Classification of spin Hall effect in two-dimensional systems
Longjun Xiang, Fuming Xu, Luyang Wang, Jian Wang
Classification of spin Hall effect in two-dimensional systems
Physical properties such as the conductivity are usually classified according to the symmetry of the underlying system using Neumann’s principle, which gives an upper bound for the number of independent components of the corresponding property tensor. However, for a given Hamiltonian, this global approach usually can not give a definite answer on whether a physical effect such as spin Hall effect (SHE) exists or not. It is found that the parity and types of spin-orbit interactions (SOIs) are good indicators that can further reduce the number of independent components of the spin Hall conductivity for a specific system. In terms of the parity as well as various Rashba-like and Dresselhaus-like SOIs, we propose a local approach to classify SHE in two-dimensional (2D) two-band models, where sufficient conditions for identifying the existence or absence of SHE in all 2D magnetic point groups are presented.
spin Hall effect / symmetry / two-dimensional system
[1] |
D. Xiao, M. C. Chang, Q. Niu. Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef
ADS
Google scholar
|
[2] |
Y. Gao. Semiclassical dynamics and nonlinear charge current. Front. Phys., 2019, 14(3): 33404
CrossRef
ADS
Google scholar
|
[3] |
K. von Klitzing. The quantized Hall effect. Rev. Mod. Phys., 1986, 58(3): 519
CrossRef
ADS
Google scholar
|
[4] |
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, N. P. Ong. Anomalous Hall effect. Rev. Mod. Phys., 2010, 82(2): 1539
CrossRef
ADS
Google scholar
|
[5] |
I. Sodemann, L. Fu. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett., 2015, 115(21): 216806
CrossRef
ADS
Google scholar
|
[6] |
T. Low, Y. Jiang, F. Guinea. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B, 2015, 92(23): 235447
CrossRef
ADS
Google scholar
|
[7] |
Z. Z. Du, H. Z. Lu, X. C. Xie. Nonlinear Hall effects. Nat. Rev. Phys., 2021, 3(11): 744
CrossRef
ADS
Google scholar
|
[8] |
S. Lai, H. Liu, Z. Zhang, J. Zhao, X. Feng, N. Wang, C. Tang, Y. Liu, K. S. Novoselov, S. A. Yang, W. Gao. Third-order nonlinear Hall effect induced by the Berry-connection polarizability tensor. Nat. Nanotechnol., 2021, 16(8): 869
CrossRef
ADS
Google scholar
|
[9] |
M. Wei, B. Wang, Y. Yu, F. Xu, J. Wang. Nonlinear Hall effect induced by internal Coulomb interaction and phase relaxation process in a four-terminal system with time-reversal symmetry. Phys. Rev. B, 2022, 105(11): 115411
CrossRef
ADS
Google scholar
|
[10] |
M. Wei, L. Xiang, L. Wang, F. Xu, J. Wang. Quantum third-order nonlinear Hall effect of a four-terminal device with time-reversal symmetry. Phys. Rev. B, 2022, 106(3): 035307
CrossRef
ADS
Google scholar
|
[11] |
C. P. Zhang, X. J. Gao, Y. M. Xie, H. C. Po, K. T. Law. Higher-order nonlinear anomalous Hall effects induced by Berry curvature multipoles. Phys. Rev. B, 2023, 107(11): 115142
CrossRef
ADS
Google scholar
|
[12] |
C. Wang, Y. Gao, D. Xiao. Intrinsic nonlinear Hall effect in antiferromagnetic tetragonal CuMnAs. Phys. Rev. Lett., 2021, 127(27): 277201
CrossRef
ADS
Google scholar
|
[13] |
H. Y. Liu, J. Z. Zhao, Y. X. Huang, W. K. Wu, X. L. Sheng, C. Xiao, S. Y. A. Yang. Intrinsic second-order anomalous Hall effect and its application in compensated antiferromagnets. Phys. Rev. Lett., 2021, 127(27): 277202
CrossRef
ADS
Google scholar
|
[14] |
A. Gao, Y. F. Liu, J. X. Qiu, B. Ghosh, T. V. Trevisan, Y. Onishi, C. Hu, T. Qian, H. J. Tien, S. W. Chen, M. Huang, D. Bérubé, H. Li, C. Tzschaschel, T. Dinh, Z. Sun, S. C. Ho, S. W. Lien, B. Singh, K. Watanabe, T. Taniguchi, D. C. Bell, H. Lin, T. R. Chang, C. R. Du, A. Bansil, L. Fu, N. Ni, P. P. Orth, Q. Ma, S. Y. Xu. Quantum metric nonlinear Hall effect in a topological antiferromagnetic heterostructure. Science, 2023, 381(6654): 181
CrossRef
ADS
Google scholar
|
[15] |
L. Xiang, C. Zhang, L. Wang, J. Wang. Third-order intrinsic anomalous Hall effect with generalized semiclassical theory. Phys. Rev. B, 2023, 107(7): 075411
CrossRef
ADS
Google scholar
|
[16] |
M. Wei, L. Wang, B. Wang, L. Xiang, F. Xu, B. Wang, J. Wang. Quantum fluctuation of the quantum geometric tensor and its manifestation as intrinsic Hall signatures in time-reversal invariant systems. Phys. Rev. Lett., 2023, 130(3): 036202
CrossRef
ADS
Google scholar
|
[17] |
L. Shi, H. Z. Lu. Quantum transport in topological semimetals under magnetic fields (III). Front. Phys., 2023, 18(2): 21307
CrossRef
ADS
Google scholar
|
[18] |
L. B. Altshuler. Fluctuations in the extrinsic conductivity of disordered conductors. JETP Lett., 1985, 41: 648
|
[19] |
P. A. Lee, A. D. Stone. Universal conductance fluctuations in metals. Phys. Rev. Lett., 1985, 55(15): 1622
CrossRef
ADS
Google scholar
|
[20] |
P. A. Lee, A. D. Stone, H. Fukuyama. Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys. Rev. B, 1987, 35(3): 1039
CrossRef
ADS
Google scholar
|
[21] |
C. W. J. Beenakker. Random-matrix theory of quantum transport. Rev. Mod. Phys., 1997, 69(3): 731
CrossRef
ADS
Google scholar
|
[22] |
Y. L. Han, Z. H. Qiao. Universal conductance fluctuations in Sierpinski carpets. Front. Phys., 2019, 14(6): 63603
CrossRef
ADS
Google scholar
|
[23] |
S. Ryu, A. Schnyder, A. Furusaki, A. Ludwig. Topological insulators and superconductors: Tenfold way and dimensional hierarchy. New J. Phys., 2010, 12(6): 065010
CrossRef
ADS
Google scholar
|
[24] |
C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, S. Ryu. Classification of topological quantum matter with symmetries. Rev. Mod. Phys., 2016, 88(3): 035005
CrossRef
ADS
Google scholar
|
[25] |
R. C. Xiao, Y. J. Jin, H. Jiang. Spin photovoltaic effect in antiferromagnetic materials: Mechanisms, symmetry constraints, and recent progress. APL Mater., 2023, 11(7): 070903
CrossRef
ADS
Google scholar
|
[26] |
X. L. Qi, S. C. Zhang. Topological insulators and superconductors. Rev. Mod. Phys., 2011, 83(4): 1057
CrossRef
ADS
Google scholar
|
[27] |
B.A. Bernevig, Topological Insulators and Topological Superconductors, Princeton University Press, New Jersey, 2013
|
[28] |
J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, T. Jungwirth. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
CrossRef
ADS
Google scholar
|
[29] |
J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, A. H. MacDonald. Universal intrinsic spin Hall effect. Phys. Rev. Lett., 2004, 92(12): 126603
CrossRef
ADS
Google scholar
|
[30] |
Y. Yang, Z. Xu, L. Sheng, B. Wang, D. Y. Xing, D. N. Sheng. Time-reversal-symmetry-broken quantum spin Hall effect. Phys. Rev. Lett., 2011, 107(6): 066602
CrossRef
ADS
Google scholar
|
[31] |
Y. Sun, Y. Zhang, C. Felser, B. Yan. Strong intrinsic spin Hall effect in the TaAs family of Weyl semimetals. Phys. Rev. Lett., 2016, 117(14): 146403
CrossRef
ADS
Google scholar
|
[32] |
H. J. Zhao, H. Nakamura, R. Arras, C. Paillard, P. Chen, J. Gosteau, X. Li, Y. R. Yang, L. Bellaiche. Purely cubic spin splittings with persistent spin textures. Phys. Rev. Lett., 2020, 125(21): 216405
CrossRef
ADS
Google scholar
|
[33] |
I. A. Nechaev, E. E. Krasovskii. Spin polarization by first-principles relativistic k⋅p theory: Application to the surface alloys PbAg2 and BiAg2. Phys. Rev. B, 2019, 100(11): 115432
CrossRef
ADS
Google scholar
|
[34] |
P. Höpfner, J. Schafer, A. Fleszar, J. H. Dil, B. Slomski, F. Meier, C. Loho, C. Blumenstein, L. Patthey, W. Hanke, R. Claessen. Three-dimensional spin rotations at the Fermi surface of a strongly spin‒orbit coupled surface system. Phys. Rev. Lett., 2012, 108(18): 186801
CrossRef
ADS
Google scholar
|
[35] |
J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, T. Jungwirth. Spin Hall effects. Rev. Mod. Phys., 2015, 87(4): 1213
CrossRef
ADS
Google scholar
|
[36] |
J. Wunderlich, B. Kaestner, J. Sinova, T. Jungwirth. Experimental observation of the spin-Hall effect in a two-dimensional spin‒orbit coupled semiconductor system. Phys. Rev. Lett., 2005, 94(4): 047204
CrossRef
ADS
Google scholar
|
[37] |
E. Saitoh, M. Ueda, H. Miyajima, G. Tatara. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett., 2006, 88(18): 182509
CrossRef
ADS
Google scholar
|
[38] |
J. Schliemann, D. Loss. Spin-Hall transport of heavy holes in III‒V semiconductor quantum wells. Phys. Rev. B, 2005, 71(8): 085308
CrossRef
ADS
Google scholar
|
[39] |
C. M. Acosta, A. Fazzio. Spin-polarization control driven by a Rashba-type effect breaking the mirror symmetry in two-dimensional dual topological insulators. Phys. Rev. Lett., 2019, 122(3): 036401
CrossRef
ADS
Google scholar
|
[40] |
S. D. Stolwijk, K. Sakamoto, A. B. Schmidt, P. Kruger, M. Donath. Spin texture with a twist in momentum space for Tl/Si(111). Phys. Rev. B, 2015, 91(24): 245420
CrossRef
ADS
Google scholar
|
[41] |
L. Fu. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3. Phys. Rev. Lett., 2009, 103(26): 266801
CrossRef
ADS
Google scholar
|
[42] |
S. Vajna, E. Simon, A. Szilva, K. Palotas, B. Ujfalussy, L. Szunyogh. Higher-order contributions to the Rashba‒Bychkov effect with application to the Bi/Ag(111) surface alloy. Phys. Rev. B, 2012, 85(7): 075404
CrossRef
ADS
Google scholar
|
[43] |
M. Michiardi, M. Bianchi, M. Dendzik, J. A. Miwa, M. Hoesch, T. K. Kim, P. Matzen, J. L. Mi, M. Bremholm, B. B. Iversen, P. Hofmann. Strongly anisotropic spin‒orbit splitting in a two-dimensional electron gas. Phys. Rev. B, 2015, 91(3): 035445
CrossRef
ADS
Google scholar
|
[44] |
S. Bandyopadhyay, A. Paul, I. Dasgupta. Origin of Rashba‒Dresselhaus effect in the ferroelectric nitride perovskite LaWN3. Phys. Rev. B, 2020, 101(1): 014109
CrossRef
ADS
Google scholar
|
[45] |
M. S. Bahramy, B. J. Yang, R. Arita, N. Nagaosa. Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure. Nat. Commun., 2012, 3(1): 679
CrossRef
ADS
Google scholar
|
[46] |
R. Moriya, K. Sawano, Y. Hoshi, S. Masubuchi, Y. Shiraki, A. Wild, C. Neumann, G. Abstreiter, D. Bougeard, T. Koga, T. Machida. Cubic Rashba spin‒orbit interaction of a two-dimensional hole gas in a strained-Ge/SiGe quantum well. Phys. Rev. Lett., 2014, 113(8): 086601
CrossRef
ADS
Google scholar
|
[47] |
L. G. Gerchikov, A. V. Subashiev. Spin splitting of size-quantization subbands in asymmetric heterostructures. Sov. Phys. Semicond., 1992, 26: 73
|
[48] |
O. Bleibaum, S. Wachsmuth. Spin Hall effect in semiconductor heterostructures with cubic Rashba spin‒orbit interaction. Phys. Rev. B, 2006, 74(19): 195330
CrossRef
ADS
Google scholar
|
[49] |
K. V. Shanavas. Theoretical study of the cubic Rashba effect at the SrTiO3 (001) surfaces. Phys. Rev. B, 2016, 93(4): 045108
CrossRef
ADS
Google scholar
|
[50] |
R. Arras, J. Gosteau, H. J. Zhao, C. Paillard, Y. Yang, L. Bellaiche. Rashba-like spin‒orbit and strain effects in tetragonal PbTiO3. Phys. Rev. B, 2019, 100(17): 174415
CrossRef
ADS
Google scholar
|
[51] |
L. G. D. da Silveira, P. Barone, S. Picozzi. Rashba‒Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B, 2016, 93(24): 245159
CrossRef
ADS
Google scholar
|
[52] |
D. C. Marinescu. Cubic Dresselhaus interaction parameter from quantum corrections to the conductivity in the presence of an in-plane magnetic field. Phys. Rev. B, 2017, 96(11): 115109
CrossRef
ADS
Google scholar
|
[53] |
M. Glazov, A. Kavokin. Spin Hall effect for electrons and excitons. J. Lumin., 2007, 125(1−2): 118
CrossRef
ADS
Google scholar
|
[54] |
M. Seemann, D. Kodderitzsch, S. Wimmer, H. Ebert. Symmetry-imposed shape of linear response tensors. Phys. Rev. B, 2015, 92(15): 155138
CrossRef
ADS
Google scholar
|
[55] |
S. V. Gallego, J. Etxebarria, L. Elcoro, E. S. Tasci, J. M. Perez-Mato. Automatic calculation of symmetry-adapted tensors in magnetic and non-magnetic materials: A new tool of the Bilbao crystallographic server. Acta Crystallogr. A Found. Adv., 2019, 75(3): 438
CrossRef
ADS
Google scholar
|
[56] |
Y. J. Lin, K. Jiménez-García, I. B. Spielman. Spin–orbit-coupled Bose–Einstein condensates. Nature, 2011, 471(7336): 83
CrossRef
ADS
Google scholar
|
[57] |
G. Orso. Anderson transition of cold atoms with synthetic spin‒orbit coupling in two-dimensional speckle potentials. Phys. Rev. Lett., 2017, 118(10): 105301
CrossRef
ADS
Google scholar
|
[58] |
H. Zhai. Spin‒orbit coupled quantum gases. Int. J. Mod. Phys. B, 2012, 26(1): 1230001
CrossRef
ADS
Google scholar
|
[59] |
H. Yuan, M. S. Bahramy, K. Morimoto, S. Wu, K. Nomura, B. J. Yang, H. Shimotani, R. Suzuki, M. Toh, C. Kloc, X. Xu, R. Arita, N. Nagaosa, Y. Iwasa. Zeeman-type spin splitting controlled by an electric field. Nat. Phys., 2013, 9(9): 563
CrossRef
ADS
Google scholar
|
[60] |
The suppression of linear Rashba SOI was discussed in Ref. [49]. A transition from the cubic Rashba effect to the coexistence of linear and cubic Rashba effects was observed experimentally in oxide heterostructures [61]. For heavy holes in III−V semiconductor quantum wells, the linear Rashba SOI can be absent making the cubic SOI as the leading order [38, 62, 63].
|
[61] |
W. Lin, L. Li, F. Dŏgan, C. Li, H. Rotella, X. Yu, B. Zhang, Y. Li, W. S. Lew, S. Wang, W. Prellier, S. J. Pennycook, J. Chen, Z. Zhong, A. Manchon, T. Wu. Interface-based tuning of Rashba spin‒orbit interaction in asymmetric oxide heterostructures with 3d electrons. Nat. Commun., 2019, 10(1): 3052
CrossRef
ADS
Google scholar
|
[62] |
R. Winkler, H. Noh, E. Tutuc, M. Shayegan. Anomalous Rashba spin splitting in two-dimensional hole systems. Phys. Rev. B, 2002, 65(15): 155303
CrossRef
ADS
Google scholar
|
[63] |
K. Nomura, J. Wunderlich, J. Sinova, B. Kaestner, A. H. Mac-Donald, T. Jungwirth. Edge-spin accumulation in semiconductor two-dimensional hole gases. Phys. Rev. B, 2005, 72(24): 245330
CrossRef
ADS
Google scholar
|
[64] |
Y. K. Kato, R. C. Myers, A. C. Gossard, D. D. Awschalom. Observation of the spin Hall effect in semiconductors. Science, 2004, 306(5703): 1910
CrossRef
ADS
Google scholar
|
[65] |
S. Basak, H. Lin, L. A. Wray, S. Y. Xu, L. Fu, M. Z. Hasan, A. Bansil. Spin texture on the warped Dirac-cone surface states in topological insulators. Phys. Rev. B, 2011, 84: 121401(R)
CrossRef
ADS
Google scholar
|
[66] |
D. L. Campbell, G. Juzeliunas, I. B. Spielman. Realistic Rashba and Dresselhaus spin‒orbit coupling for neutral atoms. Phys. Rev. A, 2011, 84(2): 025602
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |