Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED

Chui-Ping Yang, Jia-Heng Ni, Liang Bin, Yu Zhang, Yang Yu, Qi-Ping Su

PDF(4538 KB)
PDF(4538 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 31201. DOI: 10.1007/s11467-023-1357-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED

Author information +
History +

Abstract

In recent years, cat-state encoding and high-dimensional entanglement have attracted much attention. However, previous works are limited to generation of entangled states of cat-state qubits (two-dimensional entanglement with cat-state encoding), while how to prepare entangled states of cat-state qutrits or qudits (high-dimensional entanglement with cat-state encoding) has not been investigated. We here propose to generate a maximally-entangled state of multiple cat-state qutrits (three-dimensional entanglement by cat-state encoding) in circuit QED. The entangled state is prepared with multiple microwave cavities coupled to a superconducting flux ququart (a four-level quantum system). This proposal operates essentially by the cavity-qutrit dispersive interaction. The circuit hardware resource is minimized because only a coupler ququart is employed. The higher intermediate level of the ququart is occupied only for a short time, thereby decoherence from this level is greatly suppressed during the state preparation. Remarkably, the state preparation time does not depend on the number of the qutrits, thus it does not increase with the number of the qutrits. As an example, our numerical simulations demonstrate that, with the present circuit QED technology, the high-fidelity preparation is feasible for a maximally-entangled state of two cat-state qutrits. Furthermore, we numerically analyze the effect of the inter-cavity crosstalk on the scalability of this proposal. This proposal is universal and can be extended to accomplish the same task with multiple microwave or optical cavities coupled to a natural or artificial four-level atom.

Graphical abstract

Keywords

maximally-entangled states / cat state / qutrit / circuit QED

Cite this article

Download citation ▾
Chui-Ping Yang, Jia-Heng Ni, Liang Bin, Yu Zhang, Yang Yu, Qi-Ping Su. Preparation of maximally-entangled states with multiple cat-state qutrits in circuit QED. Front. Phys., 2024, 19(3): 31201 https://doi.org/10.1007/s11467-023-1357-4

References

[1]
P.W. Show, in: S. Goldwasser (Ed.), Proceedings of the 35th Annual Symposium on FOCS, IEEE Comput. Soc. Press, Los Alamitos, 1994, p. 124
[2]
L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
CrossRef ADS Google scholar
[3]
A. Steane. Quantum computing. Rep. Prog. Phys., 1998, 61(2): 117
CrossRef ADS Google scholar
[4]
N. J. Cerf, M. Bourennane, A. Karlsson, N. Gisin. Security of quantum key distribution using D-level systems. Phys. Rev. Lett., 2002, 88(12): 127902
CrossRef ADS Google scholar
[5]
B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, A. G. White. Simplifying quantum logic using higher dimensional Hilbert spaces. Nat. Phys., 2009, 5(2): 134
CrossRef ADS Google scholar
[6]
F. Xu, J. H. Shapiro, F. N. C. Wong. Experimental fast quantum random number generation using high dimensional entanglement with entropy monitoring. Optica, 2016, 3(11): 1266
CrossRef ADS Google scholar
[7]
X. M. Hu, J. S. Chen, B. H. Liu, Y. Guo, Y. F. Huang, Z. Q. Zhou, Y. J. Han, C. F. Li, G. C. Guo. Experimental test of compatibility-loophole-free contextuality with spatially separated entangled qutrits. Phys. Rev. Lett., 2016, 117(17): 170403
CrossRef ADS Google scholar
[8]
A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, E. Andersson. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat. Phys., 2011, 7(9): 677
CrossRef ADS Google scholar
[9]
M. Krenn, M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, A. Zeilinger. Generation and confirmation of a (100×100)-dimensional entangled quantum system. Proc. Natl. Acad. Sci. USA, 2014, 111(17): 6243
CrossRef ADS Google scholar
[10]
Y. Zhang, F. S. Roux, T. Konrad, M. Agnew, J. Leach, A. Forbes. Engineering two-photon high-dimensional states through quantum interference. Sci. Adv., 2016, 2(2): e1501165
CrossRef ADS Google scholar
[11]
H. de Riedmatten, I. Marcikic, H. Zbinden, N. Gisin. Creating high-dimensional time-bin entanglement using mode locked lasers. Quantum Inf. Comput., 2002, 2(6): 425
CrossRef ADS Google scholar
[12]
T. Ikuta, H. Takesue. Enhanced violation of the Collins–Gisin–Linden–Massar–Popescu inequality with optimized time-bin-entangled ququarts. Phys. Rev. A, 2016, 93(2): 022307
CrossRef ADS Google scholar
[13]
Z. Xie, T. Zhong, S. Shrestha, X. Xu, J. Liang, Y. X. Gong, J. C. Bienfang, A. Restelli, J. H. Shapiro, F. N. C. Wong, C. W. Wong. Harnessing high-dimensional hyper-entanglement through a biphoton frequency comb. Nat. Photonics, 2015, 9(8): 536
CrossRef ADS Google scholar
[14]
M. Kues, C. Reimer, P. Roztocki, L. R. Cort’es, S. Sciara, B. Wetzel, Y. Zhang, A. Cino, S. T. Chu, B. E. Little, D. J. Moss, L. Caspani, J. Azaña, R. Morandotti. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546(7660): 622
CrossRef ADS Google scholar
[15]
P.ImanyJ. A. Jaramillo-VillegasO.D. Odele K.HanD. E. LeairdJ.M. LukensP.LougovskiM.Qi A.M. Weiner, 50-GHz-spaced comb of high-dimensional frequency-bin entangled photons from an on-chip silicon nitride microresonator., Opt. Express 26(2), 1825 (2018)
[16]
C. Schaeff, R. Polster, R. Lapkiewicz, R. Fickler, S. Ramelow, A. Zeilinger. Scalable fiber integrated source for higher dimensional path-entangled photonic quNits. Opt. Express, 2012, 20(15): 16145
CrossRef ADS Google scholar
[17]
C. Schaeff, R. Polster, M. Huber, S. Ramelow, A. Zeilinger. Experimental access to higher-dimensional entangled quantum systems using integrated optics. Optica, 2015, 2(6): 523
CrossRef ADS Google scholar
[18]
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature, 2016, 536(7617): 441
CrossRef ADS Google scholar
[19]
J. Q. Liao, J. F. Huang, L. Tian. Generation of macroscopic Schrödinger-cat states in qubit-oscillator systems. Phys. Rev. A, 2016, 93(3): 033853
CrossRef ADS Google scholar
[20]
T. Hatomura. Shortcuts to adiabatic cat-state generation in bosonic Josephson junctions. New J. Phys., 2018, 20(1): 015010
CrossRef ADS Google scholar
[21]
Y. H. Chen, W. Qin, X. Wang, A. Miranowicz, F. Nori. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126(2): 023602
CrossRef ADS Google scholar
[22]
S. Liu, Y. H. Chen, Y. Wang, Y. H. Kang, Z. C. Shi, J. Song, Y. Xia. Generation of cat states by a weak parametric drive and a transitionless tracking algorithm. Phys. Rev. A, 2022, 106(4): 042430
CrossRef ADS Google scholar
[23]
C. P. Yang, Z. F. Zheng. Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED. Opt. Lett., 2018, 43(20): 5126
CrossRef ADS Google scholar
[24]
Y. Zhang, T. Liu, Y. Yu, C. P. Yang. Preparation of entangled W states with cat-state qubits in circuit QED. Quantum Inform. Process., 2020, 19(8): 218
CrossRef ADS Google scholar
[25]
Y.-H. Chen, W. Qin, X. Wang, A. Miranowicz, F. Nori. Shortcuts to adiabaticity for the quantum Rabi model: Efficient generation of giant entangled cat states via parametric amplification. Phys. Rev. Lett., 2021, 126: 023602
CrossRef ADS Google scholar
[26]
Y.-H. Chen, R. Stassi, W. Qin, A. Miranowicz, F. Nori. Fault-tolerant multiqubit geometric entangling gates using photonic cat-state qubits. Phys. Rev. Applied, 2022, 18: 024076
CrossRef ADS Google scholar
[27]
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, M. H. Devoret. Dynamically protected cat-qubits: A new paradigm for universal quantum compuation. New J. Phys., 2014, 16(4): 045014
CrossRef ADS Google scholar
[28]
S. E. Nigg. Deterministic Hadamard gate for microwave cat-state qubits in circuit QED. Phys. Rev. A, 2014, 89(2): 022340
CrossRef ADS Google scholar
[29]
Y. H. Kang, Y. H. Chen, X. Wang, J. Song, Y. Xia, A. Miranowicz, S. B. Zheng, F. Nori. Nonadiabatic geometric quantum computation with cat-state qubits via invariant-based reverse engineering. Phys. Rev. Res., 2022, 4(1): 013233
CrossRef ADS Google scholar
[30]
C. P. Yang, Q. P. Su, S. B. Zheng, F. Nori, S. Han. Entangling two oscillators with arbitrary asymmetric initial states. Phys. Rev. A, 2017, 95(5): 052341
CrossRef ADS Google scholar
[31]
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, C. P. Yang. Universal controlled-phase gate with cat-state qubits in circuit QED. Phys. Rev. A, 2017, 96(5): 052317
CrossRef ADS Google scholar
[32]
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, C. P. Yang. One step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED. Front. Phys., 2019, 14(2): 21602
CrossRef ADS Google scholar
[33]
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, R. J. Schoelkopf. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun., 2017, 8(1): 94
CrossRef ADS Google scholar
[34]
A. Grimm, N. E. Frattini, S. Puri, S. O. Mundhada, S. Touzard, M. Mirrahimi, S. M. Girvin, S. Shankar, M. H. Devoret. Stabilization and operation of a Kerr-cat qubit. Nature, 2020, 584(7820): 205
CrossRef ADS Google scholar
[35]
C.WangY. Y. GaoP.ReinholdR.W. HeeresN.Ofek K.ChouC. AxlineM.ReagorJ.BlumoffK.M. Sliwa L.FrunzioS. M. GirvinL.JiangM.MirrahimiM.H. DevoretR.J. Schoelkopf, A Schrodinger cat living in two boxes, Science 352(6289), 1087 (2016)
[36]
Z.WangZ. BaoY.WuY.LiW.Cai W.WangY. MaT.CaiX.HanJ.Wang Y.SongL. SunH.ZhangL.Duan, A flying Schrödinger’s cat in multipartite entangled states, Sci. Adv. 8, eabn1778 (2022)
[37]
C. P. Yang, S. I. Chu, S. Han. Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED. Phys. Rev. A, 2003, 67(4): 042311
CrossRef ADS Google scholar
[38]
J. Q. You, F. Nori. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B, 2003, 68(6): 064509
CrossRef ADS Google scholar
[39]
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, R. J. Schoelkopf. Cavity quantum electro-dynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A, 2004, 69(6): 062320
CrossRef ADS Google scholar
[40]
J. Q. You, F. Nori. Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
CrossRef ADS Google scholar
[41]
I. Buluta, S. Ashhab, F. Nori. Natural and artificial atoms for quantum computation. Rep. Prog. Phys., 2011, 74(10): 104401
CrossRef ADS Google scholar
[42]
Z. L. Xiang, S. Ashhab, J. Q. You, F. Nori. Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys., 2013, 85(2): 623
CrossRef ADS Google scholar
[43]
X.GuA.F. KockumA.MiranowiczY.X. LiuF.Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
[44]
A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, A. Vrajitoarea, S. Sussman, G. Cheng, T. Madhavan, H. K. Babla, X. H. Le, Y. Gang, B. Jäck, A. Gyenis, N. Yao, R. J. Cava, N. P. de Leon, A. A. Houck. New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds. Nat. Commun., 2021, 12(1): 1779
CrossRef ADS Google scholar
[45]
S.KonoJ. PanM.ChegnizadehX.WangA.YoussefifiM.ScigliuzzoT.J. Kippenberg, Mechanically induced correlated errors on superconducting qubits with relaxation times exceeding 0.4 milliseconds, arXiv: 2305.02591 (2023)
[46]
C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X. Liang, T. Su, C. Yang. . Towards practical quantum computers transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Inf., 2022, 8: 3
CrossRef ADS Google scholar
[47]
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, W. D. Oliver. The flux qubit revisited to enhance coherence and reproducibility. Nat. Commun., 2016, 7(1): 12964
CrossRef ADS Google scholar
[48]
A.SomoroffQ. FicheuxR.A. MenciaH.N. XiongR.Kuzmin V.E. Manucharyan, Millisecond coherence in a superconducting qubit, Phys. Rev. Lett. 130, 267001 (2023)
[49]
M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wenner, J. M. Martinis, A. N. Cleland. Synthesizing arbitrary quantum states in a superconducting resonator. Nature, 2009, 459(7246): 546
CrossRef ADS Google scholar
[50]
H. Wang, M. Hofheinz, J. Wenner, M. Ansmann, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, A. N. Cleland, J. M. Martinis. Improving the coherence time of superconducting coplanar resonators. Appl. Phys. Lett., 2009, 95(23): 233508
CrossRef ADS Google scholar
[51]
M. H. Devoret, R. J. Schoelkopf. Superconducting circuits for quantum information: An outlook. Science, 2013, 339(6124): 1169
CrossRef ADS Google scholar
[52]
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, A. Wallraff. Using sideband transitions for two-qubit operations in superconducting circuits. Phys. Rev. B, 2009, 79(18): 180511
CrossRef ADS Google scholar
[53]
M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’Connell, H. Wang, A. N. Cleland, J. M. Martinis. Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state. Nat. Phys., 2008, 4(7): 523
CrossRef ADS Google scholar
[54]
S. B. Zheng, G. C. Guo. Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett., 2000, 85(11): 2392
CrossRef ADS Google scholar
[55]
A. Sørensen, K. Mølmer. Quantum computation with ions in thermal motion. Phys. Rev. Lett., 1999, 82(9): 1971
CrossRef ADS Google scholar
[56]
D. F. V. James, J. Jerke. Effective Hamiltonian theory and its applications in quantum information. Can. J. Phys., 2007, 85(6): 625
CrossRef ADS Google scholar
[57]
G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, R. J. Schoelkopf. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature, 2013, 495(7440): 205
CrossRef ADS Google scholar
[58]
B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science, 2013, 342(6158): 607
CrossRef ADS Google scholar
[59]
L. Sun, A. Petrenko, Z. Leghtas, B. Vlastakis, G. Kirchmair, K. M. Sliwa, A. Narla, M. Hatridge, S. Shankar, J. Blumoff, L. Frunzio, M. Mirrahimi, M. H. Devoret, R. J. Schoelkopf. Tracking photon jumps with repeated quantum non demolition parity measurements. Nature, 2014, 511(7510): 444
CrossRef ADS Google scholar
[60]
B. Vlastakis, A. Petrenko, N. Ofek, L. Sun, Z. Leghtas, K. Sliwa, Y. Liu, M. Hatridge, J. Blumoff, L. Frunzio, M. Mirrahimi, L. Jiang, M. H. Devoret, R. J. Schoelkopf. Characterizing entanglement of an artificial atom and a cavity cat state with Bell’s inequality. Nat. Commun., 2015, 6(1): 8970
CrossRef ADS Google scholar
[61]
O.MilulB. GuttelU.GoldblattS.HazanovL.M. Joshi D.ChausovskyN.KahnE.ÇiftyürekF.LafontS.Rosenblum, A superconducting quantum memory with tens of milliseconds coherence time, arXiv: 2302.06442 (2023)
[62]
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, P. Delsing. Tuning the field in a microwave resonator faster than the photon lifetime. Appl. Phys. Lett., 2008, 92(20): 203501
CrossRef ADS Google scholar
[63]
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, Q. W. Xie. Quantum state characterization of a fast tunable superconducting resonator. Appl. Phys. Lett., 2013, 102(16): 163503
CrossRef ADS Google scholar
[64]
E. Jeffrey, D. Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O’Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, J. M. Martinis. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 2014, 112(19): 190504
CrossRef ADS Google scholar
[65]
J. Heinsoo, C. K. Andersen, A. Remm, S. Krinner, T. Walter, Y. Salathé, S. Gasparinetti, J. C. Besse, A. Potŏcnik, A. Wallraff, C. Eichler. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl., 2018, 10(3): 034040
CrossRef ADS Google scholar
[66]
J. R. Johansson, P. D. Nation, F. Nori. QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
CrossRef ADS Google scholar
[67]
J. R. Johansson, P. D. Nation, F. Nori. QuTiP2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2013, 184(4): 1234
CrossRef ADS Google scholar
[68]
Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, F. Nori. Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit. Phys. Rev. Lett., 2005, 95(8): 087001
CrossRef ADS Google scholar
[69]
Y. X. Liu, C. X. Yang, H. C. Sun, X. B. Wang. Coexistence of single- and multi-photon processes due to longitudinal couplings between superconducting flux qubits and external fields. New J. Phys., 2014, 16(1): 015031
CrossRef ADS Google scholar
[70]
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross. Circuit quantum electrodynamics in the ultrastrong coupling regime. Nat. Phys., 2010, 6(10): 772
CrossRef ADS Google scholar
[71]
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, K. Semba. Superconducting qubit–oscillator circuit beyond the ultrastrong-coupling regime. Nat. Phys., 2017, 13(1): 44
CrossRef ADS Google scholar
[72]
F. Yoshihara, T. Fuse, Z. Ao, S. Ashhab, K. Kakuyanagi, S. Saito, T. Aoki, K. Koshino, K. Semba. Inversion of qubit energy levels in qubit-oscillator circuits in the deep-strong-coupling regime. Phys. Rev. Lett., 2018, 120(18): 183601
CrossRef ADS Google scholar
[73]
J.Q. YouX. HuS.AshhabF.Nori, Low-decoherence flux qubit, Phys. Rev. B 75, 140515(R) (2007)
[74]
L.V. AbdurakhimovI.MahboobH.Toida K.KakuyanagiS.Saito, A long-lived capacitively shunted flux qubit embedded in a 3D cavity, Appl. Phys. Lett. 115(26), 262601 (2019)
[75]
C. P. Yang, Q. P. Su, S. Han. Generation of Greenberger Horne‒Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A, 2012, 86(2): 022329
CrossRef ADS Google scholar
[76]
M. Baur, S. Filipp, R. Bianchetti, J. M. Fink, M. Göppl, L. Steffen, P. J. Leek, A. Blais, A. Wallraff. Measurement of Autler‒Townes and mollow transitions in a strongly driven superconducting qubit. Phys. Rev. Lett., 2009, 102(24): 243602
CrossRef ADS Google scholar
[77]
W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg, J. L. Yoder, W. D. Oliver. Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl., 2019, 12(1): 014012
CrossRef ADS Google scholar
[78]
A. Melville, G. Calusine, W. Woods, K. Serniak, E. Golden, B. M. Niedzielski, D. K. Kim, A. Sevi, J. L. Yoder, E. A. Dauler, W. D. Oliver. Comparison of dielectric loss in titanium nitride and aluminum superconducting resonators. Appl. Phys. Lett., 2020, 117(12): 124004
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 11074062, 11374083, 11774076, and U21A20436), the Key-Area Research and Development Program of Guangdong Province (No. 2018B030326001), the Jiangsu Funding Program for Excellent Postdoctoral Talent, and the Innovation Program for Quantum Science and Technology (No. 2021ZD0301705).

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4538 KB)

Accesses

Citations

Detail

Sections
Recommended

/