Simple collective model for nuclear chiral mode
R. V. Jolos, E. A. Kolganova, D. R. Khamitova
Simple collective model for nuclear chiral mode
A simple semi-analytical collective model that takes into account the limitations of the variation interval of the collective variable is suggested to describe the chiral dynamics in triaxial odd−odd nuclei with a fixed particle−hole configuration. The collective Hamiltonian is constructed with the potential energy obtained using the postulated ansatz for the wave function symmetric with respect to chiral transformation. By diagonalizing the collective Hamiltonian the wave functions of the lowest states are obtained and the evolution of the energy splitting of the chiral doublets in transition from chiral vibration to chiral rotation regime is demonstrated.
collective / model / nuclear / chiral
[1] |
S. Frauendorf , J. Meng . Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
CrossRef
ADS
Google scholar
|
[2] |
B. W. Xiong , Y. Y. Wang . Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
CrossRef
ADS
Google scholar
|
[3] |
J. Meng , S. Q. Zhang . Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
CrossRef
ADS
Google scholar
|
[4] |
K. Starosta , T. Koike . Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
CrossRef
ADS
Google scholar
|
[5] |
Q. B. Chen , N. Kaiser , U. G. Meißner , J. Meng . Behavior of the collective rotor in nuclear chiral motion. Phys. Rev. C, 2019, 99(6): 064326
CrossRef
ADS
Google scholar
|
[6] |
Q. B. Chen , N. Kaiser , U. G. Meißner , J. Meng . Static quadrupole moments of nuclear chiral doublet bands. Phys. Lett. B, 2020, 807: 135568
CrossRef
ADS
Google scholar
|
[7] |
Q. B. Chen , S. Q. Zhang , P. W. Zhao , R. V. Jolos , J. Meng . Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314
CrossRef
ADS
Google scholar
|
[8] |
K. Starosta , T. Koike , C. J. Chiara , D. B. Fossan , D. R. LaFosse . Chirality in odd–odd triaxial nuclei. Nucl. Phys. A, 2001, 682(1‒4): 375
CrossRef
ADS
Google scholar
|
[9] |
V. I. Dimitrov , S. Frauendorf , F. Dönau . Chirality of nuclear rotation. Phys. Rev. Lett., 2000, 84(25): 5732
CrossRef
ADS
Google scholar
|
[10] |
D. Almehed , F. Dönau , S. Frauendorf . Chiral vibrations in the A = 135 region. Phys. Rev. C, 2011, 83(5): 054308
CrossRef
ADS
Google scholar
|
[11] |
E. V. Mardyban , T. M. Shneidman , E. A. Kolganova , R. V. Jolos , S. G. Zhou . Analytical description of shape transition in nuclear alternating parity bands. Chin. Phys. C, 2018, 42(12): 124104
CrossRef
ADS
Google scholar
|
[12] |
H.KalkaG.Soff, Supersymmetrie, Teubner Studienbücher, Stuttgart, 1997
|
[13] |
F.CooperA.KhareU.Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2004
|
[14] |
K. Starosta , T. Koike , C. J. Chiara , D. B. Fossan , D. R. LaFosse , A. A. Hecht , C. W. Beausang , M. A. Caprio , J. R. Cooper , R. Krücken , J. R. Novak , N. V. Zamfir , K. E. Zyromski , D. J. Hartley , D. L. Balabanski , J. Zhang , S. Frauendorf , V. I. Dimitrov . Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
CrossRef
ADS
Google scholar
|
[15] |
S. Frauendorf , F. Dönau . Transverse wobbling: A collective mode in odd-A triaxial nuclei. Phys. Rev. C, 2014, 89(1): 014322
CrossRef
ADS
Google scholar
|
[16] |
Q. B. Chen , S. Q. Zhang , P. W. Zhao , R. V. Jolos , J. Meng . Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |