Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media

Yongxing Wang, Jizi Lin, Ping Xu

PDF(8191 KB)
PDF(8191 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33206. DOI: 10.1007/s11467-023-1362-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media

Author information +
History +

Abstract

We present a novel method to achieve the decoupling between the transmission and reflection waves of non-Hermitian doped epsilon-near-zero (ENZ) media by inserting a dielectric slit into the structure. Our method also allows for independent control over the amplitude and the phase of both the transmission and reflection waves through few dopants, enabling us to achieve various optical effects, such as perfect absorption, high-gain reflection without transmission, reflectionless high-gain transmission and reflectionless total transmission with different phases. By manipulating the permittivity of dopants with extremely low loss or gain, we can realize these effects in the same configuration. We also extend this principle to multi-port doped ENZ structures and design a highly reconfigurable and reflectionless signal distributor and generator that can split, amplify, decay and phase-shift the input signal in any desired way. Our method overcomes limitations of optical manipulation in doped ENZ caused by the interdependent nature of the transmission and reflection, and has potential applications in novel photonic devices.

Graphical abstract

Keywords

photonic doping / non-Hermitian / epsilon-near-zero media / transmission-reflection decoupling

Cite this article

Download citation ▾
Yongxing Wang, Jizi Lin, Ping Xu. Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media. Front. Phys., 2024, 19(3): 33206 https://doi.org/10.1007/s11467-023-1362-7

References

[1]
L. Bao, X. Fu, R. Y. Wu, A. Ma, T. J. Cui. Full-space manipulations of electromagnetic wavefronts at two frequencies by encoding both amplitude and phase of metasurface. Adv. Mater. Technol., 2021, 6(4): 2001032
CrossRef ADS Google scholar
[2]
Z. Li, J. Zhang, J. Liu, L. Liu, X. Wang, M. Premaratne, J. Yao, W. Zhu. Independent manipulation of aperture and radiation fields in a transmission-reflection integrated complex-amplitude metasurface. Adv. Mater. Technol., 2023, 8(6): 2201192
CrossRef ADS Google scholar
[3]
L. Deng, Z. Li, Z. Zhou, Z. He, Y. Zeng, G. Zheng, S. Yu. Bilayer-metasurface design, fabrication, and functionalization for full-space light manipulation. Adv. Opt. Mater., 2022, 10(7): 2102179
CrossRef ADS Google scholar
[4]
T. Cai, G. M. Wang, S. W. Tang, H. X. Xu, J. W. Duan, H. J. Guo, F. X. Guan, S. L. Sun, Q. He, L. Zhou. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces. Phys. Rev. Appl., 2017, 8(3): 034033
CrossRef ADS Google scholar
[5]
C. Zheng, H. Li, J. Li, J. Li, Z. Yue, F. Yang, Y. Zhang, J. Yao. All-dielectric metasurface for polarization selective full-space complex amplitude modulations. Opt. Lett., 2022, 47(17): 4291
CrossRef ADS Google scholar
[6]
G. Li, H. Shi, J. Yi, B. Li, A. Zhang, Z. Xu. Transmission–reflection-integrated metasurfaces design for simultaneous manipulation of phase and amplitude. IEEE Trans. Antenn. Propag., 2022, 70(7): 6072
CrossRef ADS Google scholar
[7]
I. Liberal, N. Engheta. Near-zero refractive index photonics. Nat. Photonics, 2017, 11(3): 149
CrossRef ADS Google scholar
[8]
N. Kinsey, C. DeVault, A. Boltasseva, V. M. Shalaev. Near zero-index materials for photonics. Nat. Rev. Mater., 2019, 4(12): 742
CrossRef ADS Google scholar
[9]
X. Niu, X. Hu, S. Chu, Q. Gong. Epsilon-near-zero photonics: A new platform for integrated devices. Adv. Opt. Mater., 2018, 6(10): 1701292
CrossRef ADS Google scholar
[10]
J. Y. Wu, Z. T. Xie, Y. H. Sha, H. Y. Fu, Q. Li. Epsilon near-zero photonics: Infinite potentials. Photon. Res., 2021, 9(8): 1616
CrossRef ADS Google scholar
[11]
S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, P. Vincent. A metamaterial for directive emission. Phys. Rev. Lett., 2002, 89(21): 213902
CrossRef ADS Google scholar
[12]
J. J. Yang, Y. Francescato, S. A. Maier, F. Mao, M. Huang. Mu and epsilon near zero metamaterials for perfect coherence and new antenna designs. Opt. Express, 2014, 22(8): 9107
CrossRef ADS Google scholar
[13]
A. Alù, M. G. Silveirinha, A. Salandrino, N. Engheta. Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern. Phys. Rev. B, 2007, 75(15): 155410
CrossRef ADS Google scholar
[14]
G. Briere, B. Cluzel, O. Demichel. Improving the transmittance of an epsilon-near-zero-based wavefront shaper. Opt. Lett., 2016, 41(19): 4542
CrossRef ADS Google scholar
[15]
M. Silveirinha, N. Engheta. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett., 2006, 97(15): 157403
CrossRef ADS Google scholar
[16]
J. Luo, Y. Lai. Anisotropic zero-index waveguide with arbitrary shapes. Sci. Rep., 2014, 4(1): 5875
CrossRef ADS Google scholar
[17]
M. M. Sadeghi, H. Nadgaran, H. Y. Chen. Perfect field concentrator using zero index metamaterials and perfect electric conductors. Front. Phys., 2014, 9(1): 90
CrossRef ADS Google scholar
[18]
I. Liberal, A. M. Mahmoud, Y. Li, B. Edwards, N. Engheta. Photonic doping of epsilon-near-zero media. Science, 2017, 355(6329): 1058
CrossRef ADS Google scholar
[19]
M. Silveirinha, N. Engheta. Design of matched zero index metamaterials using nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B, 2007, 75(7): 075119
CrossRef ADS Google scholar
[20]
V. C. Nguyen, L. Chen, K. Halterman. Total transmission and total reflection by zero index metamaterials with defects. Phys. Rev. Lett., 2010, 105(23): 233908
CrossRef ADS Google scholar
[21]
Y. Xu, H. Chen. Total reflection and transmission by epsilon-near-zero metamaterials with defects. Appl. Phys. Lett., 2011, 98(11): 113501
CrossRef ADS Google scholar
[22]
K. Zhang, J. Fu, L. Y. Xiao, Q. Wu, L. W. Li. Total transmission and total reflection of electromagnetic waves by anisotropic epsilon-near-zero metamaterials embedded with dielectric defects. J. Appl. Phys., 2013, 113(8): 084908
CrossRef ADS Google scholar
[23]
Y. Wu, J. Li. Total reflection and cloaking by zero index metamaterials loaded with rectangular dielectric defects. Appl. Phys. Lett., 2013, 102(18): 183105
CrossRef ADS Google scholar
[24]
Y. Huang, J. Li. Total reflection and cloaking by triangular defects embedded in zero index metamaterials. Adv. Appl. Math. Mech., 2015, 7(2): 135
CrossRef ADS Google scholar
[25]
J. Hao, W. Yan, M. Qiu. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett., 2010, 96(10): 101109
CrossRef ADS Google scholar
[26]
J. Luo, P. Xu, L. Gao, Y. Lai, H. Chen. Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects. Plasmonics, 2012, 7(2): 353
CrossRef ADS Google scholar
[27]
T. Wang, J. Luo, L. Gao, P. Xu, Y. Lai. Hiding objects and obtaining Fano resonances in index-near-zero and epsilon-near-zero metamaterials with Bragg-fiber-like defects. J. Opt. Soc. Am. B, 2013, 30(7): 1878
CrossRef ADS Google scholar
[28]
A. M. Mahmoud, N. Engheta. Wave–matter interactions in epsilon-and-mu-near-zero structures. Nat. Commun., 2014, 5(1): 5638
CrossRef ADS Google scholar
[29]
I. Liberal, Y. Li, N. Engheta. Reconfigurable epsilon near-zero metasurfaces via photonic doping. Nanophotonics, 2018, 7(6): 1117
CrossRef ADS Google scholar
[30]
L. Zhao, Y. Feng, B. Zhu, J. Zhao. Electromagnetic properties of magnetic epsilon-near-zero medium with dielectric dopants. Opt. Express, 2019, 27(14): 20073
CrossRef ADS Google scholar
[31]
I. Liberal, M. Lobet, Y. Li, N. Engheta. Near-zero index media as electromagnetic ideal fluids. Proc. Natl. Acad. Sci. USA, 2020, 117(39): 24050
CrossRef ADS Google scholar
[32]
Z. Zhou, Y. Li, E. Nahvi, H. Li, Y. He, I. Liberal, N. Engheta. General impedance matching via doped epsilon-near-zero media. Phys. Rev. Appl., 2020, 13(3): 034005
CrossRef ADS Google scholar
[33]
Z. Zhou, Y. Li, H. Li, W. Sun, I. Liberal, N. Engheta. Substrate-integrated photonic doping for near-zero-index devices. Nat. Commun., 2019, 10(1): 4132
CrossRef ADS Google scholar
[34]
Z. H. Zhou, H. Li, W. Y. Sun, Y. J. He, I. Liberal, N. Engheta, Z. H. Feng, Y. Li. Dispersion coding of ENZ media via multiple photonic dopants. Light Sci. Appl., 2022, 11(1): 207
CrossRef ADS Google scholar
[35]
E. Nahvi, M. J. Mencagli, N. Engheta. Tunable radiation enhancement and suppression using a pair of photonically doped epsilon-near-zero (ENZ) slabs. Opt. Lett., 2022, 47(6): 1319
CrossRef ADS Google scholar
[36]
Y. X. Wang, P. Xu. Spatial heterogeneity of the doping mode: A potential optical reconfiguration freedom of photonic doping epsilon-near-zero media. Opt. Mater., 2023, 135: 113300
CrossRef ADS Google scholar
[37]
Y.LiZ.H. Zhou Y.J. HeH. Li, Epsilon-Near-Zero Metamaterials, Cambridge University Press, Cambridge, 2021
[38]
Z. H. Zhou, Y. Li. N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials. IEEE Trans. Microw. Theory Tech., 2021, 69(3): 1529
CrossRef ADS Google scholar
[39]
H. Li, Z. Zhou, Y. He, W. Sun, Y. Li, I. Liberal, N. Engheta. Geometry-independent antenna based on epsilon-near-zero medium. Nat. Commun., 2022, 13(1): 3568
CrossRef ADS Google scholar
[40]
H. Li, P. Fu, Z. Zhou, W. Sun, Y. Li, J. Wu, Q. Dai. Performing calculus with epsilon-near zero metamaterials. Sci. Adv., 2022, 8(30): eabq6198
CrossRef ADS Google scholar
[41]
M. Coppolaro, M. Moccia, G. Castaldi, N. Engheta, V. Galdi. Non-Hermitian doping of epsilon-near-zero media. Proc. Natl. Acad. Sci. USA, 2020, 117(25): 13921
CrossRef ADS Google scholar
[42]
Y. Y. Fu, X. J. Zhang, Y. D. Xu, H. Y. Chen. Design of zero index metamaterials with PT symmetry using epsilon near-zero media with defects. J. Appl. Phys., 2017, 121(9): 094503
CrossRef ADS Google scholar
[43]
J. Luo, B. Liu, Z. H. Hang, Y. Lai. coherent perfect absorption via photonic doping of zero-index media. Laser Photonics Rev., 2018, 12(8): 1800001
CrossRef ADS Google scholar
[44]
D. Wang, J. Luo, Z. Sun, Y. Lai. Transforming zero index media into geometry-invariant coherent perfect absorbers via embedded conductive films. Opt. Express, 2021, 29(4): 5247
CrossRef ADS Google scholar
[45]
B. Y. Jin, C. Argyropoulos. Nonreciprocal transmission in nonlinear PT-symmetric metamaterials using epsilon-near-zero media doped with defects. Adv. Opt. Mater., 2019, 7(23): 1901083
CrossRef ADS Google scholar
[46]
P. Bai, K. Ding, G. Wang, J. Luo, Z. Q. Zhang, C. T. Chan, Y. Wu, Y. Lai. Simultaneous realization of a coherent perfect absorber and laser by zero index media with both gain and loss. Phys. Rev. A, 2016, 94(6): 063841
CrossRef ADS Google scholar
[47]
Y. Y. Fu, Y. D. Xu, H. Y. Chen. Zero index metamaterials with PT symmetry in a waveguide system. Opt. Express, 2016, 24(2): 1648
CrossRef ADS Google scholar
[48]
Y. D. Chong, L. Ge, A. D. Stone. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett., 2011, 106(9): 093902
CrossRef ADS Google scholar
[49]
L. S. Li, J. Zhang, C. Wang, N. Zheng, H. Yin. Optical bound states in the continuum in a single slab with zero refractive index. Phys. Rev. A, 2017, 96(1): 013801
CrossRef ADS Google scholar
[50]
Y. Y. Fu, Y. D. Xu, H. Y. Chen. Negative refraction based on purely imaginary metamaterials. Front. Phys., 2018, 13(4): 134206
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 12104191 and 11204195), the Natural Science Research of Jiangsu Higher Education Institutions of China (No. 21KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(8191 KB)

Accesses

Citations

Detail

Sections
Recommended

/