
Charge qubits based on ultra-thin topological insulator films
Kexin Zhang, Hugo V. Lepage, Ying Dong, Crispin H. W. Barnes
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33208.
Charge qubits based on ultra-thin topological insulator films
We study how to use the surface states in a Bi2Se3 topological insulator ultra-thin film that are affected by finite size effects for the purpose of quantum computing. We demonstrate that: (i) surface states under the finite size effect can effectively form a two-level system where their energy levels lie in between the bulk energy gap and a logic qubit can be constructed, (ii) the qubit can be initialized and manipulated using electric pulses of simple forms, (iii) two-qubit entanglement is achieved through a
topological insulator / quantum computing / nanodevices
Fig.1 Top: Graphical representation of five Bi |
Fig.2 The Bloch sphere representation of basic rotation. (a) The initialization from |
Fig.3 The Bloch sphere representation of |
Fig.4 (a) The electron density of |
Fig.8 Bands of the Hamiltonian Eq. (40) at |
Fig.9 Time evolution of the state |
[1] |
Y. Ando. Topological insulator materials. J. Phys. Soc. Jpn., 2013, 82(10): 1
CrossRef
ADS
Google scholar
|
[2] |
M. Z. Hasan, C. L. Kane. Colloquium: Topological insulators. Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef
ADS
Google scholar
|
[3] |
M. Z. Hasan, J. E. Moore. Three-dimensional topological insulators. Annu. Rev. Condens. Matter Phys., 2011, 2(1): 55
CrossRef
ADS
Google scholar
|
[4] |
H.Z. LuS. Q. Shen, Weak localization and weak anti-localization in topological insulators, in: Proc. SPIE, Vol. 9167 (2014)
|
[5] |
D. Pesin, A. H. MacDonald. Spintronics and pseudospintronics in graphene and topological insulators. Nat. Mater., 2012, 11(5): 409
CrossRef
ADS
Google scholar
|
[6] |
M. He, H. Sun, L. H. Qing. Topological insulator: Spintronics and quantum computations. Front. Phys., 2019, 14(4): 43401
CrossRef
ADS
Google scholar
|
[7] |
S. Cho, D. Kim, P. Syers, N. P. Butch, J. Paglione, M. S. Fuhrer. Topological insulator quantum dot with tunable barriers. Nano Lett., 2012, 12(1): 469
CrossRef
ADS
Google scholar
|
[8] |
T.M. HerathP. HewageeganaV.Apalkov, A quantum dot in topological insulator nanofilm, J. Phys.: Condens. Matter 26(11), 115302 (2014)
|
[9] |
G. Kirczenow. Perfect and imperfect conductance quantization and transport resonances of two-dimensional topological-insulator quantum dots with normal conducting leads and contacts. Phys. Rev. B, 2018, 98(16): 165430
CrossRef
ADS
Google scholar
|
[10] |
G. Li, J. L. Zhu, N. Yang. Magnetic quantum dot in two-dimensional topological insulators. J. Appl. Phys., 2017, 121(11): 114302
CrossRef
ADS
Google scholar
|
[11] |
H. Steinberg, J. B. Laloë, V. Fatemi, J. S. Moodera, P. Jarillo-Herrero. Electrically tunable surface-to-bulk coherent coupling in topological insulator thin films. Phys. Rev. B, 2011, 84(23): 233101
CrossRef
ADS
Google scholar
|
[12] |
G. J. Ferreira, D. Loss. Magnetically defined qubits on 3D topological insulators. Phys. Rev. Lett., 2013, 111(10): 106802
CrossRef
ADS
Google scholar
|
[13] |
L. A. Castro-Enriquez, L. F. Quezada, A. Martín-Ruiz. Optical response of a topological-insulator–quantum-dot hybrid interacting with a probe electric field. Phys. Rev. A, 2020, 102: 013720
CrossRef
ADS
Google scholar
|
[14] |
S. Islam, S. Bhattacharyya, H. Nhalil, M. Banerjee, A. Richardella, A. Kandala, D. Sen, N. Samarth, S. Elizabeth, A. Ghosh. Low-temperature saturation of phase coherence length in topological insulators. Phys. Rev. B, 2019, 99(24): 245407
CrossRef
ADS
Google scholar
|
[15] |
F. X. Xiu, T. T. Zhao. Topological insulator nanostructures and devices. Chin. Phys. B, 2013, 22(9): 096104
CrossRef
ADS
Google scholar
|
[16] |
C. W. Liu, Z. Wang, R. L. J. Qiu, X. P. A. Gao. Development of topological insulator and topological crystalline insulator nanostructures. Nanotechnology, 2020, 31(19): 192001
CrossRef
ADS
Google scholar
|
[17] |
H. Li, H. Peng, W. Dang, L. Yu, Z. Liu, Topological insulator nanostructures:Materials synthesis. Raman spectroscopy, and transport properties. Front. Phys., 2012, 7(2): 208
CrossRef
ADS
Google scholar
|
[18] |
Y.B. HuY. H. ZhaoX.F. Wang, A computational investigation of topological insulator Bi2Se3 film, Front. Phys. 9(6), 760 (2014)
|
[19] |
C. X. Liu, H. J. Zhang, B. Yan, X. L. Qi, T. Frauenheim, X. Dai, Z. Fang, S. C. Zhang. Oscillatory crossover from two- dimensional to three-dimensional topological insulators. Phys. Rev. B, 2010, 81(4): 041307
CrossRef
ADS
Google scholar
|
[20] |
H. Z. Lu, W. Y. Shan, W. Yao, Q. Niu, S. Q. Shen. Massive Dirac fermions and spin physics in an ultrathin film of topological insulator. Phys. Rev. B, 2010, 81(11): 115407
CrossRef
ADS
Google scholar
|
[21] |
T. Oka, S. Kitamura. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys., 2019, 10(1): 387
CrossRef
ADS
Google scholar
|
[22] |
M. H. Kolodrubetz, F. Nathan, S. Gazit, T. Morimoto, J. E. Moore. Topological Floquet-Thouless energy pump. Phys. Rev. Lett., 2018, 120(15): 150601
CrossRef
ADS
Google scholar
|
[23] |
T. Oka, H. Aoki. Photovoltaic Hall effect in graphene. Phys. Rev. B, 2009, 79(8): 81406
CrossRef
ADS
Google scholar
|
[24] |
T. Bilitewski, N. R. Cooper. Scattering theory for Floquet-Bloch states. Phys. Rev. A, 2015, 91(3): 033601
CrossRef
ADS
Google scholar
|
[25] |
Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik. Observation of Floquet−Bloch states on the surface of a topological insulator. Science, 2013, 342(6157): 453
CrossRef
ADS
Google scholar
|
[26] |
E. Boyers, M. Pandey, D. K. Campbell, A. Polkovnikov, D. Sels, A. O. Sushkov. Floquet-engineered quantum state manipulation in a noisy qubit. Phys. Rev. A, 2019, 100(1): 012341
CrossRef
ADS
Google scholar
|
[27] |
H. V. Lepage, A. A. Lasek, D. R. M. Arvidsson-Shukur, C. H. W. Barnes. Entanglement generation via power-of-swap operations between dynamic electron-spin qubits. Phys. Rev. A, 2020, 101(2): 022329
CrossRef
ADS
Google scholar
|
[28] |
C. X. Liu, X. L. Qi, H. J. Zhang, X. Dai, Z. Fang, S. C. Zhang. Model Hamiltonian for topological insulators. Phys. Rev. B, 2010, 82(4): 045122
CrossRef
ADS
Google scholar
|
[29] |
P.B. Visscher, A fast explicit algorithm for the time-dependent Schrödinger equation, Comput. Phys. 5(6), 596 (1991)
|
[30] |
D. R. M. Arvidsson-Shukur, H. V. Lepage, E. T. Owen, T. Ferrus, C. H. W. Barnes. Protocol for fermionic positive-operator-valued measures. Phys. Rev. A, 2017, 96(5): 052305
CrossRef
ADS
Google scholar
|
[31] |
H.Lepage, Fermionic quantum information in surface acoustic waves, PhD thesis, University of Cambridge, 2020
|
[32] |
S. Takada, H. Edlbauer, H. V. Lepage, J. Wang, P. A. Mortemousque, G. Georgiou, C. H. W. Barnes, C. J. B. Ford, M. Yuan, P. V. Santos, X. Waintal, A. Ludwig, A. D. Wieck, M. Urdampilleta, T. Meunier, C. Bäuerle. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat. Commun., 2019, 10(1): 4557
CrossRef
ADS
Google scholar
|
[33] |
J. H. Shirley. Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev., 1965, 138(4B): B979
CrossRef
ADS
Google scholar
|
[34] |
J. Linder, T. Yokoyama, A. Sudbø. Anomalous finite size effects on surface states in the topological insulator Bi2Se3. Phys. Rev. B, 2009, 80(20): 205401
CrossRef
ADS
Google scholar
|
[35] |
A.LasekH. V. LepageK.ZhangT.FerrusC.H. W. Barnes, Pulse-controlled qubit in semiconductor double quantum dots, arXiv: 2303.04823 (2023)
|
[36] |
J. Gorman, D. G. Hasko, D. A. Williams. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett., 2005, 95(9): 090502
CrossRef
ADS
Google scholar
|
[37] |
K.ChoiH. Liu, Amplitude modulation, pp 90–100 (2016)
|
[38] |
T. Fujisawa, G. Shinkai, T. Hayashi, T. Ota. Multiple two-qubit operations for a coupled semiconductor charge qubit. Physica E, 2011, 43(3): 730
CrossRef
ADS
Google scholar
|
[39] |
C.A. De MouraC.S. Kubrusly, The Courant–Friedrichs–Lewy (CFL) Condition, Birkhäuser Boston, MA, 2012
|
[40] |
L. Pandey, S. Husain, X. Chen, V. Barwal, S. Hait, N. K. Gupta, V. Mishra, A. Kumar, N. Sharma, N. Kumar, L. Saravanan, D. Dixit, B. Sanyal, S. Chaudhary. Weak antilocalization and electron-electron interactions in topological insulator BixTey films deposited by sputtering on Si(100). Phys. Rev. Mater., 2022, 6(4): 044203
CrossRef
ADS
Google scholar
|
[41] |
C. Zhao, Q. Zheng, J. Zhao. Excited electron and spin dynamics in topological insulator: A perspective from ab initio non-adiabatic molecular dynamics. Fundamental Research, 2022, 2(4): 506
CrossRef
ADS
Google scholar
|
[42] |
H.Z. LuS. Q. Shen, Weak localization and weak anti-localization in topological insulators, in: Spintronics VII, Vol. 9167, pp 263–273, SPIE (2014)
|
[43] |
M. Shiranzaei, F. Parhizgar, J. Fransson, H. Cheraghchi. Impurity scattering on the surface of topological-insulator thin films. Phys. Rev. B, 2017, 95(23): 235429
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |