Charge qubits based on ultra-thin topological insulator films

Kexin Zhang, Hugo V. Lepage, Ying Dong, Crispin H. W. Barnes

PDF(8898 KB)
PDF(8898 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33208. DOI: 10.1007/s11467-023-1364-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Charge qubits based on ultra-thin topological insulator films

Author information +
History +

Abstract

We study how to use the surface states in a Bi2Se3 topological insulator ultra-thin film that are affected by finite size effects for the purpose of quantum computing. We demonstrate that: (i) surface states under the finite size effect can effectively form a two-level system where their energy levels lie in between the bulk energy gap and a logic qubit can be constructed, (ii) the qubit can be initialized and manipulated using electric pulses of simple forms, (iii) two-qubit entanglement is achieved through a SWAP operation when the two qubits are in a parallel setup, and (iv) alternatively, a Floquet state can be exploited to construct a qubit and two Floquet qubits can be entangled through a Controlled-NOT operation. The Floquet qubit offers robustness to background noise since there is always an oscillating electric field applied, and the single qubit operations are controlled by amplitude modulation of the oscillating field, which is convenient experimentally.

Graphical abstract

Keywords

topological insulator / quantum computing / nanodevices

Cite this article

Download citation ▾
Kexin Zhang, Hugo V. Lepage, Ying Dong, Crispin H. W. Barnes. Charge qubits based on ultra-thin topological insulator films. Front. Phys., 2024, 19(3): 33208 https://doi.org/10.1007/s11467-023-1364-5

References

[1]
Y. Ando. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 1
CrossRef ADS Google scholar
[2]
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[3]
M. Z. Hasan, J. E. Moore. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
CrossRef ADS Google scholar
[4]
H.Z. LuS. Q. Shen, Weak localization and weak anti-localization in topological insulators, in: Proc. SPIE, Vol. 9167 (2014)
[5]
D. Pesin, A. H. MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
CrossRef ADS Google scholar
[6]
M. He, H. Sun, L. H. Qing. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef ADS Google scholar
[7]
S. Cho, D. Kim, P. Syers, N. P. Butch, J. Paglione, M. S. Fuhrer. Topological insulator quantum dot with tunable barriers. Nano Lett., 2012, 12(1): 469
CrossRef ADS Google scholar
[8]
T.M. HerathP. HewageeganaV.Apalkov, A quantum dot in topological insulator nanofilm, J. Phys.: Condens. Matter 26(11), 115302 (2014)
[9]
G. Kirczenow. Perfect and imperfect conductance quantization and transport resonances of two-dimensional topological-insulator quantum dots with normal conducting leads and contacts. Phys. Rev. B, 2018, 98(16): 165430
CrossRef ADS Google scholar
[10]
G. Li, J. L. Zhu, N. Yang. Magnetic quantum dot in two-dimensional topological insulators. J. Appl. Phys., 2017, 121(11): 114302
CrossRef ADS Google scholar
[11]
H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, P. Jarillo-Herrero. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B, 2011, 84(23): 233101
CrossRef ADS Google scholar
[12]
G. J. Ferreira, D. Loss. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett., 2013, 111(10): 106802
CrossRef ADS Google scholar
[13]
L. A. Castro-Enriquez, L. F. Quezada, A. Martín-Ruiz. Optical response of a topological-insulator–quantum-dot hybrid interacting with a probe electric field. Phys. Rev. A, 2020, 102: 013720
CrossRef ADS Google scholar
[14]
S. Islam, S. Bhattacharyya, H. Nhalil, M. Banerjee, A. Richardella, A. Kandala, D. Sen, N. Samarth, S. Elizabeth, A. Ghosh. Low-temperature saturation of phase coherence length in topological insulators. Phys. Rev. B, 2019, 99(24): 245407
CrossRef ADS Google scholar
[15]
F. X. Xiu, T. T. Zhao. Topological insulator nanostructures and devices. Chin. Phys. B, 2013, 22(9): 096104
CrossRef ADS Google scholar
[16]
C. W. Liu, Z. Wang, R. L. J. Qiu, X. P. A. Gao. Development of topological insulator and topological crystalline insulator nanostructures. Nanotechnology, 2020, 31(19): 192001
CrossRef ADS Google scholar
[17]
H. Li, H. Peng, W. Dang, L. Yu, Z. Liu, Topological insulator nanostructures:Materials synthesis. Raman spectroscopy, and transport properties. Front. Phys., 2012, 7(2): 208
CrossRef ADS Google scholar
[18]
Y.B. HuY. H. ZhaoX.F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
[19]
C. X. Liu, H. J. Zhang, B. Yan, X. L. Qi, T. Frauenheim, X. Dai, Z. Fang, S. C. Zhang. Oscillatory crossover from two- dimensional to three-dimensional topological insulators. Phys. Rev. B, 2010, 81(4): 041307
CrossRef ADS Google scholar
[20]
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, S. Q. Shen. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
CrossRef ADS Google scholar
[21]
T. Oka, S. Kitamura. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 2019, 10(1): 387
CrossRef ADS Google scholar
[22]
M. H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto, J. E. Moore. Topological Floquet-Thouless energy pump. Phys. Rev. Lett., 2018, 120(15): 150601
CrossRef ADS Google scholar
[23]
T. Oka, H. Aoki. Photovoltaic Hall effect in graphene. Phys. Rev. B, 2009, 79(8): 81406
CrossRef ADS Google scholar
[24]
T. Bilitewski, N. R. Cooper. Scattering theory for Floquet-Bloch states. Phys. Rev. A, 2015, 91(3): 033601
CrossRef ADS Google scholar
[25]
Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik. Observation of Floquet−Bloch states on the surface of a topological insulator. Science, 2013, 342(6157): 453
CrossRef ADS Google scholar
[26]
E. Boyers, M. Pandey, D. K. Campbell, A. Polkovnikov, D. Sels, A. O. Sushkov. Floquet-engineered quantum state manipulation in a noisy qubit. Phys. Rev. A, 2019, 100(1): 012341
CrossRef ADS Google scholar
[27]
H. V. Lepage, A. A. Lasek, D. R. M. Arvidsson-Shukur, C. H. W. Barnes. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A, 2020, 101(2): 022329
CrossRef ADS Google scholar
[28]
C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, S. C. Zhang. Model Hamiltonian for topological insulators. Phys. Rev. B, 2010, 82(4): 045122
CrossRef ADS Google scholar
[29]
P.B. Visscher, A fast explicit algorithm for the time-dependent Schrödinger equation, Comput. Phys. 5(6), 596 (1991)
[30]
D. R. M. Arvidsson-Shukur, H. V. Lepage, E. T. Owen, T. Ferrus, C. H. W. Barnes. Protocol for fermionic positive-operator-valued measures. Phys. Rev. A, 2017, 96(5): 052305
CrossRef ADS Google scholar
[31]
H.Lepage, Fermionic quantum information in surface acoustic waves, PhD thesis, University of Cambridge, 2020
[32]
S. Takada, H. Edlbauer, H. V. Lepage, J. Wang, P. A. Mortemousque, G. Georgiou, C. H. W. Barnes, C. J. B. Ford, M. Yuan, P. V. Santos, X. Waintal, A. Ludwig, A. D. Wieck, M. Urdampilleta, T. Meunier, C. Bäuerle. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun., 2019, 10(1): 4557
CrossRef ADS Google scholar
[33]
J. H. Shirley. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 1965, 138(4B): B979
CrossRef ADS Google scholar
[34]
J. Linder, T. Yokoyama, A. Sudbø. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B, 2009, 80(20): 205401
CrossRef ADS Google scholar
[35]
A.LasekH. V. LepageK.ZhangT.FerrusC.H. W. Barnes, Pulse-controlled qubit in semiconductor double quantum dots, arXiv: 2303.04823 (2023)
[36]
J. Gorman, D. G. Hasko, D. A. Williams. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett., 2005, 95(9): 090502
CrossRef ADS Google scholar
[37]
K.ChoiH. Liu, Amplitude modulation, pp 90–100 (2016)
[38]
T. Fujisawa, G. Shinkai, T. Hayashi, T. Ota. Multiple two-qubit operations for a coupled semiconductor charge qubit. Physica E, 2011, 43(3): 730
CrossRef ADS Google scholar
[39]
C.A. De MouraC.S. Kubrusly, The Courant–Friedrichs–Lewy (CFL) Condition, Birkhäuser Boston, MA, 2012
[40]
L. Pandey, S. Husain, X. Chen, V. Barwal, S. Hait, N. K. Gupta, V. Mishra, A. Kumar, N. Sharma, N. Kumar, L. Saravanan, D. Dixit, B. Sanyal, S. Chaudhary. Weak antilocalization and electron-electron interactions in topological insulator BixTey films deposited by sputtering on Si(100). Phys. Rev. Mater., 2022, 6(4): 044203
CrossRef ADS Google scholar
[41]
C. Zhao, Q. Zheng, J. Zhao. Excited electron and spin dynamics in topological insulator: A perspective from ab initio non-adiabatic molecular dynamics. Fundamental Research, 2022, 2(4): 506
CrossRef ADS Google scholar
[42]
H.Z. LuS. Q. Shen, Weak localization and weak anti-localization in topological insulators, in: Spintronics VII, Vol. 9167, pp 263–273, SPIE (2014)
[43]
M. Shiranzaei, F. Parhizgar, J. Fransson, H. Cheraghchi. Impurity scattering on the surface of topological-insulator thin films. Phys. Rev. B, 2017, 95(23): 235429
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the China Scholarship Council. The authors would like to thank Dr. Tianwei Wang for his help in creating Fig.1 and Fig.5.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8898 KB)

Accesses

Citations

Detail

Sections
Recommended

/