Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system
Ye-Jun Xu, Hong Xie
Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system
We propose a scheme to realize antibunched multiple-photon bundles based on phonon blockade in a quadratically coupled optomechanical system. Through adjusting the detunings to match the conditions of phonon blockade in the photon sidebands, we establish super-Rabi oscillation between zero-photon state and multiple-photon states with adjustable super-Rabi frequencies under appropriate single-phonon resonant conditions. Taking the system dissipation into account, we numerically calculate the standard and generalized second-order functions of the cavity mode as well as the quantum trajectories of the state populations with Monte Carlo simulation to confirm that the emitted photons form antibunched multiple-photon bundles. Interestingly, the desirable n-photon states are reconstructed after a direct phonon emission based on phonon blockade, and thus the single-phonon emission heralds the cascade emission of n-photon bundles. Our proposal shows that the optomechanical system can simultaneously behave as antibunched multiple-photon emitter and single-phonon gun. Such a nonclassical source could have potential applications in quantum information science.
multiple-photon bundle emission / phonon blockade / optomechanical system
[1] |
V. Giovannetti , S. Lloyd , L. Maccone . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
CrossRef
ADS
Google scholar
|
[2] |
L. Pezzè , A. Smerzi , M. K. Oberthaler , R. Schmied , P. Treutlein . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef
ADS
Google scholar
|
[3] |
D. Braun , G. Adesso , F. Benatti , R. Floreanini , U. Marzolino , M. W. Mitchell , S. Pirandola . Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
CrossRef
ADS
Google scholar
|
[4] |
L. M. Duan , M. D. Lukin , J. I. Cirac , P. Zoller . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
CrossRef
ADS
Google scholar
|
[5] |
P. Kok , W. J. Munro , K. Nemoto , T. C. Ralph , J. P. Dowling , G. J. Milburn . Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
CrossRef
ADS
Google scholar
|
[6] |
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef
ADS
Google scholar
|
[7] |
I. Afek , O. Ambar , Y. Silberberg . High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980): 879
CrossRef
ADS
Google scholar
|
[8] |
M. D’Angelo , M. V. Chekhova , Y. Shih . Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 2001, 87(1): 013602
CrossRef
ADS
Google scholar
|
[9] |
K. E. Dorfman , F. Schlawin , S. Mukamel . Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 2016, 88(4): 045008
CrossRef
ADS
Google scholar
|
[10] |
J. C. López Carreño , C. Sánchez Muñoz , D. Sanvitto , E. del Valle , F. P. Laussy . Exciting polaritons with quantum light. Phys. Rev. Lett., 2015, 115(19): 196402
CrossRef
ADS
Google scholar
|
[11] |
Z. R. Zhong , X. Wang , W. Qin . Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
CrossRef
ADS
Google scholar
|
[12] |
J. H. Liu , Y. B. Zhang , Y. F. Yu , Z. M. Zhang . Photon‒phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys., 2019, 14(1): 12601
CrossRef
ADS
Google scholar
|
[13] |
C. S. Muñoz , E. del Valle , A. G. Tudela , K. Müller , S. Lichtmannecker , M. Kaniber , C. Tejedor , J. J. Finley , F. P. Laussy . Emitters of N-photon bundles. Nat. Photonics, 2014, 8(7): 550
CrossRef
ADS
Google scholar
|
[14] |
C. Sánchez Muñoz , F. P. Laussy , E. Valle , C. Tejedor , A. González-Tudela . Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 2018, 5(1): 14
CrossRef
ADS
Google scholar
|
[15] |
Q. Bin , X. Y. Lü , F. P. Laussy , F. Nori , Y. Wu . N-phonon bundle emission via the Stokes process. Phys. Rev. Lett., 2020, 124(5): 053601
CrossRef
ADS
Google scholar
|
[16] |
Q. Bin , Y. Wu , X. Y. Lü . Parity‒symmetry-protected multiphoton bundle emission. Phys. Rev. Lett., 2021, 127(7): 073602
CrossRef
ADS
Google scholar
|
[17] |
Y. Deng , T. Shi , S. Yi . Motional n-phonon bundle states of a trapped atom with clock transitions. Photon. Res., 2021, 9(7): 1289
CrossRef
ADS
Google scholar
|
[18] |
S. Y. Jiang , F. Zou , Y. Wang , J. F. Huang , X. W. Xu , J. Q. Liao . Multiple-photon bundle emission in the n-photon Jaynes‒Cummings model. Opt. Express, 2023, 31(10): 15697
CrossRef
ADS
Google scholar
|
[19] |
C. Liu , J. F. Huang , L. Tian . Deterministic generation of multi-photon bundles in a quantum Rabi model. Sci. China Phys. Mech. Astron., 2023, 66(2): 220311
CrossRef
ADS
Google scholar
|
[20] |
A. González-Tudela , V. Paulisch , D. E. Chang , H. J. Kimble , J. I. Cirac . Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett., 2015, 115(16): 163603
CrossRef
ADS
Google scholar
|
[21] |
J. S. Douglas , T. Caneva , D. E. Chang . Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys. Rev. X, 2016, 6(3): 031017
CrossRef
ADS
Google scholar
|
[22] |
A. González-Tudela , V. Paulisch , H. J. Kimble , J. I. Cirac . Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett., 2017, 118(21): 213601
CrossRef
ADS
Google scholar
|
[23] |
S. L. Ma , X. K. Li , Y. L. Ren , J. K. Xie , F. L. Li . Antibunched N-photon bundles emitted by a Josephson photonic device. Phys. Rev. Res., 2021, 3(4): 043020
CrossRef
ADS
Google scholar
|
[24] |
Y. Ota , S. Iwamoto , N. Kumagai , Y. Arakawa . Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett., 2011, 107(23): 233602
CrossRef
ADS
Google scholar
|
[25] |
G. Callsen , A. Carmele , G. Hönig , C. Kindel , J. Brunnmeier , M. R. Wagner , E. Stock , J. S. Reparaz , A. Schliwa , S. Reitzenstein , A. Knorr , A. Hoffmann , S. Kako , Y. Arakawa . Steering photon statistics in single quantum dots: From one- to two-photon emission. Phys. Rev. B, 2013, 87(24): 245314
CrossRef
ADS
Google scholar
|
[26] |
C. Sánchez Muñoz , F. P. Laussy , C. Tejedor , E. Valle . Enhanced two-photon emission from a dressed biexciton. New J. Phys., 2015, 17(12): 123021
CrossRef
ADS
Google scholar
|
[27] |
Y. Chang , A. González-Tudela , C. Sánchez Muñoz , C. Navarrete-Benlloch , T. Shi . Deterministic down-converter and continuous photon-pair source within the bad-cavity limit. Phys. Rev. Lett., 2016, 117(20): 203602
CrossRef
ADS
Google scholar
|
[28] |
X. L. Dong , P. B. Li . Multiphonon interactions between nitrogen‒vacancy centers and nanomechanical resonators. Phys. Rev. A, 2019, 100(4): 043825
CrossRef
ADS
Google scholar
|
[29] |
P. Bienias , S. Choi , O. Firstenberg , M. F. Maghrebi , M. Gullans , M. D. Lukin , A. V. Gorshkov , H. P. Büchler . Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A, 2014, 90(5): 053804
CrossRef
ADS
Google scholar
|
[30] |
M. F. Maghrebi , M. J. Gullans , P. Bienias , S. Choi , I. Martin , O. Firstenberg , M. D. Lukin , H. P. Büchler , A. V. Gorshkov . Coulomb bound states of strongly interacting photons. Phys. Rev. Lett., 2015, 115(12): 123601
CrossRef
ADS
Google scholar
|
[31] |
F. Zou , J. Q. Liao , Y. Li . Dynamical emission of phonon pairs in optomechanical systems. Phys. Rev. A, 2022, 105(5): 053507
CrossRef
ADS
Google scholar
|
[32] |
H. Y. Yuan , J. K. Xie , R. A. Duine . Magnon bundle in a strongly dissipative magnet. Phys. Rev. Appl., 2023, 19(6): 064070
CrossRef
ADS
Google scholar
|
[33] |
M. Aspelmeyer , T. J. Kippenberg , F. Marquardt . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef
ADS
Google scholar
|
[34] |
T. J. Kippenberg , K. J. Vahala . Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
CrossRef
ADS
Google scholar
|
[35] |
M. Aspelmeyer , P. Meystre , K. Schwab . Quantum optomechanics. Phys. Today, 2012, 65(7): 29
CrossRef
ADS
Google scholar
|
[36] |
P. Meystre . A short walk through quantum optomechanics. Ann. Phys., 2013, 525(3): 215
CrossRef
ADS
Google scholar
|
[37] |
H. Xiong , L. G. Si , X. Y. Lü , X. X. Yang , Y. Wu . Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron., 2015, 58(5): 1
CrossRef
ADS
Google scholar
|
[38] |
A. Nunnenkamp , K. Børkje , S. M. Girvin . Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef
ADS
Google scholar
|
[39] |
J. Q. Liao , H. K. Cheung , C. K. Law . Spectrum of single-photon emission and scattering in cavity optomechanics. Phys. Rev. A, 2012, 85(2): 025803
CrossRef
ADS
Google scholar
|
[40] |
P. Kómár , S. D. Bennett , K. Stannigel , S. J. M. Habraken , P. Rabl , P. Zoller , M. D. Lukin . Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A, 2013, 87(1): 013839
CrossRef
ADS
Google scholar
|
[41] |
T. Hong , H. Yang , H. Miao , Y. Chen . Open quantum dynamics of single-photon optomechanical devices. Phys. Rev. A, 2013, 88(2): 023812
CrossRef
ADS
Google scholar
|
[42] |
J. Q. Liao , F. Nori . Single-photon quadratic optomechanics. Sci. Rep., 2014, 4(1): 6302
CrossRef
ADS
Google scholar
|
[43] |
J. Q. Liao , L. Tian . Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett., 2016, 116(16): 163602
CrossRef
ADS
Google scholar
|
[44] |
H. Xie , G. W. Lin , X. Chen , Z. H. Chen , X. M. Lin . Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A, 2016, 93(6): 063860
CrossRef
ADS
Google scholar
|
[45] |
X. W. Xu , A. X. Chen , Y. X. Liu . Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 2016, 94(6): 063853
CrossRef
ADS
Google scholar
|
[46] |
H. Xie , C. G. Liao , X. Shang , M. Y. Ye , X. M. Lin . Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 2017, 96(1): 013861
CrossRef
ADS
Google scholar
|
[47] |
H. Q. Shi , X. T. Zhou , X. W. Xu , N. H. Liu . Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep., 2018, 8(1): 2212
CrossRef
ADS
Google scholar
|
[48] |
L. L. Zheng , T. S. Yin , Q. Bin , X. Y. Lü , Y. Wu . Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A, 2019, 99(1): 013804
CrossRef
ADS
Google scholar
|
[49] |
T. S. Yin , Q. Bin , G. L. Zhu , G. R. Jin , A. X. Chen . Phonon blockade in a hybrid system via the second-order magnetic gradient. Phys. Rev. A, 2019, 100(6): 063840
CrossRef
ADS
Google scholar
|
[50] |
J. Y. Yang , Z. Jin , J. S. Liu , H. F. Wang , A. D. Zhu . Unconventional phonon blockade in a Tavis‒Cummings coupled optomechanical system. Ann. Phys., 2020, 532(12): 2000299
CrossRef
ADS
Google scholar
|
[51] |
P. Rabl . Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
CrossRef
ADS
Google scholar
|
[52] |
J. Q. Liao , F. Nori . Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 2013, 88(2): 023853
CrossRef
ADS
Google scholar
|
[53] |
H. Z. Shen , Y. H. Zhou , X. X. Yi . Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 2015, 91(6): 063808
CrossRef
ADS
Google scholar
|
[54] |
H. Flayac , V. Savona . Unconventional photon blockade. Phys. Rev. A, 2017, 96(5): 053810
CrossRef
ADS
Google scholar
|
[55] |
R. Huang , A. Miranowicz , J. Q. Liao , F. Nori , H. Jing . Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
CrossRef
ADS
Google scholar
|
[56] |
H. J. Snijders , J. A. Frey , J. Norman , H. Flayac , V. Savona , A. C. Gossard , J. E. Bowers , M. P. van Exter , D. Bouwmeester , W. Löffler . Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
CrossRef
ADS
Google scholar
|
[57] |
B. Sarma , A. K. Sarma . Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
CrossRef
ADS
Google scholar
|
[58] |
B. J. Li , R. Huang , X. W. Xu , A. Miranowicz , H. Jing . Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
CrossRef
ADS
Google scholar
|
[59] |
D. Y. Wang , C. H. Bai , S. Liu , S. Zhang , H. F. Wang . Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A, 2019, 99(4): 043818
CrossRef
ADS
Google scholar
|
[60] |
D. Y. Wang , C. H. Bai , S. Liu , S. Zhang , H. F. Wang . Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
CrossRef
ADS
Google scholar
|
[61] |
Y. P. Gao , C. Cao , P. F. Lu , C. Wang . Phase-controlled photon blockade in optomechanical systems. Fundamental Research, 2023, 3(1): 30
CrossRef
ADS
Google scholar
|
[62] |
L. J. Feng , L. Yan , S. Q. Gong . Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
CrossRef
ADS
Google scholar
|
[63] |
Z. X. Liu , H. Xiong , Y. Wu . Magnon blockade in a hybrid ferromagnet‒superconductor quantum system. Phys. Rev. B, 2019, 100(13): 134421
CrossRef
ADS
Google scholar
|
[64] |
J. K. Xie , S. L. Ma , F. L. Li . Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
CrossRef
ADS
Google scholar
|
[65] |
Y. J. Xu , T. L. Yang , L. Lin , J. Song . Conventional and unconventional magnon blockades in a qubit-magnon hybrid quantum system. J. Opt. Soc. Am. B, 2021, 38(3): 876
CrossRef
ADS
Google scholar
|
[66] |
X. Y. Li , X. Wang , Z. Wu , W. X. Yang , A. X. Chen . Tunable magnon antibunching in a hybrid ferromagnet‒superconductor system with two qubits. Phys. Rev. B, 2021, 104(22): 224434
CrossRef
ADS
Google scholar
|
[67] |
Y. M. Wang , W. Xiong , Z. Y. Xu , G. Q. Zhang , J. Q. You . Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron., 2022, 65(6): 260314
CrossRef
ADS
Google scholar
|
[68] |
T. K. Paraïso , M. Kalaee , L. Zang , H. Pfeifer , F. Marquardt , O. Painter . Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 2015, 5(4): 041024
CrossRef
ADS
Google scholar
|
[69] |
J. C. Sankey , C. Yang , B. M. Zwickl , A. M. Jayich , J. G. Harris . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
CrossRef
ADS
Google scholar
|
[70] |
H. Sekoguchi , Y. Takahashi , T. Asano , S. Noda . Photonic crystal nanocavity with a Q-factor of ~9 million. Opt. Express, 2014, 22(1): 916
CrossRef
ADS
Google scholar
|
[71] |
T. S. Yin , X. Y. Lü , L. L. Zheng , M. Wang , S. Li , Y. Wu . Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
CrossRef
ADS
Google scholar
|
[72] |
D. Vitali , S. Gigan , A. Ferreira , H. R. Böhm , P. Tombesi , A. Guerreiro , V. Vedral , A. Zeilinger , M. Aspelmeyer . Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett., 2007, 98(3): 030405
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |