High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction

Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang

PDF(5969 KB)
PDF(5969 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (4) : 43204. DOI: 10.1007/s11467-023-1374-3
RESEARCH ARTICLE

High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction

Author information +
History +

Abstract

Two-dimensional (2D) transition metal dichalcogenides have been extensively studied due to their fascinating physical properties for constructing high-performance photodetectors. However, their relatively low responsivities, current on/off ratios and response speeds have hindered their widespread application. Herein, we fabricated a high-performance photodetector based on few-layer MoTe2 and CdS0.42Se0.58 flake heterojunctions. The photodetector exhibited a high responsivity of 7221 A/W, a large current on/off ratio of 1.73×104, a fast response speed of 90/120 μs, external quantum efficiency (EQE) reaching up to 1.52×106 % and detectivity (D*) reaching up to 1.67×1015 Jones. The excellent performance of the heterojunction photodetector was analyzed by a photocurrent mapping test and first-principle calculations. Notably, the visible light imaging function was successfully attained on the MoTe2/CdS0.42Se0.58 photodetectors, indicating that the device had practical imaging application prospects. Our findings provide a reference for the design of ultrahigh-performance MoTe2-based photodetectors.

Graphical abstract

Keywords

photodetector / MoTe2 / heterojunction / visible light imaging / first-principles calculations

Cite this article

Download citation ▾
Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang. High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction. Front. Phys., 2024, 19(4): 43204 https://doi.org/10.1007/s11467-023-1374-3

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
J. Yao, Z. Zheng, G. Yang. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater., 2017, 27(33): 1701823
CrossRef ADS Google scholar
[3]
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, G. Rubio-Bollinger. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater., 2012, 24(6): 772
CrossRef ADS Google scholar
[4]
J. Yao, G. Yang. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
CrossRef ADS Google scholar
[5]
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
CrossRef ADS Google scholar
[6]
S. Mouri, Y. Miyauchi, K. Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
CrossRef ADS Google scholar
[7]
C. J. HeardJ. Čejka, M. Opanasenko, P. Nachtigall, G. Centi , S. Perathoner., 2D oxide nanomaterials to address the energy transition and catalysis, Adv. Mater. 31(3), 1801712 (2019)
[8]
L. Tang, X. Meng, D. Deng, X. Bao. Confinement catalysis with 2D materials for energy conversion. Adv. Mater., 2019, 31(50): 1901996
CrossRef ADS Google scholar
[9]
F. R. Fan, R. Wang, H. Zhang, W. Wu. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev., 2021, 50(19): 10983
CrossRef ADS Google scholar
[10]
L. X. Chen, Z. W. Chen, M. Jiang, Z. Lu, C. Gao, G. Cai, C. V. Singh. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. J. Mater. Chem. A, 2021, 9(4): 2018
CrossRef ADS Google scholar
[11]
P. Tao, S. Yao, F. Liu, B. Wang, F. Huang, M. Wang. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A, 2019, 7(41): 23512
CrossRef ADS Google scholar
[12]
Y. Tian, Y. Chen, Y. Liu, H. Li, Z. Dai. Elemental two‐dimensional materials for Li/Na‐ion battery anode applications. Chem. Rec., 2022, 22(10): e202200123
CrossRef ADS Google scholar
[13]
B. Li, H. Xu, Y. Ma, S. Yang. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz., 2019, 4(1): 77
CrossRef ADS Google scholar
[14]
N. Deng, Y. Feng, G. Wang, X. Wang, L. Wang, Q. Li, L. Zhang, W. Kang, B. Cheng, Y. Liu. Rational structure designs of 2D materials and their applications toward advanced lithium−sulfur battery and lithium−selenium battery. Chem. Eng. J., 2020, 401(20): 125976
CrossRef ADS Google scholar
[15]
G. Gao, F. Zheng, F. Pan, L. W. Wang. Theoretical investigation of 2D conductive microporous coordination polymers as Li–S battery cathode with ultrahigh energy density. Adv. Energy Mater., 2018, 8(25): 1801823
CrossRef ADS Google scholar
[16]
R. Rojaee, R. Shahbazian-Yassar. Two-dimensional materials to address the lithium battery challenges. ACS Nano, 2020, 14(3): 2628
CrossRef ADS Google scholar
[17]
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S. P. Stepanoff, M. A. Steves, S. S. Radhakrishnan, S. Bachu, C. W. Ordonez, J. R. Shallenberger, J. M. Redwing, K. L. Knappenberger, D. E. Wolfe, S. Das. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater., 2022, 21(12): 1379
CrossRef ADS Google scholar
[18]
U. Khan, Y. Luo, L. Tang, C. Teng, J. Liu, B. Liu, H. M. Cheng. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater., 2019, 29(14): 1807979
CrossRef ADS Google scholar
[19]
S. G. Kim, S. H. Kim, J. Park, G. S. Kim, J. H. Park, K. C. Saraswat, J. Kim, H. Y. Yu. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano, 2019, 13(9): 10294
CrossRef ADS Google scholar
[20]
S. Namgung, J. Shaver, S. H. Oh, S. J. Koester. Multimodal photodiode and phototransistor device based on two-dimensional materials. ACS Nano, 2016, 10(11): 10500
CrossRef ADS Google scholar
[21]
Y. Cai, J. Yang, F. Wang, S. Li, Y. Wang, X. Zhan, F. Wang, R. Cheng, Z. Wang, J. He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
CrossRef ADS Google scholar
[22]
Z. Q. Li, T. T. Yan, X. S. Fang. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater., 2023, 8(9): 587
CrossRef ADS Google scholar
[23]
H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang, C. Liu, J. He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
CrossRef ADS Google scholar
[24]
G. Zhang, Y. Shu, J. Yao, Q. Shu, H. Deng, G. Jia, Z. Wang. Characteristics and developments of quantum-dot infrared photodetectors. Front. Phys. China, 2006, 1(3): 334
CrossRef ADS Google scholar
[25]
K. He, J. Zhu, Z. Li, Z. Chen, H. Zhang, C. Liu, X. Zhang, S. Wang, P. Zhao, Y. Zhou, S. Zhang, Y. Yin, X. Zheng, W. Huang, L. Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel. Front. Phys., 2023, 18(6): 63305
CrossRef ADS Google scholar
[26]
C. H. An, F. Nie, R. Zhang, X. Ma, D. Wu, Y. Sun, X. Hu, D. Sun, L. Pan, J. Liu. Two‐dimensional material‐enhanced flexible and self‐healable photodetector for large‐area photodetection. Adv. Funct. Mater., 2021, 31(22): 2100136
CrossRef ADS Google scholar
[27]
R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank, V. J. Sorger. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics, 2020, 14(9): 578
CrossRef ADS Google scholar
[28]
T. Octon, V. Nagareddy, S. Russo, M. F. Craciun, C. D. Wright. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater., 2016, 4(11): 1750
CrossRef ADS Google scholar
[29]
L. Yin, X. Zhan, K. Xu, F. Wang, Z. Wang, Y. Huang, Q. Wang, C. Jiang, J. He. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett., 2016, 108(4): 043503
CrossRef ADS Google scholar
[30]
H. Huang, J. Wang, W. Hu, L. Liao, P. Wang, X. Wang, F. Gong, Y. Chen, G. Wu, W. Luo, H. Shen, T. Lin, J. Sun, X. Meng, X. Chen, J. Chu. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27(44): 445201
CrossRef ADS Google scholar
[31]
Y. Chen, X. Wang, G. Wu, Z. Wang, H. Fang, T. Lin, S. Sun, H. Shen, W. Hu, J. Wang, J. Sun, X. Meng, J. Chu. High‐performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14(9): 1703293
CrossRef ADS Google scholar
[32]
M. Y. Lu, Y. T. Chang, H. J. Chen. Efficient self-driven photodetectors featuring a mixed-dimensional van der Waals heterojunction formed from a CdS nanowire and a MoTe2 flake. Small, 2018, 14(40): 1802302
CrossRef ADS Google scholar
[33]
J.ChenY. ShanQ.WangJ.ZhuR.Liu, P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector, Nanotechnology 31(29), 295201 (2020)
[34]
Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, J. Jie. Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D heterojunction‐based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater., 2020, 30(9): 1907951
CrossRef ADS Google scholar
[35]
R. O. Loutfy, D. S. Ng. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells. Solar Energy Mater., 1984, 11(4): 319
CrossRef ADS Google scholar
[36]
S. Smidstrup, D. Stradi, J. Wellendorff, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, T. Ghosh, E. Jónsson, H. Jónsson, K. Stokbro. First-principles green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B, 2017, 96(19): 195309
CrossRef ADS Google scholar
[37]
S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef ADS Google scholar
[38]
M. A. Hossain, J. R. Jennings, N. Mathews, Q. Wang. Band engineered ternary solid solution CdSxSe1−x sensitized mesoscopic TiO2 solar cells. Phys. Chem. Chem. Phys., 2012, 14(19): 7154
CrossRef ADS Google scholar
[39]
S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, S. H. Wei. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6(13): 7226
CrossRef ADS Google scholar
[40]
G. Chen, Z. Liu, B. Liang, G. Yu, Z. Xie, H. Huang, B. Liu, X. Wang, D. Chen, M. Q. Zhu, G. Shen. Single-crystalline p-type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013, 23(21): 2681
CrossRef ADS Google scholar
[41]
Y. H. Chen, L. X. Su, M. M. Jiang, X. S. Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol., 2022, 105: 259
CrossRef ADS Google scholar
[42]
S.Y. LiY. ZhangW.YangH.LiuX.Fang, 2D Perovskite Sr2Nb3O10 for High‐Performance UV Photodetectors, Adv. Mater. 32(7), 1905443 (2020)
[43]
Y. Zhang, J. Yao, Z. Zhang, R. Zhang, L. Li, Y. Teng, Z. J. Shen, L. X. Kang, L. M. Wu, X. S. Fang. Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol., 2023, 164: 95
CrossRef ADS Google scholar
[44]
B. X. Liu, Y. Sun, Y. Wu, K. Liu, H. Ye, F. Li, L. Zhang, Y. Jiang, R. Wang. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res., 2021, 14(4): 982
CrossRef ADS Google scholar
[45]
J. Yan, X. Yang, X. Liu, C. Du, F. Qin, M. Yang, Z. Zheng, J. Li. Van der Waals heterostructures with built‐in Mie resonances for polarization‐sensitive photodetection. Adv. Sci., 2023, 10(9): 2207022
CrossRef ADS Google scholar
[46]
J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang, X. Ren, Y. Liu, Q. Gu, X. Zhuo, W. Lu, Y. Wu, Y. Li, J. Feng, S. Zhou, J. H. Chen, D. Sun. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv. Mater., 2018, 30(22): 1707152
CrossRef ADS Google scholar
[47]
P. Chen, L. Pi, Z. Li, H. Wang, X. Xu, D. Li, X. Zhou, T. Zhai. GeSe/MoTe2 vdW heterostructure for UV-VIS-NIR photodetector with fast response. Appl. Phys. Lett., 2022, 121(2): 021103
CrossRef ADS Google scholar
[48]
J. W. Park, Y. S. Jung, S. H. Park, H. J. Choi, Y. S. Cho. High‐performance photoresponse in ferroelectric d1T‐MoTe2‐based vertical photodetectors. Adv. Opt. Mater., 2022, 10(21): 2200898
CrossRef ADS Google scholar
[49]
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, K. M. Yu. On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano, 2016, 10(9): 8474
CrossRef ADS Google scholar
[50]
W. Chen, R. Liang, S. Zhang, Y. Liu, W. Cheng, C. Sun, J. Xu. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res., 2020, 13(1): 127
CrossRef ADS Google scholar
[51]
J. Xia, Y. X. Zhao, L. Wang, X. Z. Li, Y. Y. Gu, H. Q. Cheng, X. M. Meng. Van der Waals epitaxial two-dimensional CdSxSe1−x semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9(36): 13786
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11864046 and 11764046), the Basic Research Program of Yunnan Province (Nos. 202001AT070064 and 202101AT070124), the Spring City Plan (High-level Talent Promotion and Training Project of Kunming) (No. 2022SCP005), and Yunnan Expert Workstation (No. 202205AF150008).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5969 KB)

Accesses

Citations

Detail

Sections
Recommended

/