Cavity-enhanced metrology in an atomic spin-1 Bose−Einstein condensate
Renfei Zheng, Jieli Qin, Bing Chen, Xingdong Zhao, Lu Zhou
Cavity-enhanced metrology in an atomic spin-1 Bose−Einstein condensate
Atom interferometer has been proven to be a powerful tool for precision metrology. Here we propose a cavity-aided nonlinear atom interferometer, based on the quasi-periodic spin mixing dynamics of an atomic spin-1 Bose−Einstein condensate trapped in an optical cavity. We unravel that the phase sensitivity can be greatly enhanced with the cavity-mediated nonlinear interaction. The influence of encoding phase, splitting time and recombining time on phase sensitivity are carefully studied. In addition, we demonstrate a dynamical phase transition in the system. Around the criticality, a small cavity light field variation can arouse a strong response of the atomic condensate, which can serve as a new resource for enhanced sensing. This work provides a robust protocol for cavity-enhanced metrology.
nonlinear atom interferometer / spin-1 Bose−Einstein condensate / spin-mixing dynamics / quantum Fisher information / parameter estimation
[1] |
A. D. Cronin, J. Schmiedmayer, D. E. Pritchard. Optics and interferometry with atoms and molecules. Rev. Mod. Phys., 2009, 81(3): 1051
CrossRef
ADS
Google scholar
|
[2] |
J. B. Fixler, G. Foster, J. McGuirk, M. Kasevich. Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74
CrossRef
ADS
Google scholar
|
[3] |
G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett., 2008, 100(5): 050801
CrossRef
ADS
Google scholar
|
[4] |
P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran. New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett., 2013, 110(17): 171102
CrossRef
ADS
Google scholar
|
[5] |
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518
CrossRef
ADS
Google scholar
|
[6] |
W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin, P. Bouyer. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys. Rev. D, 2016, 93(2): 021101
CrossRef
ADS
Google scholar
|
[7] |
R. H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller. Measurement of the fine-structure constant as a test of the standard model. Science, 2018, 360(6385): 191
CrossRef
ADS
Google scholar
|
[8] |
K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W. P. Schleich, A. Roura. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys., 2019, 1(12): 731
CrossRef
ADS
Google scholar
|
[9] |
A. Peters, K. Y. Chung, S. Chu. Measurement of gravitational acceleration by dropping atom. Nature, 1999, 400(6747): 849
CrossRef
ADS
Google scholar
|
[10] |
P. Altin, M. Johnsson, V. Negnevitsky, G. Dennis, R. P. Anderson, J. Debs, S. Szigeti, K. Hardman, S. Bennetts, G. McDonald, L. D. Turner, J. D. Close, N. P. Robins. Precision atomic gravimeter based on Bragg diffraction. New J. Phys., 2013, 15(2): 023009
CrossRef
ADS
Google scholar
|
[11] |
M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, M. Kasevich. Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett., 1998, 81(5): 971
CrossRef
ADS
Google scholar
|
[12] |
A. Trimeche, B. Battelier, D. Becker, A. Bertoldi, P. Bouyer, C. Braxmaier, E. Charron, R. Corgier, M. Cornelius, K. Douch, N. Gaaloul, S. Herrmann, J. Müller, E. Rasel, C. Schubert, H. Wu, F. Pereira dos Santos. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class. Quantum Gravity, 2019, 36(21): 215004
CrossRef
ADS
Google scholar
|
[13] |
F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Bordé. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett., 1991, 67(2): 177
CrossRef
ADS
Google scholar
|
[14] |
T. Gustavson, P. Bouyer, M. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 1997, 78(11): 2046
CrossRef
ADS
Google scholar
|
[15] |
J. Stockton, K. Takase, M. Kasevich. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett., 2011, 107(13): 133001
CrossRef
ADS
Google scholar
|
[16] |
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezzè, A. Smerzi, M. K. Oberthaler. Fisher information and entanglement of non-Gaussian spin states. Science, 2014, 345(6195): 424
CrossRef
ADS
Google scholar
|
[17] |
J. Estève, C. Gross, A. Weller, S. Giovanazzi, M. K. Oberthaler. Squeezing and entanglement in a Bose–Einstein condensate. Nature, 2008, 455(7217): 1216
CrossRef
ADS
Google scholar
|
[18] |
B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, C. Klempt. Twin matter waves for interferometry beyond the classical limit. Science, 2011, 334(6057): 773
CrossRef
ADS
Google scholar
|
[19] |
C. Gross, T. Zibold, E. Nicklas, J. Esteve, M. K. Oberthaler. Nonlinear atom interferometer surpasses classical precision limit. Nature, 2010, 464(7292): 1165
CrossRef
ADS
Google scholar
|
[20] |
Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. Papoular, G. Shlyapnikov, M. Zhan. Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett., 2017, 119(16): 160502
CrossRef
ADS
Google scholar
|
[21] |
E. Pedrozo-Peñafiel, S. Colombo, C. Shu, A. F. Adiyatullin, Z. Li, E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu, Y. Xiao, V. Vuletić. Entanglement on an optical atomic-clock transition. Nature, 2020, 588(7838): 414
CrossRef
ADS
Google scholar
|
[22] |
L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef
ADS
Google scholar
|
[23] |
G. Jin, Y. Liu, L. You. Optimal phase sensitivity of atomic Ramsey interferometers with coherent spin states. Front. Phys., 2011, 6(3): 251
CrossRef
ADS
Google scholar
|
[24] |
J. Wrubel, A. Schwettmann, D. P. Fahey, Z. Glassman, H. Pechkis, P. Griffin, R. Barnett, E. Tiesinga, P. Lett. Spinor Bose–Einstein-condensate phase-sensitive amplifier for SU(1, 1) interferometry. Phys. Rev. A, 2018, 98(2): 023620
CrossRef
ADS
Google scholar
|
[25] |
T. W. Mao, Q. Liu, X. W. Li, J. H. Cao, F. Chen, W. X. Xu, M. K. Tey, Y. X. Huang, L. You. Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose–Einstein condensate. Nat. Phys., 2023, 19(11): 1585
CrossRef
ADS
Google scholar
|
[26] |
X. Y. Luo, Y. Q. Zou, L. N. Wu, Q. Liu, M. F. Han, M. K. Tey, L. You. Deterministic entanglement generation from driving through quantum phase transitions. Science, 2017, 355(6325): 620
CrossRef
ADS
Google scholar
|
[27] |
P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. Santos, L. Pezzè, A. Smerzi. Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose–Einstein condensates. Phys. Rev. A, 2018, 97(3): 032339
CrossRef
ADS
Google scholar
|
[28] |
Y. Q. Zou, L. N. Wu, Q. Liu, X. Y. Luo, S. F. Guo, J. H. Cao, M. K. Tey, L. You. Beating the classical precision limit with spin-1 Dicke states of more than 10 000 atoms. Proc. Natl. Acad. Sci. USA, 2018, 115(25): 6381
CrossRef
ADS
Google scholar
|
[29] |
E. Davis, G. Bentsen, M. Schleier-Smith. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett., 2016, 116(5): 053601
CrossRef
ADS
Google scholar
|
[30] |
F. Fröwis, P. Sekatski, W. Dür. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett., 2016, 116(9): 090801
CrossRef
ADS
Google scholar
|
[31] |
T. Macrì, A. Smerzi, L. Pezzè. Loschmidt echo for quantum metrology. Phys. Rev. A, 2016, 94(1): 010102
CrossRef
ADS
Google scholar
|
[32] |
D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-Swan, K. V. Kheruntsyan, M. K. Oberthaler. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett., 2016, 117(1): 013001
CrossRef
ADS
Google scholar
|
[33] |
M. Gabbrielli, L. Pezzè, A. Smerzi. Spin-mixing interferometry with Bose–Einstein condensates. Phys. Rev. Lett., 2015, 115(16): 163002
CrossRef
ADS
Google scholar
|
[34] |
Q. Liu, L. N. Wu, J. H. Cao, T. W. Mao, X. W. Li, S. F. Guo, M. K. Tey, L. You. Nonlinear interferometry beyond classical limit enabled by cyclic dynamics. Nat. Phys., 2022, 18(2): 167
CrossRef
ADS
Google scholar
|
[35] |
W. T. He, C. W. Lu, Y. X. Yao, H. Y. Zhu, Q. Ai. Criticality-based quantum metrology in the presence of decoherence. Front. Phys., 2023, 18(3): 31304
CrossRef
ADS
Google scholar
|
[36] |
A. W. Chin, S. F. Huelga, M. B. Plenio. Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
CrossRef
ADS
Google scholar
|
[37] |
M. Jarzyna, R. Demkowicz-Dobrzański. True precision limits in quantum metrology. New J. Phys., 2015, 17(1): 013010
CrossRef
ADS
Google scholar
|
[38] |
L. Zhou, H. Pu, H. Y. Ling, W. Zhang. Cavity-mediated strong matter wave bistability in a spin-1 condensate. Phys. Rev. Lett., 2009, 103(16): 160403
CrossRef
ADS
Google scholar
|
[39] |
L. Zhou, H. Pu, H. Y. Ling, K. Zhang, W. Zhang. Spin dynamics and domain formation of a spinor Bose–Einstein condensate in an optical cavity. Phys. Rev. A, 2010, 81(6): 063641
CrossRef
ADS
Google scholar
|
[40] |
A. Kuzmich, L. Mandel, N. P. Bigelow. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett., 2000, 85(8): 1594
CrossRef
ADS
Google scholar
|
[41] |
A. Kuzmich, L. Mandel, J. Janis, Y. Young, R. Ejnisman, N. Bigelow. Quantum nondemolition measurements of collective atomic spin. Phys. Rev. A, 1999, 60(3): 2346
CrossRef
ADS
Google scholar
|
[42] |
A.KuzmichE. S. Polzik, Atomic continuous variable processing and light-atoms quantum interface, in: Quantum Information with Continuous Variables, Springer, pp 231–265, 2003
|
[43] |
R. Miller, T. Northup, K. Birnbaum, A. Boca, A. Boozer, H. Kimble. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. At. Mol. Opt. Phys., 2005, 38(9): S551
CrossRef
ADS
Google scholar
|
[44] |
H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 2013, 85(2): 553
CrossRef
ADS
Google scholar
|
[45] |
H.Tanji-SuzukiI.D. LerouxM.H. Schleier-SmithM.CetinaA.T. GrierJ.Simon V.Vuletić, Interaction between atomic ensembles and optical resonators: Classical description, in: Advances in Atomic, Molecular, and Optical Physics, Vol. 60, Elsevier, pp 201–237, 2011
|
[46] |
M. Eckstein, M. Kollar, P. Werner. Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett., 2009, 103(5): 056403
CrossRef
ADS
Google scholar
|
[47] |
A. Gambassi, P. Calabrese. Quantum quenches as classical critical films. Europhys. Lett., 2011, 95(6): 66007
CrossRef
ADS
Google scholar
|
[48] |
P. Smacchia, M. Knap, E. Demler, A. Silva. Exploring dynamical phase transitions and prethermalization with quantum noise of excitations. Phys. Rev. B, 2015, 91(20): 205136
CrossRef
ADS
Google scholar
|
[49] |
J. Lang, B. Frank, J. C. Halimeh. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model. Phys. Rev. B, 2018, 97(17): 174401
CrossRef
ADS
Google scholar
|
[50] |
S. S. Mirkhalaf, E. Witkowska, L. Lepori. Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate. Phys. Rev. A, 2020, 101(4): 043609
CrossRef
ADS
Google scholar
|
[51] |
S. S. Mirkhalaf, D. B. Orenes, M. W. Mitchell, E. Witkowska. Criticality-enhanced quantum sensing in ferromagnetic Bose–Einstein condensates: Role of readout measurement and detection noise. Phys. Rev. Lett., 2021, 103(2): 023317
|
[52] |
Q. Guan, R. J. Lewis-Swan. Identifying and harnessing dynamical phase transitions for quantum-enhanced sensing. Phys. Rev. Res., 2021, 3(3): 033199
CrossRef
ADS
Google scholar
|
[53] |
L. Zhou, J. Kong, Z. Lan, W. Zhang. Dynamical quantum phase transitions in a spinor Bose–Einstein condensate and criticality enhanced quantum sensing. Phys. Rev. Res., 2023, 5(1): 013087
CrossRef
ADS
Google scholar
|
[54] |
C. Law, H. Pu, N. Bigelow. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(24): 5257
CrossRef
ADS
Google scholar
|
[55] |
B. Megyeri, G. Harvie, A. Lampis, J. Goldwin. Directional bistability and nonreciprocal lasing with cold atoms in a ring cavity. Phys. Rev. Lett., 2018, 121(16): 163603
CrossRef
ADS
Google scholar
|
[56] |
S. C. Schuster, P. Wolf, D. Schmidt, S. Slama, C. Zimmermann. Pinning transition of Bose–Einstein condensates in optical ring resonators. Phys. Rev. Lett., 2018, 121(22): 223601
CrossRef
ADS
Google scholar
|
[57] |
S. Yi, Ö. Müstecaplıoğlu, C. P. Sun, L. You. Single mode approximation in a spinor-1 atomic condensate. Phys. Rev. A, 2002, 66(1): 011601
CrossRef
ADS
Google scholar
|
[58] |
W. Zhang, D. Zhou, M. S. Chang, M. Chapman, L. You. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A, 2005, 72(1): 013602
CrossRef
ADS
Google scholar
|
[59] |
C. Gerving, T. Hoang, B. Land, M. Anquez, C. Hamley, M. Chapman. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose–Einstein condensate. Nat. Commun., 2012, 3(1): 1169
CrossRef
ADS
Google scholar
|
[60] |
M. S. Chang, Q. Qin, W. Zhang, L. You, M. S. Chapman. Coherent spinor dynamics in a spin-1 Bose condensate. Nat. Phys., 2005, 1(2): 111
CrossRef
ADS
Google scholar
|
[61] |
P. B. Blakie, A. Bradley, M. Davis, R. Ballagh, C. Gardiner. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys., 2008, 57(5): 363
CrossRef
ADS
Google scholar
|
[62] |
C. W. Helstrom. Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A, 1967, 25(2): 101
CrossRef
ADS
Google scholar
|
[63] |
S. L. Braunstein, C. M. Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef
ADS
Google scholar
|
[64] |
A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Vol. 1, Springer Science & Business Media, 2011
|
[65] |
W. M. Zhang, D. H. Feng, R. Gilmore. Coherent states: Theory and some applications. Rev. Mod. Phys., 1990, 62(4): 867
CrossRef
ADS
Google scholar
|
[66] |
E. Yukawa, M. Ueda, K. Nemoto. Classification of spin-nematic squeezing in spin-1 collective atomic systems. Phys. Rev. A, 2013, 88(3): 033629
CrossRef
ADS
Google scholar
|
[67] |
C. D. Hamley, C. Gerving, T. Hoang, E. Bookjans, M. S. Chapman. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys., 2012, 8(4): 305
CrossRef
ADS
Google scholar
|
[68] |
S. Pang, T. A. Brun. Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A, 2014, 90(2): 022117
CrossRef
ADS
Google scholar
|
[69] |
A. Goussev, R. A. Jalabert, H. M. Pastawski, D. A. Wisniacki. Loschmidt echo and time reversal in complex systems. Philos. Trans. R. Soc. A, 2016, 374(2069): 20150383
CrossRef
ADS
Google scholar
|
[70] |
T. Gorin, T. Prosen, T. H. Seligman, M. Žnidarič. Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep., 2006, 435(2-5): 33
CrossRef
ADS
Google scholar
|
[71] |
F. Gerbier, A. Widera, S. Fölling, O. Mandel, I. Bloch. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A, 2006, 73(4): 041602
CrossRef
ADS
Google scholar
|
[72] |
S. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, D. Stamper-Kurn. Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A, 2009, 79(4): 043631
CrossRef
ADS
Google scholar
|
[73] |
P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M. K. Oberthaler. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360(6387): 413
CrossRef
ADS
Google scholar
|
[74] |
E. J. Davis, G. Bentsen, L. Homeier, T. Li, M. H. Schleier-Smith. Photon-mediated spin-exchange dynamics of spin-1 atoms. Phys. Rev. Lett., 2019, 122(1): 010405
CrossRef
ADS
Google scholar
|
[75] |
M. A. Norcia, R. J. Lewis-Swan, J. R. Cline, B. Zhu, A. M. Rey, J. K. Thompson. Cavity-mediated collective spin exchange interactions in a strontium superradiant laser. Science, 2018, 361(6399): 259
CrossRef
ADS
Google scholar
|
[76] |
S. J. Masson, M. Barrett, S. Parkins. Cavity QED engineering of spin dynamics and squeezing in a spinor gas. Phys. Rev. Lett., 2017, 119(21): 213601
CrossRef
ADS
Google scholar
|
[77] |
D. S. Ding, Z. K. Liu, B. S. Shi, G. C. Guo, K. Mølmer, C. S. Adams. Enhanced metrology at the critical point of a many-body Rydberg atomic system. Nat. Phys., 2022, 18(12): 1447
CrossRef
ADS
Google scholar
|
[78] |
M. Olsen, A. Bradley. Numerical representation of quantum states in the positive-P and Wigner representations. Opt. Commun., 2009, 282(19): 3924
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |