High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction
Ran Ma, Qiuhong Tan, Peizhi Yang, Yingkai Liu, Qianjin Wang
High performance photodetector based on few-layer MoTe2/CdS0.42Se0.58 flake heterojunction
Two-dimensional (2D) transition metal dichalcogenides have been extensively studied due to their fascinating physical properties for constructing high-performance photodetectors. However, their relatively low responsivities, current on/off ratios and response speeds have hindered their widespread application. Herein, we fabricated a high-performance photodetector based on few-layer MoTe2 and CdS0.42Se0.58 flake heterojunctions. The photodetector exhibited a high responsivity of 7221 A/W, a large current on/off ratio of 1.73×104, a fast response speed of 90/120 μs, external quantum efficiency (EQE) reaching up to 1.52×106 % and detectivity (D*) reaching up to 1.67×1015 Jones. The excellent performance of the heterojunction photodetector was analyzed by a photocurrent mapping test and first-principle calculations. Notably, the visible light imaging function was successfully attained on the MoTe2/CdS0.42Se0.58 photodetectors, indicating that the device had practical imaging application prospects. Our findings provide a reference for the design of ultrahigh-performance MoTe2-based photodetectors.
photodetector / MoTe2 / heterojunction / visible light imaging / first-principles calculations
[1] |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef
ADS
Google scholar
|
[2] |
J. Yao, Z. Zheng, G. Yang. All-layered 2D optoelectronics: A high-performance UV-Vis-NIR broadband SnSe photodetector with Bi2Te3 topological insulator electrodes. Adv. Funct. Mater., 2017, 27(33): 1701823
CrossRef
ADS
Google scholar
|
[3] |
A. Castellanos-Gomez, M. Poot, G. A. Steele, H. S. J. van der Zant, N. Agraït, G. Rubio-Bollinger. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater., 2012, 24(6): 772
CrossRef
ADS
Google scholar
|
[4] |
J. Yao, G. Yang. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
CrossRef
ADS
Google scholar
|
[5] |
W. Wu, L. Wang, Y. Li, F. Zhang, L. Lin, S. Niu, D. Chenet, X. Zhang, Y. Hao, T. F. Heinz, J. Hone, Z. L. Wang. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014, 514(7523): 470
CrossRef
ADS
Google scholar
|
[6] |
S. Mouri, Y. Miyauchi, K. Matsuda. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
CrossRef
ADS
Google scholar
|
[7] |
C. J. HeardJ. Čejka, M. Opanasenko, P. Nachtigall, G. Centi , S. Perathoner., 2D oxide nanomaterials to address the energy transition and catalysis, Adv. Mater. 31(3), 1801712 (2019)
|
[8] |
L. Tang, X. Meng, D. Deng, X. Bao. Confinement catalysis with 2D materials for energy conversion. Adv. Mater., 2019, 31(50): 1901996
CrossRef
ADS
Google scholar
|
[9] |
F. R. Fan, R. Wang, H. Zhang, W. Wu. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev., 2021, 50(19): 10983
CrossRef
ADS
Google scholar
|
[10] |
L. X. Chen, Z. W. Chen, M. Jiang, Z. Lu, C. Gao, G. Cai, C. V. Singh. Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis. J. Mater. Chem. A, 2021, 9(4): 2018
CrossRef
ADS
Google scholar
|
[11] |
P. Tao, S. Yao, F. Liu, B. Wang, F. Huang, M. Wang. Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. J. Mater. Chem. A, 2019, 7(41): 23512
CrossRef
ADS
Google scholar
|
[12] |
Y. Tian, Y. Chen, Y. Liu, H. Li, Z. Dai. Elemental two‐dimensional materials for Li/Na‐ion battery anode applications. Chem. Rec., 2022, 22(10): e202200123
CrossRef
ADS
Google scholar
|
[13] |
B. Li, H. Xu, Y. Ma, S. Yang. Harnessing the unique properties of 2D materials for advanced lithium–sulfur batteries. Nanoscale Horiz., 2019, 4(1): 77
CrossRef
ADS
Google scholar
|
[14] |
N. Deng, Y. Feng, G. Wang, X. Wang, L. Wang, Q. Li, L. Zhang, W. Kang, B. Cheng, Y. Liu. Rational structure designs of 2D materials and their applications toward advanced lithium−sulfur battery and lithium−selenium battery. Chem. Eng. J., 2020, 401(20): 125976
CrossRef
ADS
Google scholar
|
[15] |
G. Gao, F. Zheng, F. Pan, L. W. Wang. Theoretical investigation of 2D conductive microporous coordination polymers as Li–S battery cathode with ultrahigh energy density. Adv. Energy Mater., 2018, 8(25): 1801823
CrossRef
ADS
Google scholar
|
[16] |
R. Rojaee, R. Shahbazian-Yassar. Two-dimensional materials to address the lithium battery challenges. ACS Nano, 2020, 14(3): 2628
CrossRef
ADS
Google scholar
|
[17] |
A. Dodda, D. Jayachandran, A. Pannone, N. Trainor, S. P. Stepanoff, M. A. Steves, S. S. Radhakrishnan, S. Bachu, C. W. Ordonez, J. R. Shallenberger, J. M. Redwing, K. L. Knappenberger, D. E. Wolfe, S. Das. Active pixel sensor matrix based on monolayer MoS2 phototransistor array. Nat. Mater., 2022, 21(12): 1379
CrossRef
ADS
Google scholar
|
[18] |
U. Khan, Y. Luo, L. Tang, C. Teng, J. Liu, B. Liu, H. M. Cheng. Controlled vapor–solid deposition of millimeter-size single crystal 2D Bi2O2Se for high‐performance phototransistors. Adv. Funct. Mater., 2019, 29(14): 1807979
CrossRef
ADS
Google scholar
|
[19] |
S. G. Kim, S. H. Kim, J. Park, G. S. Kim, J. H. Park, K. C. Saraswat, J. Kim, H. Y. Yu. Infrared detectable MoS2 phototransistor and its application to artificial multilevel optic-neural synapse. ACS Nano, 2019, 13(9): 10294
CrossRef
ADS
Google scholar
|
[20] |
S. Namgung, J. Shaver, S. H. Oh, S. J. Koester. Multimodal photodiode and phototransistor device based on two-dimensional materials. ACS Nano, 2016, 10(11): 10500
CrossRef
ADS
Google scholar
|
[21] |
Y. Cai, J. Yang, F. Wang, S. Li, Y. Wang, X. Zhan, F. Wang, R. Cheng, Z. Wang, J. He. Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
CrossRef
ADS
Google scholar
|
[22] |
Z. Q. Li, T. T. Yan, X. S. Fang. Low-dimensional wide-bandgap semiconductors for UV photodetectors. Nat. Rev. Mater., 2023, 8(9): 587
CrossRef
ADS
Google scholar
|
[23] |
H. Zeng, Y. Wen, L. Yin, R. Cheng, H. Wang, C. Liu, J. He. Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
CrossRef
ADS
Google scholar
|
[24] |
G. Zhang, Y. Shu, J. Yao, Q. Shu, H. Deng, G. Jia, Z. Wang. Characteristics and developments of quantum-dot infrared photodetectors. Front. Phys. China, 2006, 1(3): 334
CrossRef
ADS
Google scholar
|
[25] |
K. He, J. Zhu, Z. Li, Z. Chen, H. Zhang, C. Liu, X. Zhang, S. Wang, P. Zhao, Y. Zhou, S. Zhang, Y. Yin, X. Zheng, W. Huang, L. Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel. Front. Phys., 2023, 18(6): 63305
CrossRef
ADS
Google scholar
|
[26] |
C. H. An, F. Nie, R. Zhang, X. Ma, D. Wu, Y. Sun, X. Hu, D. Sun, L. Pan, J. Liu. Two‐dimensional material‐enhanced flexible and self‐healable photodetector for large‐area photodetection. Adv. Funct. Mater., 2021, 31(22): 2100136
CrossRef
ADS
Google scholar
|
[27] |
R. Maiti, C. Patil, M. A. S. R. Saadi, T. Xie, J. G. Azadani, B. Uluutku, R. Amin, A. F. Briggs, M. Miscuglio, D. Van Thourhout, S. D. Solares, T. Low, R. Agarwal, S. R. Bank, V. J. Sorger. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photonics, 2020, 14(9): 578
CrossRef
ADS
Google scholar
|
[28] |
T. Octon, V. Nagareddy, S. Russo, M. F. Craciun, C. D. Wright. Fast high-responsivity few-layer MoTe2 photodetectors. Adv. Opt. Mater., 2016, 4(11): 1750
CrossRef
ADS
Google scholar
|
[29] |
L. Yin, X. Zhan, K. Xu, F. Wang, Z. Wang, Y. Huang, Q. Wang, C. Jiang, J. He. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett., 2016, 108(4): 043503
CrossRef
ADS
Google scholar
|
[30] |
H. Huang, J. Wang, W. Hu, L. Liao, P. Wang, X. Wang, F. Gong, Y. Chen, G. Wu, W. Luo, H. Shen, T. Lin, J. Sun, X. Meng, X. Chen, J. Chu. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology, 2016, 27(44): 445201
CrossRef
ADS
Google scholar
|
[31] |
Y. Chen, X. Wang, G. Wu, Z. Wang, H. Fang, T. Lin, S. Sun, H. Shen, W. Hu, J. Wang, J. Sun, X. Meng, J. Chu. High‐performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small, 2018, 14(9): 1703293
CrossRef
ADS
Google scholar
|
[32] |
M. Y. Lu, Y. T. Chang, H. J. Chen. Efficient self-driven photodetectors featuring a mixed-dimensional van der Waals heterojunction formed from a CdS nanowire and a MoTe2 flake. Small, 2018, 14(40): 1802302
CrossRef
ADS
Google scholar
|
[33] |
J.ChenY. ShanQ.WangJ.ZhuR.Liu, P-type laser-doped WSe2/MoTe2 van der Waals heterostructure photodetector, Nanotechnology 31(29), 295201 (2020)
|
[34] |
Z. Lu, Y. Xu, Y. Yu, K. Xu, J. Mao, G. Xu, Y. Ma, D. Wu, J. Jie. Ultrahigh speed and broadband few‐layer MoTe2/Si 2D–3D heterojunction‐based photodiodes fabricated by pulsed laser deposition. Adv. Funct. Mater., 2020, 30(9): 1907951
CrossRef
ADS
Google scholar
|
[35] |
R. O. Loutfy, D. S. Ng. Electrodeposited polycrystalline thin films of cadmium chalcogenides for backwall photoelectrochemical cells. Solar Energy Mater., 1984, 11(4): 319
CrossRef
ADS
Google scholar
|
[36] |
S. Smidstrup, D. Stradi, J. Wellendorff, P. A. Khomyakov, U. G. Vej-Hansen, M. E. Lee, T. Ghosh, E. Jónsson, H. Jónsson, K. Stokbro. First-principles green’s-function method for surface calculations: A pseudopotential localized basis set approach. Phys. Rev. B, 2017, 96(19): 195309
CrossRef
ADS
Google scholar
|
[37] |
S. Grimme. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem., 2006, 27(15): 1787
CrossRef
ADS
Google scholar
|
[38] |
M. A. Hossain, J. R. Jennings, N. Mathews, Q. Wang. Band engineered ternary solid solution CdSxSe1−x sensitized mesoscopic TiO2 solar cells. Phys. Chem. Chem. Phys., 2012, 14(19): 7154
CrossRef
ADS
Google scholar
|
[39] |
S. Yang, S. Tongay, Y. Li, Q. Yue, J. B. Xia, S. S. Li, J. Li, S. H. Wei. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale, 2014, 6(13): 7226
CrossRef
ADS
Google scholar
|
[40] |
G. Chen, Z. Liu, B. Liang, G. Yu, Z. Xie, H. Huang, B. Liu, X. Wang, D. Chen, M. Q. Zhu, G. Shen. Single-crystalline p-type Zn3As2 nanowires for field-effect transistors and visible-light photodetectors on rigid and flexible substrates. Adv. Funct. Mater., 2013, 23(21): 2681
CrossRef
ADS
Google scholar
|
[41] |
Y. H. Chen, L. X. Su, M. M. Jiang, X. S. Fang. Switch type PANI/ZnO core-shell microwire heterojunction for UV photodetection. J. Mater. Sci. Technol., 2022, 105: 259
CrossRef
ADS
Google scholar
|
[42] |
S.Y. LiY. ZhangW.YangH.LiuX.Fang, 2D Perovskite Sr2Nb3O10 for High‐Performance UV Photodetectors, Adv. Mater. 32(7), 1905443 (2020)
|
[43] |
Y. Zhang, J. Yao, Z. Zhang, R. Zhang, L. Li, Y. Teng, Z. J. Shen, L. X. Kang, L. M. Wu, X. S. Fang. Two-dimensional perovskite Pb2Nb3O10 photodetectors. J. Mater. Sci. Technol., 2023, 164: 95
CrossRef
ADS
Google scholar
|
[44] |
B. X. Liu, Y. Sun, Y. Wu, K. Liu, H. Ye, F. Li, L. Zhang, Y. Jiang, R. Wang. Enhanced photoresponse of TiO2/MoS2 heterostructure phototransistors by the coupling of interface charge transfer and photogating. Nano Res., 2021, 14(4): 982
CrossRef
ADS
Google scholar
|
[45] |
J. Yan, X. Yang, X. Liu, C. Du, F. Qin, M. Yang, Z. Zheng, J. Li. Van der Waals heterostructures with built‐in Mie resonances for polarization‐sensitive photodetection. Adv. Sci., 2023, 10(9): 2207022
CrossRef
ADS
Google scholar
|
[46] |
J. Lai, X. Liu, J. Ma, Q. Wang, K. Zhang, X. Ren, Y. Liu, Q. Gu, X. Zhuo, W. Lu, Y. Wu, Y. Li, J. Feng, S. Zhou, J. H. Chen, D. Sun. Anisotropic broadband photoresponse of layered type-II Weyl semimetal MoTe2. Adv. Mater., 2018, 30(22): 1707152
CrossRef
ADS
Google scholar
|
[47] |
P. Chen, L. Pi, Z. Li, H. Wang, X. Xu, D. Li, X. Zhou, T. Zhai. GeSe/MoTe2 vdW heterostructure for UV-VIS-NIR photodetector with fast response. Appl. Phys. Lett., 2022, 121(2): 021103
CrossRef
ADS
Google scholar
|
[48] |
J. W. Park, Y. S. Jung, S. H. Park, H. J. Choi, Y. S. Cho. High‐performance photoresponse in ferroelectric d1T‐MoTe2‐based vertical photodetectors. Adv. Opt. Mater., 2022, 10(21): 2200898
CrossRef
ADS
Google scholar
|
[49] |
P. Guo, J. Xu, K. Gong, X. Shen, Y. Lu, Y. Qiu, J. Xu, Z. Zou, C. Wang, H. Yan, Y. Luo, A. Pan, H. Zhang, J. C. Ho, K. M. Yu. On-nanowire axial heterojunction design for high-performance photodetectors. ACS Nano, 2016, 10(9): 8474
CrossRef
ADS
Google scholar
|
[50] |
W. Chen, R. Liang, S. Zhang, Y. Liu, W. Cheng, C. Sun, J. Xu. Ultrahigh sensitive near-infrared photodetectors based on MoTe2/germanium heterostructure. Nano Res., 2020, 13(1): 127
CrossRef
ADS
Google scholar
|
[51] |
J. Xia, Y. X. Zhao, L. Wang, X. Z. Li, Y. Y. Gu, H. Q. Cheng, X. M. Meng. Van der Waals epitaxial two-dimensional CdSxSe1−x semiconductor alloys with tunable-composition and application to flexible optoelectronics. Nanoscale, 2017, 9(36): 13786
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |