High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network
Youzhi Shi, Zuhai Ma, Hongyu Chen, Yougang Ke, Yu Chen, Xinxing Zhou
High-resolution recognition of FOAM modes via an improved EfficientNet V2 based convolutional neural network
Vortex beam with fractional orbital angular momentum (FOAM) is the excellent candidate for improving the capacity of free-space optical (FSO) communication system due to its infinite modes. Therefore, the recognition of FOAM modes with higher resolution is always of great concern. In this work, through an improved EfficientNetV2 based convolutional neural network (CNN), we experimentally achieve the implementation of the recognition of FOAM modes with a resolution as high as 0.001. To the best of our knowledge, it is the first time this high resolution has been achieved. Under the strong atmospheric turbulence (AT) (), the recognition accuracy of FOAM modes at 0.1 and 0.01 resolution with our model is up to 99.12% and 92.24% for a long transmission distance of 2000 m. Even for the resolution at 0.001, the recognition accuracy can still remain at 78.77%. This work provides an effective method for the recognition of FOAM modes, which may largely improve the channel capacity of the free-space optical communication.
OAM / free-space optical communication / deep learning / convolutional neural network
[1] |
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre−Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
CrossRef
ADS
Google scholar
|
[2] |
G. C. G. Berkhout, M. P. J. Lavery, J. Courtial, M. W. Beijersbergen, M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 2010, 105(15): 153601
CrossRef
ADS
Google scholar
|
[3] |
K. Liu, Y. Q. Cheng, X. Li, Y. Gao. Microwave-sensing technology using orbital angular momentum: Overview of its advantages. IEEE Veh. Technol. Mag., 2019, 14(2): 112
CrossRef
ADS
Google scholar
|
[4] |
L. Yan, P. Kristensen, S. Ramachandran. Vortex fibers for STED microscopy. APL Photonics, 2019, 4(2): 022903
CrossRef
ADS
Google scholar
|
[5] |
X. W. Zhuang. Unraveling DNA condensation with optical tweezers. Science, 2004, 305(5681): 188
CrossRef
ADS
Google scholar
|
[6] |
Z. Y. Zhou, D. S. Ding, Y. K. Jiang, Y. Li, S. Shi, X. S. Wang, B. S. Shi. Orbital angular momentum light frequency conversion and interference with quasi-phase matching crystals. Opt. Express, 2014, 22(17): 20298
CrossRef
ADS
Google scholar
|
[7] |
S. J. Li, Z. Y. Li, G. S. Huang, X. B. Liu, R. Q. Li, X. Y. Cao. Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
CrossRef
ADS
Google scholar
|
[8] |
L. Zou, L. Wang, S. M. Zhao. Turbulence mitigation scheme based on spatial diversity in orbital-angular-momentum multiplexed system. Opt. Commun., 2017, 400: 123
CrossRef
ADS
Google scholar
|
[9] |
E.M. AmhoudM. ChafiiA.NimrG.Fettweis, OFDM with index modulation in orbital angular momentum multiplexed free space optical links, in: IEEE 93rd Vehicular Technology Conference (VTC-Spring), Electr Network, 2021
|
[10] |
A. E. Willner, K. Pang, H. Song, K. H. Zou, H. B. Zhou. Orbital angular momentum of light for communications. Appl. Phys. Rev., 2021, 8(4): 041312
CrossRef
ADS
Google scholar
|
[11] |
X. H. Zhang, T. Xia, S. B. Cheng, S. H. Tao. Free-space information transfer using the elliptic vortex beam with fractional topological charge. Opt. Commun., 2019, 431: 238
CrossRef
ADS
Google scholar
|
[12] |
V. V. Kotlyar, A. A. Kovalev, A. G. Nalimov, A. P. Porfirev. Evolution of an optical vortex with an initial fractional topological charge. Phys. Rev. A, 2020, 102(2): 023516
CrossRef
ADS
Google scholar
|
[13] |
S. S. Li, B. F. Shen, W. P. Wang, Z. G. Bu, H. Zhang, H. Zhang, S. H. Zhai. Diffraction of relativistic vortex harmonics with fractional average orbital angular momentum. Chin. Opt. Lett., 2019, 17(5): 050501
CrossRef
ADS
Google scholar
|
[14] |
M. I. Dedo, Z. Wang, K. Guo, Y. Sun, F. Shen, H. Zhou, J. Gao, R. Sun, Z. Ding, Z. Guo. Retrieving performances of vortex beams with GS algorithm after transmitting in different types of turbulences. Appl. Sci. (Basel), 2019, 9(11): 2269
CrossRef
ADS
Google scholar
|
[15] |
X. Yan, P. F. Zhang, J. H. Zhang, X. X. Feng, C. H. Qiao, C. Y. Fan. Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state. Chin. Phys. B, 2017, 26(6): 064202
CrossRef
ADS
Google scholar
|
[16] |
Y. J. Yang, Q. Zhao, L. L. Liu, Y. D. Liu, C. Rosales-Guzman, C. W. Qiu. Manipulation of orbital-angular-momentum spectrum using pinhole plates. Phys. Rev. Appl., 2019, 12(6): 064007
CrossRef
ADS
Google scholar
|
[17] |
Z. C. Zhang, J. C. Pei, Y. P. Wang, X. G. Wang. Measuring orbital angular momentum of vortex beams in optomechanics. Front. Phys., 2021, 16(3): 32503
CrossRef
ADS
Google scholar
|
[18] |
A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics, 2016, 8(2): 200
CrossRef
ADS
Google scholar
|
[19] |
J.YuZ.F. Wang, 3D facial motion tracking by combining online appearance model and cylinder head model in particle filtering, Sci. China Inf. Sci. 57(7), 029101 (2014)
|
[20] |
N. Uribe-Patarroyo, A. Fraine, D. S. Simon, O. Minaeva, A. V. Sergienko. Object identification using correlated orbital angular momentum states. Phys. Rev. Lett., 2013, 110(4): 043601
CrossRef
ADS
Google scholar
|
[21] |
J. Zhu, P. Zhang, D. Z. Fu, D. X. Chen, R. F. Liu, Y. N. Zhou, H. Gao, F. L. Li. Probing the fractional topological charge of a vortex light beam by using dynamic angular double slits. Photon. Res., 2016, 4(5): 187
CrossRef
ADS
Google scholar
|
[22] |
D. Deng, M. C. Lin, Y. Li, H. Zhao. Precision measurement of fractional orbital angular momentum. Phys. Rev. Appl., 2019, 12(1): 014048
CrossRef
ADS
Google scholar
|
[23] |
S. Zheng, J. Wang. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep., 2017, 7(1): 40781
CrossRef
ADS
Google scholar
|
[24] |
K.BayoudhR. KnaniF.HamdaouiA.Mtibaa, A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets, Vis. Comput. 38(8), 2939 (2022)
|
[25] |
N.O’MahonyS.CampbellA.Carvalho S.HarapanahalliG.V. HernandezL.KrpalkovaD.RiordanJ.Walsh, Deep learning vs. traditional computer vision, in: Computer Vision Conference (CVC), Springer International Publishing Ag, Las Vegas, NV, 2019, pp 128–144
|
[26] |
J
|
[27] |
N. Le, V. S. Rathour, K. Yamazaki, K. Luu, M. Savvides. Deep reinforcement learning in computer vision: a comprehensive survey. Artif. Intell. Rev., 2022, 55(4): 2733
CrossRef
ADS
Google scholar
|
[28] |
R. Yamashita, M. Nishio, R. K. G. Do, K. Togashi. Convolutional neural networks: An overview and application in radiology. Insights Imaging, 2018, 9(4): 611
CrossRef
ADS
Google scholar
|
[29] |
P.MichalskiB. RuszczakM.Tomaszewski, Convolutional neural networks implementations for computer vision, in: 3rd International Scientific Conference on Brain-Computer Interfaces (BCI), Springer International Publishing Ag, Opole Univ Technol, Opole, POLAND, 2018, pp 98–110
|
[30] |
Z. W. Liu, S. Yan, H. G. Liu, X. F. Chen. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 2019, 123(18): 183902
CrossRef
ADS
Google scholar
|
[31] |
M. Cao, Y. L. Yin, J. W. Zhou, J. H. Tang, L. P. Cao, Y. Xia, J. P. Yin. Machine learning based accurate recognition of fractional optical vortex modes in atmospheric environment. Appl. Phys. Lett., 2021, 119(14): 141103
CrossRef
ADS
Google scholar
|
[32] |
J. Zhou, Y. Yin, J. Tang, C. Ling, M. Cao, L. Cao, G. Liu, J. Yin, Y. Xia. Recognition of high-resolution optical vortex modes with deep residual learning. Phys. Rev. A, 2022, 106(1): 013519
CrossRef
ADS
Google scholar
|
[33] |
W. W. Song, S. T. Li, L. Y. Fang, T. Lu. Hyperspectral image classification with deep feature fusion network. IEEE Trans. Geosci. Remote Sens., 2018, 56(6): 3173
CrossRef
ADS
Google scholar
|
[34] |
M.X. TanQ. V. Le, EfficientNetV2: Smaller models and faster training, in: International Conference on Machine Learning (ICML), Electr Network, 2021, pp 7102–7110
|
[35] |
M.L. HuangY. C. Liao, A lightweight CNN-based network on COVID-19 detection using X-ray and CT images, Comput. Biol. Med. 146, 105604 (2022)
|
[36] |
R. Karthik, T. S. Vaichole, S. K. Kulkarni, O. Yadav, F. Khan. Eff2Net: An efficient channel attention-based convolutional neural network for skin disease classification. Biomed. Signal Process. Control, 2022, 73: 103406
CrossRef
ADS
Google scholar
|
[37] |
H. Zhang, J. Zeng, X. Y. Lu, Z. Y. Wang, C. L. Zhao, Y. J. Cai. Review on fractional vortex beam. Nanophotonics, 2022, 11(2): 241
CrossRef
ADS
Google scholar
|
[38] |
A. Belafhal, L. Dalil-Essakali. Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system. Opt. Commun., 2000, 177(1−6): 181
CrossRef
ADS
Google scholar
|
[39] |
Y. J. Yang, Y. Dong, C. L. Zhao, Y. J. Cai. Generation and propagation of an anomalous vortex beam. Opt. Lett., 2013, 38(24): 5418
CrossRef
ADS
Google scholar
|
[40] |
P. H. F. Mesquita, A. J. Jesus-Silva, E. J. S. Fonseca, J. M. Hickmann. Engineering a square truncated lattice with light’s orbital angular momentum. Opt. Express, 2011, 19(21): 20616
CrossRef
ADS
Google scholar
|
[41] |
B. Rodenburg, M. P. J. Lavery, M. Malik, M. N. O’Sullivan, M. Mirhosseini, D. J. Robertson, M. Padgett, R. W. Boyd. Influence of atmospheric turbulence on states of light carrying orbital angular momentum. Opt. Lett., 2012, 37(17): 3735
CrossRef
ADS
Google scholar
|
[42] |
S. Y. Fu, C. Q. Gao. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photon. Res., 2016, 4(5): B1
CrossRef
ADS
Google scholar
|
[43] |
L. C. Andrews. An analytical model for the refractive index power spectrum and its application to optical scintillations in the atmosphere. J. Mod. Opt., 1992, 39(9): 1849
CrossRef
ADS
Google scholar
|
[44] |
W. Cheng, J. W. Haus, Q. W. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express, 2009, 17(20): 17829
CrossRef
ADS
Google scholar
|
[45] |
S. M. Zhao, J. Leach, L. Y. Gong, J. Ding, B. Y. Zheng. Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. Opt. Express, 2012, 20(1): 452
CrossRef
ADS
Google scholar
|
[46] |
Y. Kim, I. Ohn, D. Kim. Fast convergence rates of deep neural networks for classification. Neural Netw., 2021, 138: 179
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |