2017)
[21]
V.A. TomilinL.V. Il’ichov, BEC dynamics in a double-well with interferometric feedback, Ann. Phys. 528(7–8), 619 (2016)
[22]
V. A. Tomilin, L. V. Il’ichov. Correlations of photoemissions in a multiatomic ensemble driven by a cat-state field. Phys. Rev. A, 2017, 96(6): 063805
CrossRef ADS Google scholar
[23]
A. C. J. Wade, J. F. Sherson, K. Mölmer. Squeezing and entanglement of density oscillations in a Bose‒Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
CrossRef ADS Google scholar
[24]
A. C. J. Wade, J. F. Sherson, K. Mölmer. Manipulation of collective quantum states in Bose‒Einstein condensates by continuous imaging. Phys. Rev. A, 2016, 93(2): 023610
CrossRef ADS Google scholar
[25]
J. J. W. H. Sørensen, M. Dalgaard, A. H. Kiilerich, K. Mölmer, J. F. Sherson. Quantum control with measurements and quantum Zeno dynamics. Phys. Rev. A, 2018, 98(6): 062317
CrossRef ADS Google scholar
[26]
G. Mazzucchi, S. F. Caballero-Benitez, D. A. Ivanov, I. B. Mekhov. Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
CrossRef ADS Google scholar
[27]
R. Lin, R. Rosa-Medina, F. Ferri, F. Finger, K. Kroeger, T. Donner, T. Esslinger, R. Chitra. Dissipation-engineered family of nearly dark states in many-body cavity-atom systems. Phys. Rev. Lett., 2022, 128(15): 153601
CrossRef ADS Google scholar
[28]
D. A. Ivanov, T. Yu. Ivanova, S. F. Caballero-Benitez, I. B. Mekhov. Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
CrossRef ADS Google scholar
[29]
K. C. Stitely, F. Finger, R. Rosa-Medina, F. Ferri, T. Donner, T. Esslinger, S. Parkins, B. Krauskopf. Quantum fluctuation dynamics of dispersive superradiant pulses in a hybrid light‒matter system. Phys. Rev. Lett., 2023, 131(14): 143604
CrossRef ADS Google scholar
[30]
H.M. WisemanG.J. Milburn, Quantum Measurement and Control, Cambridge: Cambridge University Press, 2010
[31]
S.KullbackL. A. Leibler, Information and Statistics, Wiley, 1959
[32]
L. V. Il’ichev, P. L. Chapovskii. Decoherence of an atomic condensate in a double-well trap at optical probing. JETP Lett., 2015, 102(1): 14
CrossRef ADS Google scholar
[33]
C. Gross, J. Estève, M. K. Oberthaler, A. D. Martin, J. Ruostekoski. Local and spatially extended sub-Poisson atom-number fluctuations in optical lattices. Phys. Rev. A, 2011, 84(1): 011609
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the State order (Project AAAA-A21-121021800168-4) at the Institute of Automation and Electrometry SB RAS.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4174 KB)

Accesses

Citations

Detail

Sections
Recommended

/