Cavity-enhanced metrology in an atomic spin-1 Bose−Einstein condensate

Renfei Zheng, Jieli Qin, Bing Chen, Xingdong Zhao, Lu Zhou

PDF(4802 KB)
PDF(4802 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 32204. DOI: 10.1007/s11467-023-1372-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Cavity-enhanced metrology in an atomic spin-1 Bose−Einstein condensate

Author information +
History +

Abstract

Atom interferometer has been proven to be a powerful tool for precision metrology. Here we propose a cavity-aided nonlinear atom interferometer, based on the quasi-periodic spin mixing dynamics of an atomic spin-1 Bose−Einstein condensate trapped in an optical cavity. We unravel that the phase sensitivity can be greatly enhanced with the cavity-mediated nonlinear interaction. The influence of encoding phase, splitting time and recombining time on phase sensitivity are carefully studied. In addition, we demonstrate a dynamical phase transition in the system. Around the criticality, a small cavity light field variation can arouse a strong response of the atomic condensate, which can serve as a new resource for enhanced sensing. This work provides a robust protocol for cavity-enhanced metrology.

Graphical abstract

Keywords

nonlinear atom interferometer / spin-1 Bose−Einstein condensate / spin-mixing dynamics / quantum Fisher information / parameter estimation

Cite this article

Download citation ▾
Renfei Zheng, Jieli Qin, Bing Chen, Xingdong Zhao, Lu Zhou. Cavity-enhanced metrology in an atomic spin-1 Bose−Einstein condensate. Front. Phys., 2024, 19(3): 32204 https://doi.org/10.1007/s11467-023-1372-5

References

[1]
A. D. Cronin, J. Schmiedmayer, D. E. Pritchard. Optics and interferometry with atoms and molecules. Rev. Mod. Phys., 2009, 81(3): 1051
CrossRef ADS Google scholar
[2]
J. B. Fixler, G. Foster, J. McGuirk, M. Kasevich. Atom interferometer measurement of the Newtonian constant of gravity. Science, 2007, 315(5808): 74
CrossRef ADS Google scholar
[3]
G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Prevedelli, G. M. Tino. Determination of the Newtonian gravitational constant using atom interferometry. Phys. Rev. Lett., 2008, 100(5): 050801
CrossRef ADS Google scholar
[4]
P. W. Graham, J. M. Hogan, M. A. Kasevich, S. Rajendran. New method for gravitational wave detection with atomic sensors. Phys. Rev. Lett., 2013, 110(17): 171102
CrossRef ADS Google scholar
[5]
G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, G. Tino. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature, 2014, 510(7506): 518
CrossRef ADS Google scholar
[6]
W. Chaibi, R. Geiger, B. Canuel, A. Bertoldi, A. Landragin, P. Bouyer. Low frequency gravitational wave detection with ground-based atom interferometer arrays. Phys. Rev. D, 2016, 93(2): 021101
CrossRef ADS Google scholar
[7]
R. H. Parker, C. Yu, W. Zhong, B. Estey, H. Müller. Measurement of the fine-structure constant as a test of the standard model. Science, 2018, 360(6385): 191
CrossRef ADS Google scholar
[8]
K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W. P. Schleich, A. Roura. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat. Rev. Phys., 2019, 1(12): 731
CrossRef ADS Google scholar
[9]
A. Peters, K. Y. Chung, S. Chu. Measurement of gravitational acceleration by dropping atom. Nature, 1999, 400(6747): 849
CrossRef ADS Google scholar
[10]
P. Altin, M. Johnsson, V. Negnevitsky, G. Dennis, R. P. Anderson, J. Debs, S. Szigeti, K. Hardman, S. Bennetts, G. McDonald, L. D. Turner, J. D. Close, N. P. Robins. Precision atomic gravimeter based on Bragg diffraction. New J. Phys., 2013, 15(2): 023009
CrossRef ADS Google scholar
[11]
M. Snadden, J. McGuirk, P. Bouyer, K. Haritos, M. Kasevich. Measurement of the earth’s gravity gradient with an atom interferometer-based gravity gradiometer. Phys. Rev. Lett., 1998, 81(5): 971
CrossRef ADS Google scholar
[12]
A. Trimeche, B. Battelier, D. Becker, A. Bertoldi, P. Bouyer, C. Braxmaier, E. Charron, R. Corgier, M. Cornelius, K. Douch, N. Gaaloul, S. Herrmann, J. Müller, E. Rasel, C. Schubert, H. Wu, F. Pereira dos Santos. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class. Quantum Gravity, 2019, 36(21): 215004
CrossRef ADS Google scholar
[13]
F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Bordé. Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. Phys. Rev. Lett., 1991, 67(2): 177
CrossRef ADS Google scholar
[14]
T. Gustavson, P. Bouyer, M. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 1997, 78(11): 2046
CrossRef ADS Google scholar
[15]
J. Stockton, K. Takase, M. Kasevich. Absolute geodetic rotation measurement using atom interferometry. Phys. Rev. Lett., 2011, 107(13): 133001
CrossRef ADS Google scholar
[16]
H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume, L. Pezzè, A. Smerzi, M. K. Oberthaler. Fisher information and entanglement of non-Gaussian spin states. Science, 2014, 345(6195): 424
CrossRef ADS Google scholar
[17]
J. Estève, C. Gross, A. Weller, S. Giovanazzi, M. K. Oberthaler. Squeezing and entanglement in a Bose–Einstein condensate. Nature, 2008, 455(7217): 1216
CrossRef ADS Google scholar
[18]
B. Lücke, M. Scherer, J. Kruse, L. Pezzé, F. Deuretzbacher, P. Hyllus, O. Topic, J. Peise, W. Ertmer, J. Arlt, L. Santos, A. Smerzi, C. Klempt. Twin matter waves for interferometry beyond the classical limit. Science, 2011, 334(6057): 773
CrossRef ADS Google scholar
[19]
C. Gross, T. Zibold, E. Nicklas, J. Esteve, M. K. Oberthaler. Nonlinear atom interferometer surpasses classical precision limit. Nature, 2010, 464(7292): 1165
CrossRef ADS Google scholar
[20]
Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. Papoular, G. Shlyapnikov, M. Zhan. Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett., 2017, 119(16): 160502
CrossRef ADS Google scholar
[21]
E. Pedrozo-Peñafiel, S. Colombo, C. Shu, A. F. Adiyatullin, Z. Li, E. Mendez, B. Braverman, A. Kawasaki, D. Akamatsu, Y. Xiao, V. Vuletić. Entanglement on an optical atomic-clock transition. Nature, 2020, 588(7838): 414
CrossRef ADS Google scholar
[22]
L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef ADS Google scholar
[23]
G. Jin, Y. Liu, L. You. Optimal phase sensitivity of atomic Ramsey interferometers with coherent spin states. Front. Phys., 2011, 6(3): 251
CrossRef ADS Google scholar
[24]
J. Wrubel, A. Schwettmann, D. P. Fahey, Z. Glassman, H. Pechkis, P. Griffin, R. Barnett, E. Tiesinga, P. Lett. Spinor Bose–Einstein-condensate phase-sensitive amplifier for SU(1, 1) interferometry. Phys. Rev. A, 2018, 98(2): 023620
CrossRef ADS Google scholar
[25]
T. W. Mao, Q. Liu, X. W. Li, J. H. Cao, F. Chen, W. X. Xu, M. K. Tey, Y. X. Huang, L. You. Quantum enhanced sensing by echoing spin-nematic squeezing in atomic Bose–Einstein condensate. Nat. Phys., 2023, 19(11): 1585
CrossRef ADS Google scholar
[26]
X. Y. Luo, Y. Q. Zou, L. N. Wu, Q. Liu, M. F. Han, M. K. Tey, L. You. Deterministic entanglement generation from driving through quantum phase transitions. Science, 2017, 355(6325): 620
CrossRef ADS Google scholar
[27]
P. Feldmann, M. Gessner, M. Gabbrielli, C. Klempt, L. Santos, L. Pezzè, A. Smerzi. Interferometric sensitivity and entanglement by scanning through quantum phase transitions in spinor Bose–Einstein condensates. Phys. Rev. A, 2018, 97(3): 032339
CrossRef ADS Google scholar
[28]
Y. Q. Zou, L. N. Wu, Q. Liu, X. Y. Luo, S. F. Guo, J. H. Cao, M. K. Tey, L. You. Beating the classical precision limit with spin-1 Dicke states of more than 10 000 atoms. Proc. Natl. Acad. Sci. USA, 2018, 115(25): 6381
CrossRef ADS Google scholar
[29]
E. Davis, G. Bentsen, M. Schleier-Smith. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett., 2016, 116(5): 053601
CrossRef ADS Google scholar
[30]
F. Fröwis, P. Sekatski, W. Dür. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett., 2016, 116(9): 090801
CrossRef ADS Google scholar
[31]
T. Macrì, A. Smerzi, L. Pezzè. Loschmidt echo for quantum metrology. Phys. Rev. A, 2016, 94(1): 010102
CrossRef ADS Google scholar
[32]
D. Linnemann, H. Strobel, W. Muessel, J. Schulz, R. J. Lewis-Swan, K. V. Kheruntsyan, M. K. Oberthaler. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett., 2016, 117(1): 013001
CrossRef ADS Google scholar
[33]
M. Gabbrielli, L. Pezzè, A. Smerzi. Spin-mixing interferometry with Bose–Einstein condensates. Phys. Rev. Lett., 2015, 115(16): 163002
CrossRef ADS Google scholar
[34]
Q. Liu, L. N. Wu, J. H. Cao, T. W. Mao, X. W. Li, S. F. Guo, M. K. Tey, L. You. Nonlinear interferometry beyond classical limit enabled by cyclic dynamics. Nat. Phys., 2022, 18(2): 167
CrossRef ADS Google scholar
[35]
W. T. He, C. W. Lu, Y. X. Yao, H. Y. Zhu, Q. Ai. Criticality-based quantum metrology in the presence of decoherence. Front. Phys., 2023, 18(3): 31304
CrossRef ADS Google scholar
[36]
A. W. Chin, S. F. Huelga, M. B. Plenio. Quantum metrology in non-Markovian environments. Phys. Rev. Lett., 2012, 109(23): 233601
CrossRef ADS Google scholar
[37]
M. Jarzyna, R. Demkowicz-Dobrzański. True precision limits in quantum metrology. New J. Phys., 2015, 17(1): 013010
CrossRef ADS Google scholar
[38]
L. Zhou, H. Pu, H. Y. Ling, W. Zhang. Cavity-mediated strong matter wave bistability in a spin-1 condensate. Phys. Rev. Lett., 2009, 103(16): 160403
CrossRef ADS Google scholar
[39]
L. Zhou, H. Pu, H. Y. Ling, K. Zhang, W. Zhang. Spin dynamics and domain formation of a spinor Bose–Einstein condensate in an optical cavity. Phys. Rev. A, 2010, 81(6): 063641
CrossRef ADS Google scholar
[40]
A. Kuzmich, L. Mandel, N. P. Bigelow. Generation of spin squeezing via continuous quantum nondemolition measurement. Phys. Rev. Lett., 2000, 85(8): 1594
CrossRef ADS Google scholar
[41]
A. Kuzmich, L. Mandel, J. Janis, Y. Young, R. Ejnisman, N. Bigelow. Quantum nondemolition measurements of collective atomic spin. Phys. Rev. A, 1999, 60(3): 2346
CrossRef ADS Google scholar
[42]
A.KuzmichE. S. Polzik, Atomic continuous variable processing and light-atoms quantum interface, in: Quantum Information with Continuous Variables, Springer, pp 231–265, 2003
[43]
R. Miller, T. Northup, K. Birnbaum, A. Boca, A. Boozer, H. Kimble. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. At. Mol. Opt. Phys., 2005, 38(9): S551
CrossRef ADS Google scholar
[44]
H. Ritsch, P. Domokos, F. Brennecke, T. Esslinger. Cold atoms in cavity-generated dynamical optical potentials. Rev. Mod. Phys., 2013, 85(2): 553
CrossRef ADS Google scholar
[45]
H.Tanji-SuzukiI.D. LerouxM.H. Schleier-SmithM.CetinaA.T. GrierJ.Simon V.Vuletić, Interaction between atomic ensembles and optical resonators: Classical description, in: Advances in Atomic, Molecular, and Optical Physics, Vol. 60, Elsevier, pp 201–237, 2011
[46]
M. Eckstein, M. Kollar, P. Werner. Thermalization after an interaction quench in the Hubbard model. Phys. Rev. Lett., 2009, 103(5): 056403
CrossRef ADS Google scholar
[47]
A. Gambassi, P. Calabrese. Quantum quenches as classical critical films. Europhys. Lett., 2011, 95(6): 66007
CrossRef ADS Google scholar
[48]
P. Smacchia, M. Knap, E. Demler, A. Silva. Exploring dynamical phase transitions and prethermalization with quantum noise of excitations. Phys. Rev. B, 2015, 91(20): 205136
CrossRef ADS Google scholar
[49]
J. Lang, B. Frank, J. C. Halimeh. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model. Phys. Rev. B, 2018, 97(17): 174401
CrossRef ADS Google scholar
[50]
S. S. Mirkhalaf, E. Witkowska, L. Lepori. Supersensitive quantum sensor based on criticality in an antiferromagnetic spinor condensate. Phys. Rev. A, 2020, 101(4): 043609
CrossRef ADS Google scholar
[51]
S. S. Mirkhalaf, D. B. Orenes, M. W. Mitchell, E. Witkowska. Criticality-enhanced quantum sensing in ferromagnetic Bose–Einstein condensates: Role of readout measurement and detection noise. Phys. Rev. Lett., 2021, 103(2): 023317
[52]
Q. Guan, R. J. Lewis-Swan. Identifying and harnessing dynamical phase transitions for quantum-enhanced sensing. Phys. Rev. Res., 2021, 3(3): 033199
CrossRef ADS Google scholar
[53]
L. Zhou, J. Kong, Z. Lan, W. Zhang. Dynamical quantum phase transitions in a spinor Bose–Einstein condensate and criticality enhanced quantum sensing. Phys. Rev. Res., 2023, 5(1): 013087
CrossRef ADS Google scholar
[54]
C. Law, H. Pu, N. Bigelow. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(24): 5257
CrossRef ADS Google scholar
[55]
B. Megyeri, G. Harvie, A. Lampis, J. Goldwin. Directional bistability and nonreciprocal lasing with cold atoms in a ring cavity. Phys. Rev. Lett., 2018, 121(16): 163603
CrossRef ADS Google scholar
[56]
S. C. Schuster, P. Wolf, D. Schmidt, S. Slama, C. Zimmermann. Pinning transition of Bose–Einstein condensates in optical ring resonators. Phys. Rev. Lett., 2018, 121(22): 223601
CrossRef ADS Google scholar
[57]
S. Yi, Ö. Müstecaplıoğlu, C. P. Sun, L. You. Single mode approximation in a spinor-1 atomic condensate. Phys. Rev. A, 2002, 66(1): 011601
CrossRef ADS Google scholar
[58]
W. Zhang, D. Zhou, M. S. Chang, M. Chapman, L. You. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A, 2005, 72(1): 013602
CrossRef ADS Google scholar
[59]
C. Gerving, T. Hoang, B. Land, M. Anquez, C. Hamley, M. Chapman. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose–Einstein condensate. Nat. Commun., 2012, 3(1): 1169
CrossRef ADS Google scholar
[60]
M. S. Chang, Q. Qin, W. Zhang, L. You, M. S. Chapman. Coherent spinor dynamics in a spin-1 Bose condensate. Nat. Phys., 2005, 1(2): 111
CrossRef ADS Google scholar
[61]
P. B. Blakie, A. Bradley, M. Davis, R. Ballagh, C. Gardiner. Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques. Adv. Phys., 2008, 57(5): 363
CrossRef ADS Google scholar
[62]
C. W. Helstrom. Minimum mean-squared error of estimates in quantum statistics. Phys. Lett. A, 1967, 25(2): 101
CrossRef ADS Google scholar
[63]
S. L. Braunstein, C. M. Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef ADS Google scholar
[64]
A.S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, Vol. 1, Springer Science & Business Media, 2011
[65]
W. M. Zhang, D. H. Feng, R. Gilmore. Coherent states: Theory and some applications. Rev. Mod. Phys., 1990, 62(4): 867
CrossRef ADS Google scholar
[66]
E. Yukawa, M. Ueda, K. Nemoto. Classification of spin-nematic squeezing in spin-1 collective atomic systems. Phys. Rev. A, 2013, 88(3): 033629
CrossRef ADS Google scholar
[67]
C. D. Hamley, C. Gerving, T. Hoang, E. Bookjans, M. S. Chapman. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys., 2012, 8(4): 305
CrossRef ADS Google scholar
[68]
S. Pang, T. A. Brun. Quantum metrology for a general Hamiltonian parameter. Phys. Rev. A, 2014, 90(2): 022117
CrossRef ADS Google scholar
[69]
A. Goussev, R. A. Jalabert, H. M. Pastawski, D. A. Wisniacki. Loschmidt echo and time reversal in complex systems. Philos. Trans. R. Soc. A, 2016, 374(2069): 20150383
CrossRef ADS Google scholar
[70]
T. Gorin, T. Prosen, T. H. Seligman, M. Žnidarič. Dynamics of Loschmidt echoes and fidelity decay. Phys. Rep., 2006, 435(2-5): 33
CrossRef ADS Google scholar
[71]
F. Gerbier, A. Widera, S. Fölling, O. Mandel, I. Bloch. Resonant control of spin dynamics in ultracold quantum gases by microwave dressing. Phys. Rev. A, 2006, 73(4): 041602
CrossRef ADS Google scholar
[72]
S. Leslie, J. Guzman, M. Vengalattore, J. D. Sau, M. L. Cohen, D. Stamper-Kurn. Amplification of fluctuations in a spinor Bose–Einstein condensate. Phys. Rev. A, 2009, 79(4): 043631
CrossRef ADS Google scholar
[73]
P. Kunkel, M. Prüfer, H. Strobel, D. Linnemann, A. Frölian, T. Gasenzer, M. Gärttner, M. K. Oberthaler. Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360(6387): 413
CrossRef ADS Google scholar
[74]
E. J. Davis, G. Bentsen, L. Homeier, T. Li, M. H. Schleier-Smith. Photon-mediated spin-exchange dynamics of spin-1 atoms. Phys. Rev. Lett., 2019, 122(1): 010405
CrossRef ADS Google scholar
[75]
M. A. Norcia, R. J. Lewis-Swan, J. R. Cline, B. Zhu, A. M. Rey, J. K. Thompson. Cavity-mediated collective spin exchange interactions in a strontium superradiant laser. Science, 2018, 361(6399): 259
CrossRef ADS Google scholar
[76]
S. J. Masson, M. Barrett, S. Parkins. Cavity QED engineering of spin dynamics and squeezing in a spinor gas. Phys. Rev. Lett., 2017, 119(21): 213601
CrossRef ADS Google scholar
[77]
D. S. Ding, Z. K. Liu, B. S. Shi, G. C. Guo, K. Mølmer, C. S. Adams. Enhanced metrology at the critical point of a many-body Rydberg atomic system. Nat. Phys., 2022, 18(12): 1447
CrossRef ADS Google scholar
[78]
M. Olsen, A. Bradley. Numerical representation of quantum states in the positive-P and Wigner representations. Opt. Commun., 2009, 282(19): 3924
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074120 and 11904063) and the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 23A140001).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4802 KB)

Accesses

Citations

Detail

Sections
Recommended

/