Optimization for epitaxial fabrication of infinite-layer nickelate superconductors

Minghui Xu, Yan Zhao, Xiang Ding, Huaqian Leng, Shu Zhang, Jie Gong, Haiyan Xiao, Xiaotao Zu, Huiqian Luo, Ke-Jin Zhou, Bing Huang, Liang Qiao

PDF(5464 KB)
PDF(5464 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33209. DOI: 10.1007/s11467-023-1368-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Optimization for epitaxial fabrication of infinite-layer nickelate superconductors

Author information +
History +

Abstract

The discovery of nickelates superconductor creates exciting opportunities to unconventional superconductivity. However, its synthesis is challenging and only a few groups worldwide can obtain samples with zero-resistance. This problem becomes the major barrier for this field. From plume dynamics perspective, we found the synthesis of superconducting nickelates is a complex process and the challenge is twofold, i.e., how to stabilize an ideal infinite-layer structure Nd0.8Sr0.2NiO2, and then how to make Nd0.8Sr0.2NiO2 superconducting? The competition between perovskite Nd0.8Sr0.2NiO3 and Ruddlesden−Popper defect phase is crucial for obtaining infinite-layer structure. Due to inequivalent angular distributions of condensate during laser ablation, the laser energy density is critical to obtain phase-pure Nd0.8Sr0.2NiO3. However, for obtaining superconductivity, both laser energy density and substrate temperature are very important. We also demonstrate the superconducting Nd0.8Sr0.2NiO2 epitaxial film is very stable in ambient conditions up to 512 days. Our results provide important insights for fabrication of superconducting infinite-layer nickelates towards future device applications.

Graphical abstract

Keywords

nickelate superconductivity / infinite-layer / plasma condensate / plume dynamics

Cite this article

Download citation ▾
Minghui Xu, Yan Zhao, Xiang Ding, Huaqian Leng, Shu Zhang, Jie Gong, Haiyan Xiao, Xiaotao Zu, Huiqian Luo, Ke-Jin Zhou, Bing Huang, Liang Qiao. Optimization for epitaxial fabrication of infinite-layer nickelate superconductors. Front. Phys., 2024, 19(3): 33209 https://doi.org/10.1007/s11467-023-1368-1

References

[1]
V. I. Anisimov, D. R. Bukhvalov, T. M. Rice. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B, 1999, 59(12): 7901
CrossRef ADS Google scholar
[2]
D. Li, K. Lee, B. Y. Wang, M. Osada, S. Crossley, H. R. Lee, Y. Cui, Y. Hikita, H. Y. Hwang. Superconductivity in an infinite-layer nickelate. Nature, 2019, 572(7771): 624
CrossRef ADS Google scholar
[3]
S. Zeng, C. S. Tang, X. Yin, C. J. Li, M. S. Li, Z. Huang, J. X. Hu, D. Y. Wan, P. Yang, S. J. Pennycook, A. T. S. Wee, A. Ariando. Phase diagram and superconducting dome of infinite-layer thin films. Phys. Rev. Lett., 2020, 125(14): 147003
CrossRef ADS Google scholar
[4]
D. Li, B. Y. Wang, K. Lee, S. P. Harvey, M. Osada, B. H. Goodge, L. F. Kourkoutis, H. Y. Hwang. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys. Rev. Lett., 2020, 125(2): 027001
CrossRef ADS Google scholar
[5]
W. Sun, Y. Li, R. Liu, J. F. Yang, J. Y. Li, S. J. Yan, H. Y. Sun, W. Guo, Z. B. Gu, Y. Deng, X. F. Wang, Y. F. Nie. Evidence for quasi-two-dimensional superconductivity in infinite-layer nickelates. Adv. Mater., 2023, 35(32): 2303400
CrossRef ADS Google scholar
[6]
P. Werner, S. Hoshino. Nickelate superconductors: Multiorbital nature and spin freezing. Phys. Rev. B, 2020, 101(4): 041104
CrossRef ADS Google scholar
[7]
B. Y. Wang, D. Li, B. H. Goodge, K. Lee, M. Osada, S. P. Harvey, L. F. Kourkoutis, M. R. Beasley, H. Y. Hwang. Isotropic Pauli-limited superconductivity in the infinite-layer nickelate Nd0.775Sr0.225NiO2. Nat. Phys., 2021, 17(4): 473
CrossRef ADS Google scholar
[8]
H. Lu, M. Rossi, A. Nag, M. Osada, D. Li, K. Lee, B. Y. Wang, M. Garcia-Fernandez, S. Agrestini, Z. X. Shen, B. Moritz, T. P. Devereaux, J. Zaanen, H. Y. Hwang, K. J. Zhou, W. S. Lee. Magnetic excitations in infinite-layer nickelates. Science, 2021, 373(6551): 213
CrossRef ADS Google scholar
[9]
Y.GuS.Zhu X.WangJ. P. HuH.H. Chen, A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates, Commun. Phys. 3(1), 84 (2020)
[10]
M.RossiM. OsadaJ.ChoiS.AgrestiniD.Jost Y.LeeH. Y. LuB.Y. WangK.LeeA.Nag Y.D. ChuangC. T. KuoS.J. LeeB.MoritzT.P. DevereauxZ.X. ShenJ.S. LeeK.J. Zhou H.Y. HwangW. S. Lee, A broken translational symmetry state in an infinite-layer nickelate, Nat. Phys. 18(8), 869 (2022)
[11]
C. C. Tam, J. Choi, X. Ding, S. Agrestini, A. Nag, M. Wu, B. Huang, H. Q. Luo, P. Gao, M. Garcia-Fernandez, L. Qiao, K. J. Zhou. Charge density waves in infinite-layer NdNiO2 nickelates. Nat. Mater., 2022, 21(10): 1116
CrossRef ADS Google scholar
[12]
L.E. ChowY. PierreM.NardoneA.ZitouniA.Goiran M.S. K. GohW. EscoffierA.Ariando, Pauli-limit violation in lanthanide infinite-layer nickelate superconductors, arXiv: 2204.12606 (2022)
[13]
G. Krieger, M. L. Zeng, S. Chow, L. E. Kummer, K. Arpaia, R. Sala, M. M. Brookes, N. B. Ariando, A. Viart, N. Salluzzo, M. Ghiringhelli. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett., 2022, 129(2): 027002
CrossRef ADS Google scholar
[14]
D. Zhao, Y. B. Zhou, Y. Fu, L. Wang, X. F. Zhou, H. Cheng, J. Li, D. W. Song, Z. M. Wu, M. Shan, F. H. Yu, J. J. Ying, S. M. Wang, J. W. Mei, T. Wu, X. H. Chen. Intrinsic spin susceptibility and pseudogaplike behavior in infinite-layer LaNiO2. Phys. Rev. Lett., 2021, 126(19): 197001
CrossRef ADS Google scholar
[15]
X. Zhou, X. Zhang, J. Yi, P. X. Qin, Z. X. Feng, P. H. Jiang, Z. C. Zhong, H. Yan, X. N. Wang, H. Y. Chen, H. J. Wu, X. Zhang, Z. A. Meng, X. J. Yu, M. B. H. Breese, J. F. Cao, J. M. Wang, C. B. Jiang, Z. Q. Liu. Antiferromagnetism in Ni-based superconductors. Adv. Mater., 2022, 34(4): 2106117
CrossRef ADS Google scholar
[16]
Y.CuiC. LiQ.LiX.Y. ZhuZ.Hu Y.F. YangJ. S. ZhangR.YuH.H. WenW.Q. Yu, NMR evidence of antiferromagnetic spin fluctuations in Nd0.85Sr0.15NiO2, Chin. Phys. Lett. 38(6), 067401 (2021)
[17]
S.P. HarveyB. Y. WangJ.FowlieM.OsadaD.Li H.Y. Hwang, Evidence for nodal superconductivity in infinite-layer nickelates, arXiv: 2201.12971 (2022)
[18]
L.E. ChowS. K. SudheeshP.NandiE.ZengM.Chia A.Ariando, Pairing symmetry in infinite-layer nickelate superconductor, arXiv: 2201.10038 (2022)
[19]
G. M. Zhang, Y. F. Yang, F. C. Zhang. Self-doped Mott insulator for parent compounds of nickelate superconductors. Phys. Rev. B, 2020, 101(2): 020501
CrossRef ADS Google scholar
[20]
Q. Gu, Y. Li, S. Wan, H. Z. Li, W. Guo, H. Yang, Q. Li, X. Y. Zhu, X. Q. Pan, Y. F. Nie, H. H. Wen. Single particle tunneling spectrum of superconducting Nd1−xSrxNiO2 thin films. Nat. Commun., 2020, 11(1): 6027
CrossRef ADS Google scholar
[21]
Q. Li, C. P. He, J. Si, H. H. Wen. Absence of superconductivity in bulk Nd1−xSrxNiO2. Commun. Mater., 2020, 1: 16
CrossRef ADS Google scholar
[22]
M. A. Hayward, M. J. Rosseinsky. Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci., 2003, 5(6): 839
CrossRef ADS Google scholar
[23]
M. A. Hayward, M. A. Green, M. J. Rosseinsky, J. Sloan. Sodium hydride as a powerful reducing agent for topotactic oxide deintercalation: Synthesis and characterization of the nickel(I) oxide LaNiO2. J. Am. Chem. Soc., 1999, 121(38): 8843
CrossRef ADS Google scholar
[24]
M. Kawai, S. Inoue, M. Mizumaki, N. Kawamura, N. Ichikawa, Y. Shimakawa. Reversible changes of epitaxial thin films from perovskite LaNiO3 to infinite-layer structure LaNiO2. Appl. Phys. Lett., 2009, 94(8): 082102
CrossRef ADS Google scholar
[25]
Y. Tsujimoto, C. Tassel, N. Hayashi, T. Watanabe, H. Kageyama, K. Yoshimura, M. Takano, M. Ceretti, C. Ritter, W. Paulus. Infinite-layer iron oxide with a square-planar coordination. Nature, 2007, 450(7172): 1062
CrossRef ADS Google scholar
[26]
T. Katayama, A. Chikamatsu, K. Yamada, K. Shigematsu, T. Onozuka, M. Minohara, H. Kumigashira, E. Ikenaga, T. Hasegawa. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films. J. Appl. Phys., 2016, 120(8): 085305
CrossRef ADS Google scholar
[27]
M. Amano Patino, D. Zeng, S. J. Blundell, J. E. McGrady, M. A. Hayward. Extreme sensitivity of a topochemical reaction to cation substitution: SrVO2H versus SrV1–xTixO1.5H1.5. Inorg. Chem., 2018, 57(5): 2890
CrossRef ADS Google scholar
[28]
S. Inoue, M. Kawai, N. Ichikawa, H. Kageyama, W. Paulus, Y. Shimakawa. Anisotropic oxygen diffusion at low temperature in perovskite-structure iron oxides. Nat. Chem., 2010, 2(3): 213
CrossRef ADS Google scholar
[29]
R. M. Helps, N. H. Rees, M. A. Hayward. Sr3Co2O4.33H0.84: An extended transition metal oxide-hydride. Inorg. Chem., 2010, 49(23): 11062
CrossRef ADS Google scholar
[30]
T. Hanna, Y. Muraba, S. Matsuishi, N. Igawa, K. Kodama, S. Shamoto, H. Hosono. Hydrogen in layered iron arsenides: Indirect electron doping to induce superconductivity. Phys. Rev. B, 2011, 84(2): 024521
CrossRef ADS Google scholar
[31]
E. Dixon, M. A. Hayward. The topotactic reduction of Sr3Fe2O5Cl2 — Square planar Fe(II) in an extended oxyhalide. Inorg. Chem., 2010, 49(20): 9649
CrossRef ADS Google scholar
[32]
M.A. HaywardE.J. CussenJ.B. ClaridgeM.BieringerM.J. RosseinskyC.J. Kiely S.J. BlundellI.M. MarshallF.L. Pratt, The hydride anion in an extended transition metal oxide array: LaSrCoO3H0.7, Science 295(5561), 1882
[33]
K. Lee, B. H. Goodge, D. Li, M. Osada, B. Y. Wang, Y. Cui, L. F. Kourkoutis, H. Y. Hwang. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater., 2020, 8(4): 041107
CrossRef ADS Google scholar
[34]
A. Olafsen, H. Fjellvåg, B. C. Hauback. Crystal Structure and Properties of Nd4Co3O10+δ and Nd4Ni3O10−δ. J. Solid State Chem., 2000, 151(1): 46
CrossRef ADS Google scholar
[35]
Q. Gao, Y. Zhao, X. J. Zhou, Z. Zhu. Preparation of superconducting thin films of infinite-layer nickelate. Chin. Phys. Lett., 2021, 38(7): 077401
CrossRef ADS Google scholar
[36]
X. Ding, S. Shen, H. Leng, M. H. Xu, Y. Zhao, J. R. Zhao, X. L. Sui, X. Q. Wu, H. Y. Xiao, X. T. Zu, B. Huang, H. Q. Luo, P. Yu, L. Qiao. Stability of superconducting Nd0.8Sr0.2NiO2 thin films. Sci. China Phys. Mech. Astron., 2022, 65(6): 267411
CrossRef ADS Google scholar
[37]
G. A. Pan, D. Ferenc Segedin, H. LaBollita, Q. Song, E. M. Nica, B. H. Goodge, A. T. Pierce, S. Doyle, S. Novakov, D. Córdova Carrizales, A. T. N’Diaye, P. Shafer, H. Paik, J. T. Heron, J. A. Mason, A. Yacoby, L. F. Kourkoutis, O. Erten, C. M. Brooks, A. S. Botana, J. A. Mundy. Superconductivity in a quintuple-layer square-planar nickelate. Nat. Mater., 2022, 21(2): 160
CrossRef ADS Google scholar
[38]
Y. Y. Ji, J. H. Liu, X. F. Gao, L. Li, K. Chen, Z. L. Liao. Optimized fabrication of high-quality N0.8Sr0.2NiO2 superconducting films by pulsed laser deposition. Physica C, 2023, 604: 1354190
CrossRef ADS Google scholar
[39]
A.OhtomoH. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)
[40]
X. C. Huang, W. W. Li, S. Zhang, F. E. Oropeza, G. Gorni, V. A. de la Peña-O’Shea, T. L. Lee, M. Wu, L. S. Wang, D. C. Qi, L. Qiao, J. Cheng, K. H. L. Zhang. Ni3+-induced semiconductor-to-metal transition in spinel nickel cobaltite thin films. Phys. Rev. B, 2021, 104(12): 125136
CrossRef ADS Google scholar
[41]
H. M. Christen, G. Eres. Recent advances in pulsed-laser deposition of complex oxides. J. Phys.: Condens. Matter, 2008, 20(26): 264005
CrossRef ADS Google scholar
[42]
J. D. Haverkamp, M. A. Bourham, S. Du, J. Narayan. Plasma plume dynamics in magnetically assisted pulsed laser deposition. J. Phys. D Appl. Phys., 2009, 42(2): 025201
CrossRef ADS Google scholar
[43]
K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y. Senba, H. Ohashi, S. Shin. Electronic structure of LaNiO3−x: An in situ soft X-ray photoemission and absorption study. Phys. Rev. B, 2007, 76(15): 155104
CrossRef ADS Google scholar
[44]
P. D. C. King, H. I. Wei, Y. F. Nie, M. Uchida, C. Adamo, S. Zhu, X. He, I. Bozovic, D. G. Schlom, K. M. Shen. Atomic-scale control of competing electronic phases in ultrathin LaNiO3. Nat. Nanotechnol., 2014, 9(6): 443
CrossRef ADS Google scholar
[45]
L. Qiao, X. Bi. Direct observation of Ni3+ and Ni2+ in correlated LaNiO3−δ films. Europhys. Lett., 2011, 93(5): 57002
CrossRef ADS Google scholar
[46]
K. Tsubouchi, I. Ohkubo, H. Kumigashira, Y. Matsumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, M. Oshima. Epitaxial growth and surface metallic nature of LaNiO3 thin films. Appl. Phys. Lett., 2008, 92(26): 262109
CrossRef ADS Google scholar
[47]
S. Middey, J. Chakhalian, P. Mahadevan, J. W. Freeland, A. J. Millis, D. D. Sarma. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res., 2016, 46(1): 305
CrossRef ADS Google scholar
[48]
J. C. S. Kools, T. S. Baller, S. T. De Zwart, J. Dieleman. Gas flow dynamics in laser ablation deposition. J. Appl. Phys., 1992, 71(9): 4547
CrossRef ADS Google scholar
[49]
A. V. Bulgakov, N. M. Bulgakova. Gas-dynamic effects of the interaction between a pulsed laser-ablation plume and the ambient gas: Analogy with an underexpanded jet. J. Phys. D Appl. Phys., 1998, 31(6): 693
CrossRef ADS Google scholar
[50]
I. NoorBatcha, R. R. Lucchese, Y. Zeiri. Effects of gas-phase collisions on particles rapidly desorbed from surfaces. Phys. Rev. B, 1987, 36(9): 4978
CrossRef ADS Google scholar
[51]
J.C. S. KoolsE.van de RietJ.Dieleman, A simple formalism for the prediction of angular distributions in laser ablation deposition, Jpn. J. Appl. Phys. 69(1–4), 1 (1993)
[52]
T. C. Droubay, L. Qiao, T. C. Kaspar, M. H. Engelhard, V. Shutthanandan, S. A. Chambers. Nonstoichiometric material transfer in the pulsed laser deposition of LaAlO3. Appl. Phys. Lett., 2010, 97(12): 124105
CrossRef ADS Google scholar
[53]
L. Qiao, T. C. Droubay, V. Shutthanandan, Z. Zhu, P. V. Sushko, S. A. Chambers. Thermodynamic instability at the stoichiometric LaAlO3/SrTiO3 (001) interface. J. Phys.: Condens. Matter, 2010, 22(31): 312201
CrossRef ADS Google scholar
[54]
R. E. Muenchausen, K. M. Hubbard, S. Foltyn, R. C. Estler, N. S. Nogar, C. Jenkins. Effects of beam parameters on excimer laser deposition of YBa2Cu3O7−δ. Appl. Phys. Lett., 1990, 56(6): 578
CrossRef ADS Google scholar
[55]
T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa. Defects and transport in complex oxide thin films. J. Appl. Phys., 2008, 103(10): 103703
CrossRef ADS Google scholar
[56]
I. Konomi, T. Motohiro, M. Horii, M. Kawasumi. Angular distribution of elemental composition of films deposited by laser ablation of a SrZrO3 target. J. Vac. Sci. Technol. A, 2008, 26(6): 1455
CrossRef ADS Google scholar
[57]
H. Dang, Q. Qin. Angular distribution of laser-ablated species from a Pr0.67Sr0.33MnO3 target. Phys. Rev. B, 1999, 60(15): 11187
CrossRef ADS Google scholar
[58]
M. Tyunina, J. Levoska, S. Leppävuori. Experimental studies and modeling of Pb–Zr–Ti–O film growth in pulsed laser deposition. J. Appl. Phys., 1998, 83(10): 5489
CrossRef ADS Google scholar
[59]
R. F. Wood, K. R. Chen, J. N. Leboeuf, A. A. Puretzky, D. B. Geohegan. Dynamics of plume propagation and splitting during pulsed-laser ablation. Phys. Rev. Lett., 1997, 79(8): 1571
CrossRef ADS Google scholar
[60]
D. B. Geohegan. Fast intensified‐CCD photography of YBa2Cu3O7−x laser ablation in vacuum and ambient oxygen. Appl. Phys. Lett., 1992, 60(22): 2732
CrossRef ADS Google scholar
[61]
X. Ding, B. Yang, H. Leng, J. H. Jang, J. R. Zhao, C. Zhang, S. Zhang, G. X. Cao, J. Zhang, R. Mishra, J. B. Yi, D. Qi, Z. Gai, X. Zu, S. Li, B. Huang, A. Borisevich, L. Qiao. Crystal symmetry engineering in epitaxial perovskite superlattices. Adv. Funct. Mater., 2021, 31(47): 2106466
CrossRef ADS Google scholar
[62]
L. Qiao, K. H. L. Zhang, M. E. Bowden, T. Varga, V. Shutthanandan, R. Colby, Y. Du, B. Kabius, P. V. Sushko, M. D. Biegalski, S. A. Chambers. The impacts of cation stoichiometry and substrate surface quality on nucleation, structure, defect formation, and intermixing in complex oxide heteroepitaxy–LaCrO3 on SrTiO3(001). Adv. Funct. Mater., 2013, 23(23): 2953
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Author contributions

L. Q. conceived the idea and supervised the project. M. H. X and Y. Z synthesized the perovskite nickelate thin films and performed the topotactic reduction experiments. M. H. X., X. D. and S. Z. characterized the crystalline structure. M. H. X., Y. Z., J. G. performed the transport measurements with the help of H. Q. L. and X. D.. M. H. X., Y. Z. and X. D. analyzed the transport data. M. H. X., Y. Z. and L. Q. wrote the manuscript with input from all authors.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

Acknowledgements

L. Q. acknowledges the support by the National Natural Science Foundation of China (Grant Nos. 12274061, 52072059, and 11774044), the Science and Technology Department of Sichuan Province (Grant Nos. 2021JDJQ0015 and 2022ZYD0014). B. H. acknowledges the support by the National Natural Science Foundation of China (No. 2230402).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5464 KB)

Accesses

Citations

Detail

Sections
Recommended

/