Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate
V. A. Tomilin, L. V. Il’ichov
Unravelling-based (auto)control of back-action in atomic Bose−Einstein condensate
We present a novel feedback control method for quantum systems. Feedback does not affect the controlled system itself. Instead, it controls the unravelling of the quantum channel of interaction between the system and its environment. This interaction can be represented as a history of events. If their informational content is changed, their back-action on the system is also modified. Feedback action is trigged by the events, thus granting the system the degree of control over its own state. The efficiency of the proposed scheme is demonstrated on the example of two-mode atomic Bose-Einstein condensate, with one of its modes subject to phase-contrast imaging in a Mach−Zehnder interferometer. The histories of photocounts in the output channels of the interferometer are used for feedback. Its capabilities of state engineering are studied for different settings of the feedback loop and different numbers of events in the recorded histories.
quantum feedback control / quantum measurements / two-mode Bose−Einstein condensates
[1] |
N.Wiener, Cybernetics: Control and Communication in the Animal and the Machine, 2nd Ed., MIT Press, Cambridge, 1961
|
[2] |
J. Zhang, Y. Liu, R. B. Wu, K. Jacobs, F. Nori. Quantum feedback: Theory, experiments, and applications. Phys. Rep., 2017, 679: 1
CrossRef
ADS
Google scholar
|
[3] |
S. Lloyd. Coherent quantum feedback. Phys. Rev. A, 2000, 62(2): 022108
CrossRef
ADS
Google scholar
|
[4] |
A. C. Doherty, K. Jacobs. Feedback control of quantum systems using continuous state estimation. Phys. Rev. A, 1999, 60(4): 2700
CrossRef
ADS
Google scholar
|
[5] |
M.R. JamesH. I. NurdinI.R. Petersen, H∞ control of linear quantum stochastic systems, IEEE Trans. Automat. Contr. 53(8), 1787 (2008)
|
[6] |
V. A. Tomilin, L. V. Il’ichov. Quantum feedback control outside of the controlled system. JETP Lett., 2022, 116(9): 649
CrossRef
ADS
Google scholar
|
[7] |
A. M. Brańczyk, P. E. M. F. Mendonça, A. Gilchrist, A. C. Doherty, S. D. Bartlett. Quantum control of a single qubit. Phys. Rev. A, 2007, 75(1): 012329
CrossRef
ADS
Google scholar
|
[8] |
G. G. Gillett, R. B. Dalton, B. P. Lanyon, M. P. Almeida, M. Barbieri, G. J. Pryde, J. L. O’Brien, K. J. Resch, S. D. Bartlett, A. G. White. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett., 2010, 104(8): 080503
CrossRef
ADS
Google scholar
|
[9] |
L. C. Wang, X. L. Huang, X. X. Yi. Effect of feedback on the control of a two-level dissipative quantum system. Phys. Rev. A, 2008, 78(5): 052112
CrossRef
ADS
Google scholar
|
[10] |
Y. Yan, J. Zou, B. M. Xu, J. G. Li, B. Shao. Measurement-based direct quantum feedback control in an open quantum system. Phys. Rev. A, 2013, 88(3): 032320
CrossRef
ADS
Google scholar
|
[11] |
Y. Cao, G. Tian, Z. C. Zhang, Y. H. Yang, Q. Y. Wen, F. Gao. Composite control for protecting two nonorthogonal qubit states against decoherence. Phys. Rev. A, 2017, 95(3): 032313
CrossRef
ADS
Google scholar
|
[12] |
H.UysH. BassaP.du ToitS.GhoshT.Konrad, Quantum control through measurement feedback, Phys. Rev. A 97, 060102(R) (2018)
|
[13] |
D. B. Horoshko, S. Ya. Kilin. Direct detection feedback for preserving quantum coherence in an open cavity. Phys. Rev. Lett., 1997, 78(5): 840
CrossRef
ADS
Google scholar
|
[14] |
A.R. R. CarvalhoJ.J. Hope, Stabilizing entanglement by quantum-jump-based feedback, Phys. Rev. A 76, 010301(R) (2007)
|
[15] |
A. Barchielli, M. Gregoratti, M. Licciardo. Feedback control of the fluorescence light squeezing. Europhys. Lett., 2009, 85(1): 14006
CrossRef
ADS
Google scholar
|
[16] |
C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J. M. Raimond, S. Haroche. Real-time quantum feedback prepares and stabilizes photon number states. Nature, 2011, 477(7362): 73
CrossRef
ADS
Google scholar
|
[17] |
S. M. Cavaletto, Z. Harman, T. Pfeifer, C. H. Keitel. Deterministic strong-field quantum control. Phys. Rev. A, 2017, 95(4): 043413
CrossRef
ADS
Google scholar
|
[18] |
P. Campagne-Ibarcq, E. Flurin, N. Roch, D. Darson, P. Morfin, M. Mirrahimi, M. H. Devoret, F. Mallet, B. Huard. Persistent control of a superconducting qubit by stroboscopic measurement feedback. Phys. Rev. X, 2013, 3: 021008
CrossRef
ADS
Google scholar
|
[19] |
R. Ruskov, K. Schwab, A. N. Korotkov. Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback. Phys. Rev. B, 2005, 71(23): 235407
CrossRef
ADS
Google scholar
|
[20] |
V.A. TomilinL.V. Il’ichov, Λ-scheme feedback spectroscopy, Opt. Commun. 391, 57 (2017)
|
[21] |
V.A. TomilinL.V. Il’ichov, BEC dynamics in a double-well with interferometric feedback, Ann. Phys. 528(7–8), 619 (2016)
|
[22] |
V. A. Tomilin, L. V. Il’ichov. Correlations of photoemissions in a multiatomic ensemble driven by a cat-state field. Phys. Rev. A, 2017, 96(6): 063805
CrossRef
ADS
Google scholar
|
[23] |
A. C. J. Wade, J. F. Sherson, K. Mölmer. Squeezing and entanglement of density oscillations in a Bose‒Einstein condensate. Phys. Rev. Lett., 2015, 115(6): 060401
CrossRef
ADS
Google scholar
|
[24] |
A. C. J. Wade, J. F. Sherson, K. Mölmer. Manipulation of collective quantum states in Bose‒Einstein condensates by continuous imaging. Phys. Rev. A, 2016, 93(2): 023610
CrossRef
ADS
Google scholar
|
[25] |
J. J. W. H. Sørensen, M. Dalgaard, A. H. Kiilerich, K. Mölmer, J. F. Sherson. Quantum control with measurements and quantum Zeno dynamics. Phys. Rev. A, 2018, 98(6): 062317
CrossRef
ADS
Google scholar
|
[26] |
G. Mazzucchi, S. F. Caballero-Benitez, D. A. Ivanov, I. B. Mekhov. Quantum optical feedback control for creating strong correlations in many-body systems. Optica, 2016, 3(11): 1213
CrossRef
ADS
Google scholar
|
[27] |
R. Lin, R. Rosa-Medina, F. Ferri, F. Finger, K. Kroeger, T. Donner, T. Esslinger, R. Chitra. Dissipation-engineered family of nearly dark states in many-body cavity-atom systems. Phys. Rev. Lett., 2022, 128(15): 153601
CrossRef
ADS
Google scholar
|
[28] |
D. A. Ivanov, T. Yu. Ivanova, S. F. Caballero-Benitez, I. B. Mekhov. Feedback-induced quantum phase transitions using weak measurements. Phys. Rev. Lett., 2020, 124(1): 010603
CrossRef
ADS
Google scholar
|
[29] |
K. C. Stitely, F. Finger, R. Rosa-Medina, F. Ferri, T. Donner, T. Esslinger, S. Parkins, B. Krauskopf. Quantum fluctuation dynamics of dispersive superradiant pulses in a hybrid light‒matter system. Phys. Rev. Lett., 2023, 131(14): 143604
CrossRef
ADS
Google scholar
|
[30] |
H.M. WisemanG.J. Milburn, Quantum Measurement and Control, Cambridge: Cambridge University Press, 2010
|
[31] |
S.KullbackL. A. Leibler, Information and Statistics, Wiley, 1959
|
[32] |
L. V. Il’ichev, P. L. Chapovskii. Decoherence of an atomic condensate in a double-well trap at optical probing. JETP Lett., 2015, 102(1): 14
CrossRef
ADS
Google scholar
|
[33] |
C. Gross, J. Estève, M. K. Oberthaler, A. D. Martin, J. Ruostekoski. Local and spatially extended sub-Poisson atom-number fluctuations in optical lattices. Phys. Rev. A, 2011, 84(1): 011609
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |