Advances in the kinetics of heat and mass transfer in near-continuous complex flows
Aiguo Xu, Dejia Zhang, Yanbiao Gan
Advances in the kinetics of heat and mass transfer in near-continuous complex flows
The study of macro continuous flow has a long history. Simultaneously, the exploration of heat and mass transfer in small systems with a particle number of several hundred or less has gained significant interest in the fields of statistical physics and nonlinear science. However, due to absence of suitable methods, the understanding of mesoscale behavior situated between the aforementioned two scenarios, which challenges the physical function of traditional continuous fluid theory and exceeds the simulation capability of microscopic molecular dynamics method, remains considerably deficient. This greatly restricts the evaluation of effects of mesoscale behavior and impedes the development of corresponding regulation techniques. To access the mesoscale behaviors, there are two ways: from large to small and from small to large. Given the necessity to interface with the prevailing macroscopic continuous modeling currently used in the mechanical engineering community, our study of mesoscale behavior begins from the side closer to the macroscopic continuum, that is from large to small. Focusing on some fundamental challenges encountered in modeling and analysis of near-continuous flows, we review the research progress of discrete Boltzmann method (DBM). The ideas and schemes of DBM in coarse-grained modeling and complex physical field analysis are introduced. The relationships, particularly the differences, between DBM and traditional fluid modeling as well as other kinetic methods are discussed. After verification and validation of the method, some applied researches including the development of various physical functions associated with discrete and non-equilibrium effects are illustrated. Future directions of DBM related studies are indicated.
near-continuous flow / non-equilibrium / kinetics / discrete Boltzmann method / complex physical field analysis
[1] |
H. S. Tsien. Superaerodynamics, mechanics of rarefied gases. J. Aeronaut. Sci., 1946, 13(12): 653
CrossRef
ADS
Google scholar
|
[2] |
W. Thomson. Hydrokinetic solutions and observations. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1871, 42(281): 362
CrossRef
ADS
Google scholar
|
[3] |
H. L. F. Helmholtz. On discontinuous movements of fluids. Monatsberichte der Königlichen Preussische Akademie der Wissenschaften zu Berlin, 1868, 36: 337
|
[4] |
R.Rayleigh, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Proceedings of the London Mathematical Society s1‒14, pp 170–177 (1882)
|
[5] |
G. I. Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes (I). Proc. R. Soc. Lond. A, 1950, 201(1065): 192
CrossRef
ADS
Google scholar
|
[6] |
R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Math., 1960, 13(2): 297
CrossRef
ADS
Google scholar
|
[7] |
E. E. Meshkov. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn., 1972, 4(5): 101
CrossRef
ADS
Google scholar
|
[8] |
Y. X. Liu, L. F. Wang, K. G. Zhao, Z. Y. Li, J. F. Wu, W. H. Ye, Y. J. Li. Thin-shell effects on nonlinear bubble evolution in the ablative Rayleigh–Taylor instability. Phys. Rev. Lett., 2022, 29(8): 082102
|
[9] |
Y. X. Liu, Z. Chen, L. F. Wang, Z. Y. Li, J. F. Wu, W. H. Ye, Y. J. Li. Dynamic of shock–bubble interactions and nonlinear evolution of ablative hydrodynamic instabilities initialed by capsule interior isolated defects. Phys. Plasmas, 2023, 30(4): 042302
CrossRef
ADS
Google scholar
|
[10] |
K. Lan. Dream fusion in octahedral spherical hohlraum. Matter Radiat. Extrem., 2022, 7(5): 055701
CrossRef
ADS
Google scholar
|
[11] |
Y. H. Chen, Z. C. Li, H. Cao, K. Q. Pan, S. W. Li, X. F. Xie, B. Deng, Q. Q. Wang, Z. R. Cao, L. F. Hou, X. S. Che, P. Yang, Y. J. Li, X. A. He, T. Xu, Y. G. Liu, Y. L. Li, X. M. Liu, H. J. Zhang, W. Zhang, B. L. Jiang, J. Xie, W. Zhou, X. X. Huang, W. Y. Huo, G. L. Ren, K. Li, X. D. Hang, S. Li, C. L. Zhai, J. Liu, S. Y. Zou, Y. K. Ding, K. Lan. Determination of laser entrance hole size for ignition-scale octahedral spherical hohlraums. Matter Radiat. Extrem., 2022, 7(6): 065901
CrossRef
ADS
Google scholar
|
[12] |
K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao, L. Hao, S. Li, G. Ren, W. Jiang, C. Yin, C. Sun, Z. Chen, T. Huang, X. Xie, S. Li, W. Miao, X. Hu, Q. Tang, Z. Song, J. Chen, Y. Xiao, X. Che, B. Deng, Q. Wang, K. Deng, Z. Cao, X. Peng, X. Liu, X. He, J. Yan, Y. Pu, S. Tu, Y. Yuan, B. Yu, F. Wang, J. Yang, S. Jiang, L. Gao, J. Xie, W. Zhang, Y. Liu, Z. Zhang, H. Zhang, Z. He, K. Du, L. Wang, X. Chen, W. Zhou, X. Huang, H. Guo, K. Zheng, Q. Zhu, W. Zheng, W. Y. Huo, X. Hang, K. Li, C. Zhai, H. Xie, L. Li, J. Liu, Y. Ding, W. Zhang. First inertial confinement fusion implosion experiment in octahedral spherical Hohlraum. Phys. Rev. Lett., 2021, 127(24): 245001
CrossRef
ADS
Google scholar
|
[13] |
X. M. Qiao, K. Lan. Novel target designs to mitigate hydrodynamic instabilities growth in inertial confinement fusion. Phys. Rev. Lett., 2021, 126(18): 185001
CrossRef
ADS
Google scholar
|
[14] |
Y. B. Gan, A. G. Xu, G. C. Zhang, Y. J. Li. Lattice Boltzmann study on Kelvin–Helmholtz instability: Roles of velocity and density gradients. Phys. Rev. E, 2011, 83(5): 056704
CrossRef
ADS
Google scholar
|
[15] |
C. D. Lin, A. G. Xu, G. C. Zhang, K. H. Luo, Y. J. Li. Discrete Boltzmann modeling of Rayleigh–Taylor instability in two-component compressible flows. Phys. Rev. E, 2017, 96(5): 053305
CrossRef
ADS
Google scholar
|
[16] |
F. Chen, A. G. Xu, G. C. Zhang. Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability. Phys. Fluids, 2018, 30(10): 102105
CrossRef
ADS
Google scholar
|
[17] |
F. Chen, A. G. Xu, Y. D. Zhang, Y. B. Gan, B. B. Liu, S. Wang. Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system. Front. Phys., 2022, 17(3): 33505
CrossRef
ADS
Google scholar
|
[18] |
L. Chen, H. L. Lai, C. D. Lin, D. M. Li. Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method. Front. Phys., 2021, 16(5): 52500
CrossRef
ADS
Google scholar
|
[19] |
G. Zhang, A. G. Xu, D. J. Zhang, Y. J. Li, H. L. Lai, X. M. Hu. Delineation of the flow and mixing induced by Rayleigh–Taylor instability through tracers. Phys. Fluids, 2021, 33(7): 076105
CrossRef
ADS
Google scholar
|
[20] |
Y. F. Li, H. L. Lai, C. D. Lin, D. M. Li. Influence of the tangential velocity on the compressible Kelvin–Helmholtz instability with non-equilibrium effects. Front. Phys., 2022, 17(6): 63500
CrossRef
ADS
Google scholar
|
[21] |
H. Lai, C. Lin, Y. Gan, D. Li, L. Chen. The influences of acceleration on compressible Rayleigh–Taylor instability with non-equilibrium effects. Comput. Fluids, 2023, 266(15): 106037
CrossRef
ADS
Google scholar
|
[22] |
C. D. Lin, K. H. Luo, Y. B. Gan, Z. P. Liu. Kinetic simulation of nonequilibrium Kelvin–Helmholtz instability. Commum. Theor. Phys., 2019, 71(1): 132
CrossRef
ADS
Google scholar
|
[23] |
C. D. Lin, K. H. Luo, A. G. Xu, Y. B. Gan, H. L. Lai. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with non-equilibrium effects. Phys. Rev. E, 2021, 103(1): 013305
CrossRef
ADS
Google scholar
|
[24] |
Y. B. Gan, A. G. Xu, G. C. Zhang, C. D. Lin, H. L. Lai, Z. P. Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows. Front. Phys., 2019, 14(4): 43602
CrossRef
ADS
Google scholar
|
[25] |
W.F. ChenW. W. Zhao, Moment Equations and Numerical Methods for Rarefied Gas Flows, Beijing: Science Press, 2017 (in Chinese)
|
[26] |
Z. H. Li, A. P. Peng, H. X. Zhang, X. G. Deng. Numerical study on the gas-kinetic high-order schemes for solving Boltzmann model equation. Sci. China Phys. Mech. Astron., 2011, 54(9): 1687
CrossRef
ADS
Google scholar
|
[27] |
G.KarniadaskisA.BeskokN.Aluru, Microflows and Nanoflows: Fundamentals and Simulation, New York: Springer-Verlag, 2005
|
[28] |
A. Keerthi, A. K. Geim, A. Janardanan, A. P. Rooney, A. Esfandiar, S. Hu, S. A. Dar, I. V. Grigorieva, S. J. Haigh, F. C. Wang, B. Radha. Ballistic molecular transport through two-dimensional channels. Nature, 2018, 558(7710): 420
CrossRef
ADS
Google scholar
|
[29] |
G. López Quesada, G. Tatsios, D. Valougeorgis, M. Rojas-Cárdenas, L. Baldas, C. Barrot, S. Colin. Design guidelines for thermally driven micropumps of different architectures based on target applications via kinetic modeling and simulations. Micromachines (Basel), 2019, 10(4): 249
CrossRef
ADS
Google scholar
|
[30] |
N. Kavokine, R. R. Netz, L. Bocquet. Fluids at the nanoscale: From continuum to subcontinuum transport. Annu. Rev. Fluid Mech., 2021, 53(1): 377
CrossRef
ADS
Google scholar
|
[31] |
X. Jiang, G. A. Siamas, K. Jagus, T. G. Karayiannis. Physical modelling and advanced simulations of gas–liquid two-phase jet flows in atomization and sprays. Prog. Eenerg. combust., 2010, 36(2): 131
CrossRef
ADS
Google scholar
|
[32] |
J. C. Ding, T. Si, M. J. Chen, Z. G. Zhai, X. Y. Lu, X. S. Luo. On the interaction of a planar shock with a three-dimensional light gas cylinder. J. Fluid Mech., 2017, 828: 289
CrossRef
ADS
Google scholar
|
[33] |
Y. Liang, Z. G. Zhai, X. S. Luo. Interaction of strong converging shock wave with SF6 gas bubble. Sci. China Phys. Mech. Astron., 2018, 61(6): 064711
CrossRef
ADS
Google scholar
|
[34] |
J. C. Ding, Y. Liang, M. J. Chen, Z. G. Zhai, T. Si, X. S. Luo. Interaction of planar shock wave with three-dimensional heavy cylindrical bubble. Phys. Fluids, 2018, 30(10): 106109
CrossRef
ADS
Google scholar
|
[35] |
X. S. Luo, M. Li, J. C. Ding, Z. G. Zhai, T. Si. Nonlinear behaviour of convergent Richtmyer–Meshkov instability. J. Fluid Mech., 2019, 877: 130
CrossRef
ADS
Google scholar
|
[36] |
Y. D. Zhang, A. G. Xu, J. J. Qiu, H. T. Wei, Z. H. Wei. Kinetic modeling of multiphase flow based on simplified Enskog equation. Front. Phys., 2020, 15(6): 62503
CrossRef
ADS
Google scholar
|
[37] |
Z.L. JiangH. H. Teng, Gaseous Detonation Physics and Its Universal Framework Theory, Singapore: Springer, 2022
|
[38] |
J.P. WangS. B. Yao, Principle and Technology of Continuous Detonation Engine, Beijing: Science Press, 2018 (in Chinese)
|
[39] |
J. Xiao, P. Liu, C. X. Wang, G. W. Yang. External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci., 2017, 87: 140
CrossRef
ADS
Google scholar
|
[40] |
H. G. Rinderknecht, P. A. Amendt, S. C. Wilks, G. Collins. Kinetic physics in ICF: Present understanding and future directions. Plasma Phys. Contr. Fusion, 2018, 60(6): 064001
CrossRef
ADS
Google scholar
|
[41] |
F. Vidal, J. P. Matte, M. Casanova, O. Larroche. Ion kinetic simulations of the formation and propagation of a planar collisional shock wave in a plasma. Phys. Fluids B Plasma Phys., 1993, 5(9): 3182
CrossRef
ADS
Google scholar
|
[42] |
D. Bond, V. Wheatley, R. Samtaney, D. I. Pullin. Richtmyer–Meshkov instability of a thermal interface in a two-fluid plasma. J. Fluid Mech., 2017, 833: 332
CrossRef
ADS
Google scholar
|
[43] |
J.H. SongA. G. XuL.MiaoF.ChenZ.P. Liu L.F. WangN. F. WangX.Hou, Plasma kinetics: Discrete Boltzmann modelling and Richtmyer–Meshkov instability, Phys. Fluids 36, 016107(2023)
|
[44] |
P. L. Yao, H. B. Cai, X. X. Yan, W. S. Zhang, B. Du, J. M. Tian, E. H. Zhang, X. W. Wang, S. P. Zhu. Kinetic study of transverse electron-scale interface instability in relativistic shear flows. Matter Radiat. Extrem., 2020, 5(5): 054403
CrossRef
ADS
Google scholar
|
[45] |
H. B. Cai, X. X. Yan, P. L. Yao, S. P. Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma. Matter Radiat. Extrem., 2021, 6(3): 035901
CrossRef
ADS
Google scholar
|
[46] |
R. K. Agarwal, K. Y. Yun, R. Balakrishnan. Beyond Navier–Stokes: Burnett equations for flows in the continuum-transition regime. Phys. Fluids, 2001, 13(10): 3061
CrossRef
ADS
Google scholar
|
[47] |
P.K. KunduI. M. CohenD.Dowling, Fluid Mechanics, 4th Ed., Ch. 13, pp 537–601, Oxford: Elsevier Academic Press, 2008
|
[48] |
H. J. Zhou, Y. Zhang, Z. C. Ouyang. Bending and base-stacking interactions in double-stranded DNA. Phys. Rev. Lett., 1999, 82(22): 4560
CrossRef
ADS
Google scholar
|
[49] |
X. Y. Zhang, S. Boccaletti, S. G. Guan, Z. H. Liu. Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett., 2015, 114(3): 038701
CrossRef
ADS
Google scholar
|
[50] |
G. H. Tang, C. Bi, Y. Zhao, W. Q. Tao. Thermal transport in nano-porous insulation of aerogel: Factors, models and outlook. Energy, 2015, 90: 701
CrossRef
ADS
Google scholar
|
[51] |
Z. C. Zong, S. C. Deng, Y. J. Qin, X. Wan, J. H. Zhan, D. K. Ma, N. Yang. Enhancing the interfacial thermal conductance of Si/PVDF by strengthening atomic couplings. Nanoscale, 2023, 15(40): 16472
CrossRef
ADS
Google scholar
|
[52] |
L. N. Yang, B. S. Yang, B. W. Li. Enhancing interfacial thermal conductance of an amorphous interface by optimizing the interfacial mass distribution. Phys. Rev. B, 2023, 108(16): 165303
CrossRef
ADS
Google scholar
|
[53] |
H. Zhao. Identifying diffusion processes in one-dimensional lattices in thermal equilibrium. Phys. Rev. Lett., 2006, 96(14): 140602
CrossRef
ADS
Google scholar
|
[54] |
Y. Li, X. Y. Shen, Z. H. Wu, J. Y. Huang, Y. X. Chen, Y. S. Ni, J. P. Huang. Temperature-dependent transformation thermotics: From switchable thermal cloaks to macroscopic thermal diodes. Phys. Rev. Lett., 2015, 115(19): 195503
CrossRef
ADS
Google scholar
|
[55] |
Z. Wang, W. C. Fu, Y. Zhang, H. Zhao. Wave-turbulence origin of the instability of anderson localization against many-body interactions. Phys. Rev. Lett., 2020, 124(18): 186401
CrossRef
ADS
Google scholar
|
[56] |
N. B. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, B. W. Li. Phononics: Manipulating heat flow with electronic analogs and beyond. Rev. Mod. Phys., 2012, 84(3): 1045
CrossRef
ADS
Google scholar
|
[57] |
L. Wang, D. H. He, B. B. Hu. Heat conduction in a three-dimensional momentum-conserving anharmonic lattice. Phys. Rev. Lett., 2010, 105(16): 160601
CrossRef
ADS
Google scholar
|
[58] |
L. Zhao, C. L. Wang, J. Liu, B. H. Wen, Y. S. Tu, Z. W. Wang, H. P. Fang. Reversible state transition in nanoconfined aqueous solutions. Phys. Rev. Lett., 2014, 112(7): 078301
CrossRef
ADS
Google scholar
|
[59] |
I. Maasilta, A. J. Minnich. Heat under the microscope. Phys. Today, 2014, 67(8): 27
CrossRef
ADS
Google scholar
|
[60] |
S.G. Chen, Nonequilibrium Statistical Mechanics, Beijing: Science Press, 2010 (in Chinese)
|
[61] |
A.G. XuY. D. Zhang, Complex Media Kinetics, Beijing: Science Press, 2022 (in Chinese)
|
[62] |
J.H. LiG. WeiW.WangN.YangX.H. Liu L.M. WangX. F. HeX.W. WangJ.W. WangM.Kwauk, From Multiscale Modeling to Meso-Science: A Chemical Engineering Perspective, Berlin: Springer-Verlag, 2013
|
[63] |
W. L. Huang, J. H. Li, P. P. Edwards. Mesoscience: exploring the common principle at mesoscales. Natl. Sci. Rev., 2018, 5(3): 321
CrossRef
ADS
Google scholar
|
[64] |
Y. D. Zhang, X. Wu, B. B. Nie, A. G. Xu, F. Chen, R. Wei. Lagrangian steady-state discrete Boltzmann model for non-equilibrium flows at micro–nanoscale. Phys. Fluids, 2023, 35(9): 092008
CrossRef
ADS
Google scholar
|
[65] |
Y. B. Gan, A. G. Xu, H. L. Lai, W. Li, G. L. Sun, S. Succi. Discrete Boltzmann multi-scale modelling of non-equilibrium multiphase flows. J. Fluid Mech., 2022, 951: A8
CrossRef
ADS
Google scholar
|
[66] |
C. L. Tien. Molecular and microscale transport phenomena: A report on the 2nd US Japan Joint Seminar, Santa Barbara, California, 7−10 August, 1996. Microscale Thermophys. Eng., 1997, 1(1): 71
CrossRef
ADS
Google scholar
|
[67] |
B.M. McCoy, Advanced Statistical Mechanics, Oxford: Oxford university press, 2010
|
[68] |
T. D. Lee, C. N. Yang. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 1952, 87(3): 410
CrossRef
ADS
Google scholar
|
[69] |
S.Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
[70] |
Y.L. HeY. WangQ.Li, Lattice Boltzmann Method: Theory and Applications, Beijing: Science Press, 2009 (in Chinese)
|
[71] |
Z.L. GuoC. Shu, Lattice Boltzmann Method and its Applications in Engineering, Beijing: World Scientific Publishing, 2013
|
[72] |
H.B. HuangM. C. SukopX.Y. Lu, Multiphase Lattice Boltzmann Methods: Theory and Application, John Wiley & Sons, 2015
|
[73] |
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, X. J. Yu. Lattice Boltzmann modeling and simulation of compressible flows. Front. Phys., 2012, 7(5): 582
CrossRef
ADS
Google scholar
|
[74] |
A. G. Xu, C. D. Lin, G. C. Zhang, Y. J. Li. Multiple relaxation-time lattice Boltzmann kinetic model for combustion. Phys. Rev. E, 2015, 91(4): 043306
CrossRef
ADS
Google scholar
|
[75] |
A.G. XuG. C. ZhangY.D. ZhangY.B. Gan, Discrete Boltzmann modeling of nonequilibrium effects in multiphase flow, Presentation at the 31st International Symposium on Rarefied Gas Dynamics, see also FLOWS: Physics & Beyond, 1001 (2018)
|
[76] |
A.G. XuJ. H. SongF.ChenK.XieY.J. Ying, Modeling and analysis methods for complex fields based on phase space, Chinese Journal of Computational Physics 38(6), 631 (2021) (in Chinese)
|
[77] |
D. J. Zhang, A. G. Xu, Y. D. Zhang, Y. B. Gan, Y. J. Li. Discrete Boltzmann modeling of high-speed compressible flows with various depths of non-equilibrium. Phys. Fluids, 2022, 34(8): 086104
CrossRef
ADS
Google scholar
|
[78] |
Y.D. Zhang, Modeling and research of non-equilibrium flows and multi-phase flows: Based on discrete Boltzmann method, Nanjing: Nanjing University of Science & Technology, 2019 (in Chinese)
|
[79] |
Y. B. Gan, A. G. Xu, G. C. Zhang, Y. D. Zhang, S. Succi. Discrete Boltzmann trans-scale modeling of highspeed compressible flows. Phys. Rev. E, 2018, 97(5): 053312
CrossRef
ADS
Google scholar
|
[80] |
L. Wu, J. M. Reese, Y. H. Zhang. Solving the Boltzmann equation deterministically by the fast spectral method: Application to gas microflows. J. Fluid Mech., 2014, 746: 53
CrossRef
ADS
Google scholar
|
[81] |
B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, H. Li. Lattice Boltzmann model for combustion and detonation. Front. Phys., 2013, 8: 94
CrossRef
ADS
Google scholar
|
[82] |
C. D. Lin, A. G. Xu, G. C. Zhang, Y. J. Li. Double distribution-function discrete Boltzmann model for combustion. Combust. Flame, 2016, 164: 137
CrossRef
ADS
Google scholar
|
[83] |
C. D. Lin, K. H. Luo. Mesoscopic simulation of nonequilibrium detonation with discrete Boltzmann method. Combust. Flame, 2018, 198: 356
CrossRef
ADS
Google scholar
|
[84] |
C. D. Lin, A. G. Xu, G. C. Zhang, Y. J. Li. Polar coordinate lattice Boltzmann kinetic modeling of detonation phenomena. Commum. Theor. Phys., 2014, 62(5): 737
CrossRef
ADS
Google scholar
|
[85] |
C.D. LinK. H. LuoL.L. FeiS.Succi, A multicomponent discrete Boltzmann model for nonequilibrium reactive fows, Commum. Theor. Phys. 7(1), 14580 (2017)
|
[86] |
C.D. LinK. H. Luo, MRT discrete Boltzmann method for compressible exothermic reactive flows, Comput. Fluids 166, 176 (2018)
|
[87] |
C. D. Lin, K. H. Luo. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects. Phys. Rev. E, 2019, 99(1): 012142
CrossRef
ADS
Google scholar
|
[88] |
C. D. Lin, K. H. Luo. Kinetic simulation of unsteady detonation with thermodynamic nonequilibrium effects. Combust. Explos. Shock Waves, 2020, 56(4): 435
CrossRef
ADS
Google scholar
|
[89] |
C. D. Lin, X. L. Su, Y. D. Zhang. Hydrodynamic and thermodynamic nonequilibrium effects around shock waves: Based on a discrete Boltzmann method. Entropy (Basel), 2020, 22(12): 1397
CrossRef
ADS
Google scholar
|
[90] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, C. M. Zhu, C. D. Lin. Kinetic modeling of detonation and effects of negative temperature coefficient. Combust. Flame, 2016, 173: 483
CrossRef
ADS
Google scholar
|
[91] |
Y. M. Shan, A. G. Xu, Y. D. Zhang, L. F. Wang, F. Chen. Discrete Boltzmann modeling of detonation: Based on the Shakhov model. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., 2023, 237(11): 2517
CrossRef
ADS
Google scholar
|
[92] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen. Discrete Boltzmann method with Maxwell-type boundary condition for slip flow. Commum. Theor. Phys., 2018, 69(1): 77
CrossRef
ADS
Google scholar
|
[93] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, P. Wang. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model. Comput. Phys. Commun., 2019, 238: 50
CrossRef
ADS
Google scholar
|
[94] |
Y. Zhang, A. Xu, F. Chen, C. Lin, Z. H. Wei. Non-equilibrium characteristics of mass and heat transfers in the slip flow. AIP Adv., 2022, 12(3): 035347
CrossRef
ADS
Google scholar
|
[95] |
Y.Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Springer Science & Business Media, 2007
|
[96] |
Y.Onishi, A rarefied gas flow over a flat wall, Bull. Univ. Osaka Prefect. Ser. A Eng. Nat. Sci. 22(2), 91 (1974)
|
[97] |
X. S. Chen, V. Dohm, N. Schultka. Order-parameter distribution function of finite O(n) symmetric systems. Phys. Rev. Lett., 1996, 77(17): 3641
CrossRef
ADS
Google scholar
|
[98] |
A. J. Wagner, J. M. Yeomans. Breakdown of scale invariance in the coarsening of phase-separating binary fluids. Phys. Rev. Lett., 1998, 80(7): 1429
CrossRef
ADS
Google scholar
|
[99] |
M. R. Swift, W. R. Osborn, J. M. Yeomans. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett., 1995, 75(5): 830
CrossRef
ADS
Google scholar
|
[100] |
Y. M. Shan, A. G. Xu, L. F. Wang, Y. D. Zhang. Nonequilibrium kinetics effects in Richtmyer–Meshkov instability and reshock processes. Commum. Theor. Phys., 2023, 75(11): 115601
CrossRef
ADS
Google scholar
|
[101] |
M. Latini, O. Schilling, W. S. Don. High-resolution simulations and modeling of reshocked single-mode Richtmyer–Meshkov instability: Comparison to experimental data and to amplitude growth model predictions. Phys. Fluids, 2007, 19(2): 024104
CrossRef
ADS
Google scholar
|
[102] |
B.D. CollinsJ.W. Jacobs, PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface, J. Fluid Mech. 464, 113 (2002)
|
[103] |
D. J. Zhang, A. G. Xu, J. H. Song, Y. B. Gan, Y. D. Zhang, Y. J. Li. Specific-heat ratio effects on the interaction between shock wave and heavy-cylindrical bubble: Based on discrete Boltzmann method. Comput. Fluids, 2023, 265: 106021
CrossRef
ADS
Google scholar
|
[104] |
G.S. JiangC. L. Wu, A high-order WENO finite difference scheme for the equations of ideal magnetohydrodynamics, J. Comput. Phys. 150(2), 561 (1999)
|
[105] |
J.H. SongA. G. XuL.MiaoY.G. LiaoF.W. Liang F.TianM. Q. NieN.F. Wang, Entropy increase characteristics of shock wave/plate laminar boundary layer interaction, Acta Aeronautica et Astronautica Sinica 44(21), 528520 (2023) (in Chinese)
|
[106] |
S. F. Liao, W. B. Zhang, H. Chen, L. Y. Zou, J. H. Liu, X. X. Zheng. Atwood number effects on the instability of a uniform interface driven by a perturbed shock wave. Phys. Rev. E, 2019, 99(1): 013103
CrossRef
ADS
Google scholar
|
[107] |
L. Y. Zou, M. Al-Marouf, W. Cheng, R. Samtaney, J. C. Ding, X. S. Luo. Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock. J. Fluid Mech., 2019, 879: 448
CrossRef
ADS
Google scholar
|
[108] |
L. Y. Zou, Q. Wu, X. Z. Li. Research progress of general Richtmyer–Meshkov instability. Sci. Sin. Phys. Mech. Astron., 2020, 50: 104702
|
[109] |
Y.M. ShanA. G. XuY.D. ZhangL.F. Wang Wall-heating phenomena in shock wave physics: Physical or artificial? (in preparation)
|
[110] |
D. J. Zhang, A. G. Xu, Y. B. Gan, Y. D. Zhang, J. H. Song, Y. J. Li. Viscous effects on morphological and thermodynamic non-equilibrium characterizations of shock-bubble interaction. Phys. Fluids, 2023, 35(10): 106113
CrossRef
ADS
Google scholar
|
[111] |
Y. B. Gan, A. G. Xu, G. C. Zhang, S. Succi. Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic non-equilibrium effects. Soft Matter, 2015, 11(26): 5336
CrossRef
ADS
Google scholar
|
[112] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, Y. B. Gan, Z. H. Chen, S. Succi. Entropy production in thermal phase separation: A kinetic-theory approach. Soft Matter, 2019, 15(10): 2245
CrossRef
ADS
Google scholar
|
[113] |
G. L. Sun, Y. B. Gan, A. G. Xu, Y. D. Zhang, Q. F. Shi. Thermodynamic nonequilibrium effects in bubble coalescence: A discrete Boltzmann study. Phys. Rev. E, 2022, 106(3): 035101
CrossRef
ADS
Google scholar
|
[114] |
G.L. SunY. B. GanA.G. XuQ.F. Shi, Droplet coalescence kinetics: Thermodynamic nonequilibrium effects and entropy production mechanism, arXiv: 2311.06546 (2023), Phys. Fluids (2024) (in press)
|
[115] |
J. Chen, A. G. Xu, D. W. Chen, Y. D. Zhang, Z. H. Chen. Discrete Boltzmann modeling of Rayleigh–Taylor instability: Effects of interfacial tension, viscosity, and heat conductivity. Phys. Rev. E, 2022, 106(1): 015102
CrossRef
ADS
Google scholar
|
[116] |
Y.Q. JiaA. G. XuL.F. WangD.W. Chen, Study on Rayleigh−Taylor instability under variable acceleration: Based on discrete Boltzmann method, Beijing: Symposium on Interfacial Instability and Multi-media Turbulence, 2023 (in Chinese)
|
[117] |
J.ChenA. G. XuD.W. ChenY.D. ZhangZ.H. Chen, Kinetics of RT instability in van der Waals fluid: The influence of compressibility (in preparation)
|
[118] |
F. Chen, A. G. Xu, Y. D. Zhang, Q. K. Zeng. Morphological and non-equilibrium analysis of coupled Rayleigh–Taylor–Kelvin–Helmholtz instability. Phys. Fluids, 2020, 32(10): 104111
CrossRef
ADS
Google scholar
|
[119] |
Z. P. Liu, J. H. Song, A. G. Xu, Y. D. Zhang, K. Xie. Discrete Boltzmann modeling of plasma shock wave. Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci., 2023, 237(11): 2532
CrossRef
ADS
Google scholar
|
[120] |
J.H. SongL. MiaoA.G. XuF.ChenL.Li X.Hou, Plasma kinetics: Transport and mixing characteristics induced by Kelvin–Helmholtz instability (in preparation)
|
[121] |
C. D. Lin, A. G. Xu, G. C. Zhang, Y. J. Li, S. Succi. Polar-coordinate lattice Boltzmann modeling of compressible flows. Phys. Rev. E, 2014, 89(1): 013307
CrossRef
ADS
Google scholar
|
[122] |
Y. D. Zhang, A. G. Xu, G. C. Zhang, Z. H. Chen, P. Wang. Discrete ellipsoidal statistical BGK model and Burnett equations. Front. Phys., 2018, 13(3): 135101
CrossRef
ADS
Google scholar
|
[123] |
X. L. Su, C. D. Lin. Nonequilibrium effects of reactive flow based on gas kinetic theory. Commum. Theor. Phys., 2022, 74(3): 035604
CrossRef
ADS
Google scholar
|
[124] |
X. L. Su, C. D. Lin. Unsteady detonation with thermodynamic nonequilibrium effect based on the kinetic theory. Commum. Theor. Phys., 2023, 75(7): 075601
CrossRef
ADS
Google scholar
|
[125] |
H.L. Lai, Modeling and Simulation of Compressible Rayleigh-Taylor Instability by Discrete Boltzmann, Post-doctoral research report of Beijing Institute of Applied Physics and Computational Mathematics, 2015 (in Chinese)
|
[126] |
H. L. Lai, A. G. Xu, G. C. Zhang, Y. B. Gan, Y. J. Ying, S. Succi. Nonequilibrium thermohydrodynamic effects on the Rayleigh-Taylor instability in compressible flows. Phys. Rev. E, 2016, 94(2): 023106
CrossRef
ADS
Google scholar
|
[127] |
A.G. Chen, Study of shock detachment distance in rarefied flow field, Hefei: The 2nd National Conference on Shock Wave and Shock Tube, 2022 (in Chinese)
|
[128] |
W.M. Bao, Future aerospace technology development and aerodynamics challenges, Tianjin: The 2nd Aerodynamics Congress, 2023 (in Chinese)
|
[129] |
G.S. Zhu, Several encountered aerodynamic problems and progress in hypersonic flight, Tianjin: The 2nd Aerodynamics Congress, 2023 (in Chinese)
|
[130] |
B.C. Ai, Research on some problems of aerodynamics of space vehicle, Tianjin: The 2nd Aerodynamics Congress, 2023 (in Chinese)
|
[131] |
A.G. ChenJ. WangZ.H. LiZ.Q. LiY.Tian Z.Y. Long, Velocity measurement investigation of rarefied flow field by pulse electron beam fluorescence technique, Phys. Gases 6(5), 67 (2021) (in Chinese)
|
[132] |
W.ChenH. Y. HuL.Wang, Characterization method and measurement technique of thermodynamic non-equilibrium characteristics of high enthalpy flow field, Dalian: The 17th National Conference on Physics and Mechanics, 2023 (in Chinese)
|
[133] |
P.M. Danehy, Molecular based hypersonic nonequilibrium flow optical diagnosis (in Chinese, translated by Qifeng Chen) (to be published)
|
[134] |
P.M. DanehyB. F. BathelC.T. Johansen.
|
/
〈 | 〉 |