Efficiently simulating the work distribution of multiple identical bosons with boson sampling

Wen-Qiang Liu, Zhang-qi Yin

PDF(4390 KB)
PDF(4390 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 32203. DOI: 10.1007/s11467-023-1366-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficiently simulating the work distribution of multiple identical bosons with boson sampling

Author information +
History +

Abstract

Boson sampling has been theoretically proposed and experimentally demonstrated to show quantum computational advantages. However, it still lacks the deep understanding of the practical applications of boson sampling. Here we propose that boson sampling can be used to efficiently simulate the work distribution of multiple identical bosons. We link the work distribution to boson sampling and numerically calculate the transition amplitude matrix between the single-boson eigenstates in a one-dimensional quantum piston system, and then map the matrix to a linear optical network of boson sampling. The work distribution can be efficiently simulated by the output probabilities of boson sampling using the method of the grouped probability estimation. The scheme requires at most a polynomial number of the samples and the optical elements. Our work opens up a new path towards the calculation of complex quantum work distribution using only photons and linear optics.

Graphical abstract

Keywords

quantum simulation / quantum work distribution / boson sampling / linear optics

Cite this article

Download citation ▾
Wen-Qiang Liu, Zhang-qi Yin. Efficiently simulating the work distribution of multiple identical bosons with boson sampling. Front. Phys., 2024, 19(3): 32203 https://doi.org/10.1007/s11467-023-1366-3

References

[1]
C. Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 1997, 78(14): 2690
CrossRef ADS Google scholar
[2]
G. E. Crooks. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 1999, 60(3): 2721
CrossRef ADS Google scholar
[3]
T. Hatano, S. I. Sasa. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett., 2001, 86(16): 3463
CrossRef ADS Google scholar
[4]
D. Kafri, S. Deffner. Holevo’s bound from a general quantum fluctuation theorem. Phys. Rev. A, 2012, 86(4): 044302
CrossRef ADS Google scholar
[5]
S. Deffner, E. Lutz. Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E, 2008, 77(2): 021128
CrossRef ADS Google scholar
[6]
H. T. Quan, C. Jarzynski. Validity of nonequilibrium work relations for the rapidly expanding quantum piston. Phys. Rev. E, 2012, 85(3): 031102
CrossRef ADS Google scholar
[7]
C. Jarzynski, H. T. Quan, S. Rahav. Quantum-classical correspondence principle for work distributions. Phys. Rev. X, 2015, 5(3): 031038
CrossRef ADS Google scholar
[8]
L. Zhu, Z. Gong, B. Wu, H. T. Quan. Quantum-classical correspondence principle for work distributions in a chaotic system. Phys. Rev. E, 2016, 93(6): 062108
CrossRef ADS Google scholar
[9]
M. Łobejko, J. Luczka, P. Talkner. Work distributions for random sudden quantum quenches. Phys. Rev. E, 2017, 95(5): 052137
CrossRef ADS Google scholar
[10]
T. B. Batalhão, A. M. Souza, L. Mazzola, R. Auccaise, R. S. Sarthour, I. S. Oliveira, J. Goold, G. De Chiara, M. Paternostro, R. M. Serra. Experimental reconstruction of work distribution and study of fluctuation relations in a closed quantum system. Phys. Rev. Lett., 2014, 113(14): 140601
CrossRef ADS Google scholar
[11]
S. An, J. N. Zhang, M. Um, D. Lv, Y. Lu, J. Zhang, Z. Q. Yin, H. T. Quan, K. Kim. Experimental test of the quantum Jarzynski equality with a trapped-ion system. Nat. Phys., 2015, 11(2): 193
CrossRef ADS Google scholar
[12]
D. J. Sivananda, N. Roy, P. C. Mahato, S. S. Banerjee. Exploring the non-equilibrium fluctuation relation for quantum mechanical tunneling of electrons across a modulating barrier. Phys. Rev. Res., 2020, 2(4): 043237
CrossRef ADS Google scholar
[13]
Z. Gong, S. Deffner, H. T. Quan. Interference of identical particles and the quantum work distribution. Phys. Rev. E, 2014, 90(6): 062121
CrossRef ADS Google scholar
[14]
Q. Wang, H. T. Quan. Understanding quantum work in a quantum many-body system. Phys. Rev. E, 2017, 95(3): 032113
CrossRef ADS Google scholar
[15]
B. Wang, J. Zhang, H. T. Quan. Work distributions of one-dimensional fermions and bosons with dual contact interactions. Phys. Rev. E, 2018, 97(5): 052136
CrossRef ADS Google scholar
[16]
J.GooldF. PlastinaA.GambassiA.Silva, The role of quantum work statistics in many-body physics, in: Thermodynamics in the Quantum Regime, Springer, 2018, pp 317–336
[17]
M. C. Tichy, M. Tiersch, F. Mintert, A. Buchleitner. Many-particle interference beyond many-boson and many-fermion statistics. New J. Phys., 2012, 14(9): 093015
CrossRef ADS Google scholar
[18]
M. C. Tichy. Interference of identical particles from entanglement to boson-sampling. J. Phys. At. Mol. Opt. Phys., 2014, 47(10): 103001
CrossRef ADS Google scholar
[19]
J. D. Urbina, J. Kuipers, S. Matsumoto, Q. Hummel, K. Richter. Multiparticle correlations in mesoscopic scattering: Boson sampling, birthday paradox, and Hong‒Ou‒Mandel profiles. Phys. Rev. Lett., 2016, 116(10): 100401
CrossRef ADS Google scholar
[20]
L. G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 1979, 8(2): 189
CrossRef ADS Google scholar
[21]
S.Aaronson, A linear-optical proof that the permanent is #P-hard, Proc. R. Soc. A 467(2136), 3393 (2011)
[22]
A. P. Lund, M. J. Bremner, T. C. Ralph. Quantum sampling problems, boson-sampling and quantum supremacy. npj Quantum Inf., 2017, 3: 15
CrossRef ADS Google scholar
[23]
S.AaronsonA. Arkhipov, The computational complexity of linear optics, in: Proceedings of the forty-third annual ACM symposium on Theory of computing, 2011, pp 333–342
[24]
X. Gu, M. Erhard, A. Zeilinger, M. Krenn. Quantum experiments and graphs (II): Quantum interference, computation, and state generation. Proc. Natl. Acad. Sci. USA, 2019, 116(10): 4147
CrossRef ADS Google scholar
[25]
J. M. Arrazola, V. Bergholm, K. Brádler, T. R. Bromley, M. J. Collins, I. Dhand, A. Fumagalli, T. Gerrits, A. Goussev, L. G. Helt, J. Hundal, T. Isacsson, R. B. Israel, J. Izaac, S. Jahangiri, R. Janik, N. Killoran, S. P. Kumar, J. Lavoie, A. E. Lita, D. H. Mahler, M. Menotti, B. Morrison, S. W. Nam, L. Neuhaus, H. Y. Qi, N. Quesada, A. Repingon, K. K. Sabapathy, M. Schuld, N. Su, J. Swinarton, A. Száva, K. Tan, P. Tan, V. D. Vaidya, Z. Vernon, Z. Zabaneh, Y. Zhang. Quantum circuits with many photons on a programmable nanophotonic chip. Nature, 2021, 591(7848): 54
CrossRef ADS Google scholar
[26]
J. Bao, Z. Fu, T. Pramanik, J. Mao, Y. Chi, Y. Cao, C. Zhai, Y. Mao, T. Dai, X. Chen, X. Jia, L. Zhao, Y. Zheng, B. Tang, Z. Li, J. Luo, W. Wang, Y. Yang, Y. Peng, D. Liu, D. Dai, Q. He, A. L. Muthali, L. K. Oxenlowe, C. Vigliar, S. Paesani, H. Hou, R. Santagati, J. W. Silverstone, A. Laing, M. G. Thompson, J. L. O’Brien, Y. Ding, Q. Gong, J. Wang. Very-large scale integrated quantum graph photonics. Nat. Photonics, 2023, 17(7): 573
CrossRef ADS Google scholar
[27]
G. M. Nikolopoulos, T. Brougham. Decision and function problems based on boson sampling. Phys. Rev. A, 2016, 94(1): 012315
CrossRef ADS Google scholar
[28]
G. M. Nikolopoulos. Cryptographic one-way function based on boson sampling. Quantum Inform. Process., 2019, 18(8): 259
CrossRef ADS Google scholar
[29]
J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean, A. Aspuru-Guzik. Boson sampling for molecular vibronic spectra. Nat. Photonics, 2015, 9(9): 615
CrossRef ADS Google scholar
[30]
J. Huh, M. H. Yung. Vibronic boson sampling: Generalized Gaussian boson sampling for molecular vibronic spectra at finite temperature. Sci. Rep., 2017, 7(1): 7462
CrossRef ADS Google scholar
[31]
Y. Shen, Y. Lu, K. Zhang, J. Zhang, S. Zhang, J. Huh, K. Kim. Quantum optical emulation of molecular vibronic spectroscopy using a trapped-ion device. Chem. Sci. (Camb.), 2018, 9(4): 836
CrossRef ADS Google scholar
[32]
C. S. Wang, J. C. Curtis, B. J. Lester, Y. Zhang, Y. Y. Gao, J. Freeze, V. S. Batista, P. H. Vaccaro, I. L. Chuang, L. Frunzio, L. Jiang, S. M. Girvin, R. J. Schoelkopf. Efficient multiphoton sampling of molecular vibronic spectra on a superconducting bosonic processor. Phys. Rev. X, 2020, 10(2): 021060
CrossRef ADS Google scholar
[33]
L. Banchi, M. Fingerhuth, T. Babej, C. Ing, J. M. Arrazola. Molecular docking with Gaussian boson sampling. Sci. Adv., 2020, 6(23): eaax1950
CrossRef ADS Google scholar
[34]
J.ShiT. ZhaoY.WangC.YuY.Lu R.ShiS. ZhangJ.Wu, An unbiased quantum random number generator based on boson sampling, arXiv: 2206.02292 (2022)
[35]
J. Shi, T. Zhao, Y. Wang, Y. Feng, J. Wu. Chaotic image encryption based on boson sampling. Adv. Quantum Technol., 2023, 6(2): 2200104
CrossRef ADS Google scholar
[36]
M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, A. G. White. Photonic boson sampling in a tunable circuit. Science, 2013, 339(6121): 794
CrossRef ADS Google scholar
[37]
J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X. M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, I. A. Walmsley. Boson sampling on a photonic chip. Science, 2013, 339(6121): 798
CrossRef ADS Google scholar
[38]
M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Szameit, P. Walther. Experimental boson sampling. Nat. Photonics, 2013, 7(7): 540
CrossRef ADS Google scholar
[39]
A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F. Galvao, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mataloni, F. Sciarrino. Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics, 2013, 7(7): 545
CrossRef ADS Google scholar
[40]
H. Wang, Y. He, Y. H. Li, Z. E. Su, B. Li, H. L. Huang, X. Ding, M. C. Chen, C. Liu, J. Qin, J. P. Li, Y. M. He, C. Schneider, M. Kamp, C. Z. Peng, S. Höfling, C. Y. Lu, J. W. Pan. High-efficiency multiphoton boson sampling. Nat. Photonics, 2017, 11(6): 361
CrossRef ADS Google scholar
[41]
H. Wang, W. Li, X. Jiang, Y. M. He, Y. H. Li, X. Ding, M. C. Chen, J. Qin, C. Z. Peng, C. Schneider, M. Kamp, W. J. Zhang, H. Li, L. X. You, Z. Wang, J. P. Dowling, S. Höfling, C. Y. Lu, J. W. Pan. Toward scalable boson sampling with photon loss. Phys. Rev. Lett., 2018, 120(23): 230502
CrossRef ADS Google scholar
[42]
H. Wang, J. Qin, X. Ding, M. C. Chen, S. Chen, X. You, Y. M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema, S. Höfling, C. Y. Lu, J. W. Pan. Boson sampling with 20 input photons and a 60-mode interferometer in a 1014-dimensional Hilbert space. Phys. Rev. Lett., 2019, 123(25): 250503
CrossRef ADS Google scholar
[43]
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, J. W. Pan. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef ADS Google scholar
[44]
H. S. Zhong, Y. H. Deng, J. Qin, H. Wang, M. C. Chen, L. C. Peng, Y. H. Luo, D. Wu, S. Q. Gong, H. Su, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, J. J. Renema, C. Y. Lu, J. W. Pan. Phase programmable Gaussian boson sampling using stimulated squeezed light. Phys. Rev. Lett., 2021, 127(18): 180502
CrossRef ADS Google scholar
[45]
H. K. Lau, D. F. V. James. Proposal for a scalable universal bosonic simulator using individually trapped ions. Phys. Rev. A, 2012, 85(6): 062329
CrossRef ADS Google scholar
[46]
C. Shen, Z. Zhang, L. M. Duan. Scalable implementation of boson sampling with trapped ions. Phys. Rev. Lett., 2014, 112(5): 050504
CrossRef ADS Google scholar
[47]
C.OhY.Lim Y.WongB. FeffermanL.Jiang, Quantum-inspired classical algorithm for molecular vibronic spectra, arXiv: 2202.01861 (2022)
[48]
H.Tasaki, Jarzynski relations for quantum systems and some applications, arXiv: cond-mat/0009244 (2000)
[49]
P.TalknerE. LutzP.Hänggi, Fluctuation theorems: Work is not an observable, Phys. Rev. E 75, 050102(R) (2007)
[50]
S. W. Doescher, M. H. Rice. Infinite square-well potential with a moving wall. Am. J. Phys., 1969, 37(12): 1246
CrossRef ADS Google scholar
[51]
A. Gilchrist, N. K. Langford, M. A. Nielsen. Distance measures to compare real and ideal quantum processes. Phys. Rev. A, 2005, 71(6): 062310
CrossRef ADS Google scholar
[52]
A.BjörklundB.GuptN.Quesada, A faster Hafnian formula for complex matrices and its benchmarking on the Titan supercomputer, J. Exp. Algor. 24, 11 (2019)
[53]
M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 1994, 73(1): 58
CrossRef ADS Google scholar
[54]
W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walsmley. Optimal design for universal multiport interferometers. Optica, 2016, 3(12): 1460
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We thank valuable discussions with Zhaohui Wei, Haitao Quan, Xianmin Jin, and Yuanhao Wang. This work was supported by the National Natural Science Foundation of China under Grant No. 61771278 and the Beijing Institute of Technology Research Fund Program for Young Scholars.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4390 KB)

Accesses

Citations

Detail

Sections
Recommended

/