Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system

Ye-Jun Xu, Hong Xie

PDF(4107 KB)
PDF(4107 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 32202. DOI: 10.1007/s11467-023-1352-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system

Author information +
History +

Abstract

We propose a scheme to realize antibunched multiple-photon bundles based on phonon blockade in a quadratically coupled optomechanical system. Through adjusting the detunings to match the conditions of phonon blockade in the photon sidebands, we establish super-Rabi oscillation between zero-photon state and multiple-photon states with adjustable super-Rabi frequencies under appropriate single-phonon resonant conditions. Taking the system dissipation into account, we numerically calculate the standard and generalized second-order functions of the cavity mode as well as the quantum trajectories of the state populations with Monte Carlo simulation to confirm that the emitted photons form antibunched multiple-photon bundles. Interestingly, the desirable n-photon states are reconstructed after a direct phonon emission based on phonon blockade, and thus the single-phonon emission heralds the cascade emission of n-photon bundles. Our proposal shows that the optomechanical system can simultaneously behave as antibunched multiple-photon emitter and single-phonon gun. Such a nonclassical source could have potential applications in quantum information science.

Graphical abstract

Keywords

multiple-photon bundle emission / phonon blockade / optomechanical system

Cite this article

Download citation ▾
Ye-Jun Xu, Hong Xie. Phonon-blockade-based multiple-photon bundle emission in a quadratically coupled optomechanical system. Front. Phys., 2024, 19(3): 32202 https://doi.org/10.1007/s11467-023-1352-9

References

[1]
V. Giovannetti , S. Lloyd , L. Maccone . Quantum metrology. Phys. Rev. Lett., 2006, 96(1): 010401
CrossRef ADS Google scholar
[2]
L. Pezzè , A. Smerzi , M. K. Oberthaler , R. Schmied , P. Treutlein . Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef ADS Google scholar
[3]
D. Braun , G. Adesso , F. Benatti , R. Floreanini , U. Marzolino , M. W. Mitchell , S. Pirandola . Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
CrossRef ADS Google scholar
[4]
L. M. Duan , M. D. Lukin , J. I. Cirac , P. Zoller . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
CrossRef ADS Google scholar
[5]
P. Kok , W. J. Munro , K. Nemoto , T. C. Ralph , J. P. Dowling , G. J. Milburn . Linear optical quantum computing with photonic qubits. Rev. Mod. Phys., 2007, 79(1): 135
CrossRef ADS Google scholar
[6]
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[7]
I. Afek , O. Ambar , Y. Silberberg . High-NOON states by mixing quantum and classical light. Science, 2010, 328(5980): 879
CrossRef ADS Google scholar
[8]
M. D’Angelo , M. V. Chekhova , Y. Shih . Two-photon diffraction and quantum lithography. Phys. Rev. Lett., 2001, 87(1): 013602
CrossRef ADS Google scholar
[9]
K. E. Dorfman , F. Schlawin , S. Mukamel . Nonlinear optical signals and spectroscopy with quantum light. Rev. Mod. Phys., 2016, 88(4): 045008
CrossRef ADS Google scholar
[10]
J. C. López Carreño , C. Sánchez Muñoz , D. Sanvitto , E. del Valle , F. P. Laussy . Exciting polaritons with quantum light. Phys. Rev. Lett., 2015, 115(19): 196402
CrossRef ADS Google scholar
[11]
Z. R. Zhong , X. Wang , W. Qin . Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure. Front. Phys., 2018, 13(5): 130319
CrossRef ADS Google scholar
[12]
J. H. Liu , Y. B. Zhang , Y. F. Yu , Z. M. Zhang . Photon‒phonon squeezing and entanglement in a cavity optomechanical system with a flying atom. Front. Phys., 2019, 14(1): 12601
CrossRef ADS Google scholar
[13]
C. S. Muñoz , E. del Valle , A. G. Tudela , K. Müller , S. Lichtmannecker , M. Kaniber , C. Tejedor , J. J. Finley , F. P. Laussy . Emitters of N-photon bundles. Nat. Photonics, 2014, 8(7): 550
CrossRef ADS Google scholar
[14]
C. Sánchez Muñoz , F. P. Laussy , E. Valle , C. Tejedor , A. González-Tudela . Filtering multiphoton emission from state-of-the-art cavity quantum electrodynamics. Optica, 2018, 5(1): 14
CrossRef ADS Google scholar
[15]
Q. Bin , X. Y. Lü , F. P. Laussy , F. Nori , Y. Wu . N-phonon bundle emission via the Stokes process. Phys. Rev. Lett., 2020, 124(5): 053601
CrossRef ADS Google scholar
[16]
Q. Bin , Y. Wu , X. Y. Lü . Parity‒symmetry-protected multiphoton bundle emission. Phys. Rev. Lett., 2021, 127(7): 073602
CrossRef ADS Google scholar
[17]
Y. Deng , T. Shi , S. Yi . Motional n-phonon bundle states of a trapped atom with clock transitions. Photon. Res., 2021, 9(7): 1289
CrossRef ADS Google scholar
[18]
S. Y. Jiang , F. Zou , Y. Wang , J. F. Huang , X. W. Xu , J. Q. Liao . Multiple-photon bundle emission in the n-photon Jaynes‒Cummings model. Opt. Express, 2023, 31(10): 15697
CrossRef ADS Google scholar
[19]
C. Liu , J. F. Huang , L. Tian . Deterministic generation of multi-photon bundles in a quantum Rabi model. Sci. China Phys. Mech. Astron., 2023, 66(2): 220311
CrossRef ADS Google scholar
[20]
A. González-Tudela , V. Paulisch , D. E. Chang , H. J. Kimble , J. I. Cirac . Deterministic generation of arbitrary photonic states assisted by dissipation. Phys. Rev. Lett., 2015, 115(16): 163603
CrossRef ADS Google scholar
[21]
J. S. Douglas , T. Caneva , D. E. Chang . Photon molecules in atomic gases trapped near photonic crystal waveguides. Phys. Rev. X, 2016, 6(3): 031017
CrossRef ADS Google scholar
[22]
A. González-Tudela , V. Paulisch , H. J. Kimble , J. I. Cirac . Efficient multiphoton generation in waveguide quantum electrodynamics. Phys. Rev. Lett., 2017, 118(21): 213601
CrossRef ADS Google scholar
[23]
S. L. Ma , X. K. Li , Y. L. Ren , J. K. Xie , F. L. Li . Antibunched N-photon bundles emitted by a Josephson photonic device. Phys. Rev. Res., 2021, 3(4): 043020
CrossRef ADS Google scholar
[24]
Y. Ota , S. Iwamoto , N. Kumagai , Y. Arakawa . Spontaneous two-photon emission from a single quantum dot. Phys. Rev. Lett., 2011, 107(23): 233602
CrossRef ADS Google scholar
[25]
G. Callsen , A. Carmele , G. Hönig , C. Kindel , J. Brunnmeier , M. R. Wagner , E. Stock , J. S. Reparaz , A. Schliwa , S. Reitzenstein , A. Knorr , A. Hoffmann , S. Kako , Y. Arakawa . Steering photon statistics in single quantum dots: From one- to two-photon emission. Phys. Rev. B, 2013, 87(24): 245314
CrossRef ADS Google scholar
[26]
C. Sánchez Muñoz , F. P. Laussy , C. Tejedor , E. Valle . Enhanced two-photon emission from a dressed biexciton. New J. Phys., 2015, 17(12): 123021
CrossRef ADS Google scholar
[27]
Y. Chang , A. González-Tudela , C. Sánchez Muñoz , C. Navarrete-Benlloch , T. Shi . Deterministic down-converter and continuous photon-pair source within the bad-cavity limit. Phys. Rev. Lett., 2016, 117(20): 203602
CrossRef ADS Google scholar
[28]
X. L. Dong , P. B. Li . Multiphonon interactions between nitrogen‒vacancy centers and nanomechanical resonators. Phys. Rev. A, 2019, 100(4): 043825
CrossRef ADS Google scholar
[29]
P. Bienias , S. Choi , O. Firstenberg , M. F. Maghrebi , M. Gullans , M. D. Lukin , A. V. Gorshkov , H. P. Büchler . Scattering resonances and bound states for strongly interacting Rydberg polaritons. Phys. Rev. A, 2014, 90(5): 053804
CrossRef ADS Google scholar
[30]
M. F. Maghrebi , M. J. Gullans , P. Bienias , S. Choi , I. Martin , O. Firstenberg , M. D. Lukin , H. P. Büchler , A. V. Gorshkov . Coulomb bound states of strongly interacting photons. Phys. Rev. Lett., 2015, 115(12): 123601
CrossRef ADS Google scholar
[31]
F. Zou , J. Q. Liao , Y. Li . Dynamical emission of phonon pairs in optomechanical systems. Phys. Rev. A, 2022, 105(5): 053507
CrossRef ADS Google scholar
[32]
H. Y. Yuan , J. K. Xie , R. A. Duine . Magnon bundle in a strongly dissipative magnet. Phys. Rev. Appl., 2023, 19(6): 064070
CrossRef ADS Google scholar
[33]
M. Aspelmeyer , T. J. Kippenberg , F. Marquardt . Cavity optomechanics. Rev. Mod. Phys., 2014, 86(4): 1391
CrossRef ADS Google scholar
[34]
T. J. Kippenberg , K. J. Vahala . Cavity optomechanics: Back-action at the mesoscale. Science, 2008, 321(5893): 1172
CrossRef ADS Google scholar
[35]
M. Aspelmeyer , P. Meystre , K. Schwab . Quantum optomechanics. Phys. Today, 2012, 65(7): 29
CrossRef ADS Google scholar
[36]
P. Meystre . A short walk through quantum optomechanics. Ann. Phys., 2013, 525(3): 215
CrossRef ADS Google scholar
[37]
H. Xiong , L. G. Si , X. Y. Lü , X. X. Yang , Y. Wu . Review of cavity optomechanics in the weak-coupling regime: From linearization to intrinsic nonlinear interactions. Sci. China Phys. Mech. Astron., 2015, 58(5): 1
CrossRef ADS Google scholar
[38]
A. Nunnenkamp , K. Børkje , S. M. Girvin . Single-photon optomechanics. Phys. Rev. Lett., 2011, 107(6): 063602
CrossRef ADS Google scholar
[39]
J. Q. Liao , H. K. Cheung , C. K. Law . Spectrum of single-photon emission and scattering in cavity optomechanics. Phys. Rev. A, 2012, 85(2): 025803
CrossRef ADS Google scholar
[40]
P. Kómár , S. D. Bennett , K. Stannigel , S. J. M. Habraken , P. Rabl , P. Zoller , M. D. Lukin . Single-photon nonlinearities in two-mode optomechanics. Phys. Rev. A, 2013, 87(1): 013839
CrossRef ADS Google scholar
[41]
T. Hong , H. Yang , H. Miao , Y. Chen . Open quantum dynamics of single-photon optomechanical devices. Phys. Rev. A, 2013, 88(2): 023812
CrossRef ADS Google scholar
[42]
J. Q. Liao , F. Nori . Single-photon quadratic optomechanics. Sci. Rep., 2014, 4(1): 6302
CrossRef ADS Google scholar
[43]
J. Q. Liao , L. Tian . Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett., 2016, 116(16): 163602
CrossRef ADS Google scholar
[44]
H. Xie , G. W. Lin , X. Chen , Z. H. Chen , X. M. Lin . Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling. Phys. Rev. A, 2016, 93(6): 063860
CrossRef ADS Google scholar
[45]
X. W. Xu , A. X. Chen , Y. X. Liu . Phonon blockade in a nanomechanical resonator resonantly coupled to a qubit. Phys. Rev. A, 2016, 94(6): 063853
CrossRef ADS Google scholar
[46]
H. Xie , C. G. Liao , X. Shang , M. Y. Ye , X. M. Lin . Phonon blockade in a quadratically coupled optomechanical system. Phys. Rev. A, 2017, 96(1): 013861
CrossRef ADS Google scholar
[47]
H. Q. Shi , X. T. Zhou , X. W. Xu , N. H. Liu . Tunable phonon blockade in quadratically coupled optomechanical systems. Sci. Rep., 2018, 8(1): 2212
CrossRef ADS Google scholar
[48]
L. L. Zheng , T. S. Yin , Q. Bin , X. Y. Lü , Y. Wu . Single-photon-induced phonon blockade in a hybrid spin-optomechanical system. Phys. Rev. A, 2019, 99(1): 013804
CrossRef ADS Google scholar
[49]
T. S. Yin , Q. Bin , G. L. Zhu , G. R. Jin , A. X. Chen . Phonon blockade in a hybrid system via the second-order magnetic gradient. Phys. Rev. A, 2019, 100(6): 063840
CrossRef ADS Google scholar
[50]
J. Y. Yang , Z. Jin , J. S. Liu , H. F. Wang , A. D. Zhu . Unconventional phonon blockade in a Tavis‒Cummings coupled optomechanical system. Ann. Phys., 2020, 532(12): 2000299
CrossRef ADS Google scholar
[51]
P. Rabl . Photon blockade effect in optomechanical systems. Phys. Rev. Lett., 2011, 107(6): 063601
CrossRef ADS Google scholar
[52]
J. Q. Liao , F. Nori . Photon blockade in quadratically coupled optomechanical systems. Phys. Rev. A, 2013, 88(2): 023853
CrossRef ADS Google scholar
[53]
H. Z. Shen , Y. H. Zhou , X. X. Yi . Tunable photon blockade in coupled semiconductor cavities. Phys. Rev. A, 2015, 91(6): 063808
CrossRef ADS Google scholar
[54]
H. Flayac , V. Savona . Unconventional photon blockade. Phys. Rev. A, 2017, 96(5): 053810
CrossRef ADS Google scholar
[55]
R. Huang , A. Miranowicz , J. Q. Liao , F. Nori , H. Jing . Nonreciprocal photon blockade. Phys. Rev. Lett., 2018, 121(15): 153601
CrossRef ADS Google scholar
[56]
H. J. Snijders , J. A. Frey , J. Norman , H. Flayac , V. Savona , A. C. Gossard , J. E. Bowers , M. P. van Exter , D. Bouwmeester , W. Löffler . Observation of the unconventional photon blockade. Phys. Rev. Lett., 2018, 121(4): 043601
CrossRef ADS Google scholar
[57]
B. Sarma , A. K. Sarma . Unconventional photon blockade in three-mode optomechanics. Phys. Rev. A, 2018, 98(1): 013826
CrossRef ADS Google scholar
[58]
B. J. Li , R. Huang , X. W. Xu , A. Miranowicz , H. Jing . Nonreciprocal unconventional photon blockade in a spinning optomechanical system. Photon. Res., 2019, 7(6): 630
CrossRef ADS Google scholar
[59]
D. Y. Wang , C. H. Bai , S. Liu , S. Zhang , H. F. Wang . Distinguishing photon blockade in a PT-symmetric optomechanical system. Phys. Rev. A, 2019, 99(4): 043818
CrossRef ADS Google scholar
[60]
D. Y. Wang , C. H. Bai , S. Liu , S. Zhang , H. F. Wang . Photon blockade in a double-cavity optomechanical system with nonreciprocal coupling. New J. Phys., 2020, 22(9): 093006
CrossRef ADS Google scholar
[61]
Y. P. Gao , C. Cao , P. F. Lu , C. Wang . Phase-controlled photon blockade in optomechanical systems. Fundamental Research, 2023, 3(1): 30
CrossRef ADS Google scholar
[62]
L. J. Feng , L. Yan , S. Q. Gong . Unconventional photon blockade induced by the self-Kerr and cross-Kerr nonlinearities. Front. Phys., 2023, 18(1): 12304
CrossRef ADS Google scholar
[63]
Z. X. Liu , H. Xiong , Y. Wu . Magnon blockade in a hybrid ferromagnet‒superconductor quantum system. Phys. Rev. B, 2019, 100(13): 134421
CrossRef ADS Google scholar
[64]
J. K. Xie , S. L. Ma , F. L. Li . Quantum-interference-enhanced magnon blockade in an yttrium-iron-garnet sphere coupled to superconducting circuits. Phys. Rev. A, 2020, 101(4): 042331
CrossRef ADS Google scholar
[65]
Y. J. Xu , T. L. Yang , L. Lin , J. Song . Conventional and unconventional magnon blockades in a qubit-magnon hybrid quantum system. J. Opt. Soc. Am. B, 2021, 38(3): 876
CrossRef ADS Google scholar
[66]
X. Y. Li , X. Wang , Z. Wu , W. X. Yang , A. X. Chen . Tunable magnon antibunching in a hybrid ferromagnet‒superconductor system with two qubits. Phys. Rev. B, 2021, 104(22): 224434
CrossRef ADS Google scholar
[67]
Y. M. Wang , W. Xiong , Z. Y. Xu , G. Q. Zhang , J. Q. You . Dissipation-induced nonreciprocal magnon blockade in a magnon-based hybrid system. Sci. China Phys. Mech. Astron., 2022, 65(6): 260314
CrossRef ADS Google scholar
[68]
T. K. Paraïso , M. Kalaee , L. Zang , H. Pfeifer , F. Marquardt , O. Painter . Position-squared coupling in a tunable photonic crystal optomechanical cavity. Phys. Rev. X, 2015, 5(4): 041024
CrossRef ADS Google scholar
[69]
J. C. Sankey , C. Yang , B. M. Zwickl , A. M. Jayich , J. G. Harris . Strong and tunable nonlinear optomechanical coupling in a low-loss system. Nat. Phys., 2010, 6(9): 707
CrossRef ADS Google scholar
[70]
H. Sekoguchi , Y. Takahashi , T. Asano , S. Noda . Photonic crystal nanocavity with a Q-factor of ~9 million. Opt. Express, 2014, 22(1): 916
CrossRef ADS Google scholar
[71]
T. S. Yin , X. Y. Lü , L. L. Zheng , M. Wang , S. Li , Y. Wu . Nonlinear effects in modulated quantum optomechanics. Phys. Rev. A, 2017, 95(5): 053861
CrossRef ADS Google scholar
[72]
D. Vitali , S. Gigan , A. Ferreira , H. R. Böhm , P. Tombesi , A. Guerreiro , V. Vedral , A. Zeilinger , M. Aspelmeyer . Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett., 2007, 98(3): 030405
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Acknowledgements

Y.-J. Xu is supported by the National Science Foundation for Distinguished Young Scholars of the Higher Education Institutions of Anhui Province under Grant No. 2022AH020097, the Excellent Scientific Research and Innovation Team of Anhui Colleges under Grant No. 2022AH010098, and the Collaborative Innovation Project of University of Anhui Province under Grant No. GXXT-2022-088. H. Xie is supported by the National Natural Science Foundation of China under Grant No. 12174054.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(4107 KB)

Accesses

Citations

Detail

Sections
Recommended

/