Engineering phonon thermal transport in few-layer PdSe2

Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao

PDF(3337 KB)
PDF(3337 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (3) : 33203. DOI: 10.1007/s11467-023-1351-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Engineering phonon thermal transport in few-layer PdSe2

Author information +
History +

Abstract

Engineering phonon transport in low-dimensional materials has great significance not only for fundamental research, but also for thermal management applications of electric devices. However, due to the difficulties of micro and nano processing and characterization techniques, the work on tuning phonon transport at nanoscale are scarce. In this work, by introducing Ar+ plasma, we probed the phonon transport in two-dimensional (2D) layered semiconductor PdSe2 under different defect concentrations. By using thermal bridge method, the thermal conductivity was measured to decrease by 50% after a certain Ar+ irradiation, which implied a possible phase transition. Moreover, Raman characterizations were performed to show that the Raman sensitive peaks of PdSe2 was red-shifted and finally became disappeared with the increase of defect concentration. “Defect engineering” proves be a practical strategy in tuning the phonon thermal transport in low-dimensional materials, thus providing guidance for potential application in designing thermoelectric devices with various emerging materials.

Graphical abstract

Keywords

phonon transport / PdSe2 / defects / thermal bridge method

Cite this article

Download citation ▾
Meilin Li, Huanhuan Sun, Jun Zhou, Yunshan Zhao. Engineering phonon thermal transport in few-layer PdSe2. Front. Phys., 2024, 19(3): 33203 https://doi.org/10.1007/s11467-023-1351-x

References

[1]
Y. Pei , X. Shi , A. LaLonde , H. Wang , L. Chen , G. J. Snyder . Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011, 473(7345): 66
CrossRef ADS Google scholar
[2]
M. S. Dresselhaus , G. Chen , M. Y. Tang , R. G. Yang , H. Lee , D. Z. Wang , Z. F. Ren , J. P. Fleurial , P. Gogna . New directions for low-dimensional thermoelectric materials. Adv. Mater., 2007, 19(8): 1043
CrossRef ADS Google scholar
[3]
R. Kim , S. Datta , M. S. Lundstrom . Influence of dimensionality on thermoelectric device performance. J. Appl. Phys., 2009, 105(3): 034506
CrossRef ADS Google scholar
[4]
K. Hippalgaonkar , Y. Wang , Y. Ye , D. Y. Qiu , H. Zhu , Y. Wang , J. Moore , S. G. Louie , X. Zhang . High thermoelectric power factor in two-dimensional crystals of MoS2. Phys. Rev. B, 2017, 95(11): 115407
CrossRef ADS Google scholar
[5]
L. D. Hicks , M. S. Dresselhaus . Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B, 1993, 47(19): 12727
CrossRef ADS Google scholar
[6]
Y. M. Zuev , W. Chang , P. Kim . Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett., 2009, 102(9): 096807
CrossRef ADS Google scholar
[7]
Z.YuG.XiongL.Zhang, A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
[8]
Y. Zhao , P. Yu , G. Zhang , M. Sun , D. Chi , K. Hippalgaonkar , J. T. L. Thong , J. Wu . Low-symmetry PdSe2 for high performance thermoelectric applications. Adv. Funct. Mater., 2020, 30(52): 2004896
CrossRef ADS Google scholar
[9]
Y. Zhao , M. Zheng , J. Wu , X. Guan , A. Suwardi , Y. Li , M. Lal , G. Xie , G. Zhang , L. Zhang , J. T. L. Thong . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
CrossRef ADS Google scholar
[10]
A. Di Bartolomeo , F. Urban , A. Pelella , A. Grillo , M. Passacantando , X. Liu , F. Giubileo . Electron irradiation of multilayer PdSe2 field effect transistors. Nanotechnology, 2020, 31(37): 375204
CrossRef ADS Google scholar
[11]
A. Di Bartolomeo , A. Pelella , X. Liu , F. Miao , M. Passacantando , F. Giubileo , A. Grillo , L. Iemmo , F. Urban , S. Liang . Pressure-tunable ambipolar conduction and hysteresis in thin palladium diselenide field effect transistors. Adv. Funct. Mater., 2019, 29(29): 1902483
CrossRef ADS Google scholar
[12]
G.D. NguyenL.LiangQ.ZouM.FuA.D. OyedeleB.G. SumpterZ.LiuZ.GaiK.XiaoA.P. Li, 3D imaging and manipulation of subsurface selenium vacancies in PdSe2, Phys. Rev. Lett. 121(8), 086101 (2018)
[13]
A. D. Oyedele , S. Yang , T. Feng , A. V. Haglund , Y. Gu , A. A. Puretzky , D. Briggs , C. M. Rouleau , M. F. Chisholm , R. R. Unocic , D. Mandrus , H. M. III Meyer , S. T. Pantelides , D. B. Geohegan , K. Xiao . Defect-mediated phase transformation in anisotropic two-dimensional PdSe2 crystals for seamless electrical contacts. J. Am. Chem. Soc., 2019, 141(22): 8928
CrossRef ADS Google scholar
[14]
J. Lin , S. Zuluaga , P. Yu , Z. Liu , S. T. Pantelides , K. Suenaga . Novel Pd2Se3 two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett., 2017, 119(1): 016101
CrossRef ADS Google scholar
[15]
M. A. ElGhazali , P. G. Naumov , H. Mirhosseini , V. Süß , L. Müchler , W. Schnelle , C. Felser , S. A. Medvedev . Pressure-induced superconductivity up to 13.1 K in the pyrite phase of palladium diselenide PdSe2. Phys. Rev. B, 2017, 96(6): 060509
CrossRef ADS Google scholar
[16]
L. Chen , W. Zhang , H. Zhang , J. Chen , C. Tan , S. Yin , G. Li , Y. Zhang , P. Gong , L. Li . In-plane anisotropic thermal conductivity of low-symmetry PdSe2. Sustainability (Basel), 2021, 13(8): 4155
CrossRef ADS Google scholar
[17]
K. C. Zhang , L. Y. Cheng , C. Shen , Y. F. Li , Y. Liu , Y. Zhu . Thickness-dependent anisotropic transport of phonons and charges in few-layered PdSe2. Phys. Chem. Chem. Phys., 2021, 23(34): 18869
CrossRef ADS Google scholar
[18]
T. Jena , M. T. Hossain , P. K. Giri . Temperature-dependent Raman study and determination of anisotropy ratio and in-plane thermal conductivity of low-temperature CVD-grown PdSe2 using unpolarized laser excitation. J. Mater. Chem. C, 2021, 9(46): 16693
CrossRef ADS Google scholar
[19]
D. Qin , P. Yan , G. Ding , X. Ge , H. Song , G. Gao . Monolayer PdSe2: A promising two-dimensional thermoelectric material. Sci. Rep., 2018, 8(1): 2764
CrossRef ADS Google scholar
[20]
Y. Wang , J. Ren . Strain-driven switchable thermal conductivity in ferroelastic PdSe2. ACS Appl. Mater. Interfaces, 2021, 13(29): 34724
CrossRef ADS Google scholar
[21]
A. N. Hoffman , Y. Gu , L. Liang , J. D. Fowlkes , K. Xiao , P. D. Rack . Exploring the air stability of PdSe2 via electrical transport measurements and defect calculations. 2D Mater. Appl., 2019, 3: 50
CrossRef ADS Google scholar
[22]
J. Chen , J. He , D. Pan , X. Wang , N. Yang , J. Zhu , S. A. Yang , G. Zhang . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
CrossRef ADS Google scholar
[23]
Z. Zhang , J. Chen , B. Li . Negative Gaussian curvature induces significant suppression of thermal conduction in carbon crystals. Nanoscale, 2017, 9(37): 14208
CrossRef ADS Google scholar
[24]
Y. Cai , M. Faizan , H. Mu , Y. Zhang , H. Zou , H. J. Zhao , Y. Fu , L. Zhang . Anisotropic phonon thermal transport in two-dimensional layered materials. Front. Phys., 2023, 18(4): 43303
CrossRef ADS Google scholar
[25]
C. Yu , Y. Hu , J. He , S. Lu , D. Li , J. Chen . Strong four-phonon scattering in monolayer and hydrogenated bilayer BAs with horizontal mirror symmetry. Appl. Phys. Lett., 2022, 120(13): 132201
CrossRef ADS Google scholar
[26]
K. Bera , A. Roy , D. Chugh , J. Wong-Leung , H. Hoe Tan , C. Jagadish . Role of defects and grain boundaries in the thermal response of wafer-scale hBN films. Nanotechnology, 2021, 32(7): 075702
CrossRef ADS Google scholar
[27]
X. Wu , Q. Han . Thermal conductivity of monolayer hexagonal boron nitride: From defective to amorphous. Comput. Mater. Sci., 2020, 184: 109938
CrossRef ADS Google scholar
[28]
Q. Cai , D. Scullion , A. Falin , K. Watanabe , T. Taniguchi , Y. Chen , E. J. G. Santos , L. H. Li . Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale, 2017, 9(9): 3059
CrossRef ADS Google scholar
[29]
A. Aiyiti , S. Hu , C. Wang , Q. Xi , Z. Cheng , M. Xia , Y. Ma , J. Wu , J. Guo , Q. Wang , J. Zhou , J. Chen , X. Xu , B. Li . Thermal conductivity of suspended few-layer MoS2. Nanoscale, 2018, 10(6): 2727
CrossRef ADS Google scholar
[30]
Y. Zhao , M. Zheng , J. Wu , X. Guan , A. Suwardi , Y. Li , M. Lal , G. Xie , G. Zhang , L. Zhang , J. T. L. Thong . Modification of thermal transport in few-layer MoS2 by atomic-level defect engineering. Nanoscale, 2021, 13(26): 11561
CrossRef ADS Google scholar
[31]
H. R. Naren , A. Thamizhavel , S. Auluck , R. Prasad , S. Ramakrishnan . Normal state and superconducting properties of Rh17S15 and Pd17Se15. Supercond. Sci. Technol., 2011, 24(10): 105015
CrossRef ADS Google scholar
[32]
W. L. Chow , P. Yu , F. Liu , J. Hong , X. Wang , Q. Zeng , C. H. Hsu , C. Zhu , J. Zhou , X. Wang , J. Xia , J. Yan , Y. Chen , D. Wu , T. Yu , Z. Shen , H. Lin , C. Jin , B. K. Tay , Z. Liu . High mobility 2D palladium diselenide field-effect transistors with tunable ambipolar characteristics. Adv. Mater., 2017, 29(21): 1602969
CrossRef ADS Google scholar
[33]
J. C. Meyer , A. Chuvilin , G. Algara-Siller , J. Biskupek , U. Kaiser . Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett., 2009, 9(7): 2683
CrossRef ADS Google scholar
[34]
D. Pacilé , J. C. Meyer , Ç. Ö. Girit , A. Zettl . The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett., 2008, 92(13): 133107
CrossRef ADS Google scholar
[35]
A. D. Oyedele , S. Yang , L. Liang , A. A. Puretzky , K. Wang , J. Zhang , P. Yu , P. R. Pudasaini , A. W. Ghosh , Z. Liu , C. M. Rouleau , B. G. Sumpter , M. F. Chisholm , W. Zhou , P. D. Rack , D. B. Geohegan , K. Xiao . PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc., 2017, 139(40): 14090
CrossRef ADS Google scholar
[36]
J. W. Roh , J. Ham , J. Kim , H. Moon , H. S. Kim , W. Lee . Extreme reduction of thermal conductivity by embedding Al2O3 nanoparticles into single-crystalline Bi nanowires. Acta Mater., 2017, 136: 315
CrossRef ADS Google scholar
[37]
C. Wang , J. Guo , L. Dong , A. Aiyiti , X. Xu , B. Li . Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep., 2016, 6(1): 25334
CrossRef ADS Google scholar
[38]
Y. Zhao , M. Zheng , J. Wu , B. Huang , J. T. L. Thong . Studying thermal transport in suspended monolayer molybdenum disulfide prepared by a nano-manipulator-assisted transfer method. Nanotechnology, 2020, 31(22): 225702
CrossRef ADS Google scholar
[39]
P. Kim , L. Shi , A. Majumdar , P. L. McEuen . Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21): 215502
CrossRef ADS Google scholar
[40]
S. Lee , F. Yang , J. Suh , S. Yang , Y. Lee , G. Li , H. Sung Choe , A. Suslu , Y. Chen , C. Ko , J. Park , K. Liu , J. Li , K. Hippalgaonkar , J. J. Urban , S. Tongay , J. Wu . Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat. Commun., 2015, 6(1): 8573
CrossRef ADS Google scholar
[41]
I. Jo , M. T. Pettes , E. Ou , W. Wu , L. Shi . Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett., 2014, 104(20): 201902
CrossRef ADS Google scholar
[42]
L. Dong , Q. Xi , D. Chen , J. Guo , T. Nakayama , Y. Li , Z. Liang , J. Zhou , X. Xu , B. Li . Dimensional crossover of heat conduction in amorphous polyimide nanofibers. Natl. Sci. Rev., 2018, 5(4): 500
CrossRef ADS Google scholar
[43]
M. T. Pettes , I. Jo , Z. Yao , L. Shi . Influence of polymeric residue on the thermal conductivity of suspended bilayer graphene. Nano Lett., 2011, 11(3): 1195
CrossRef ADS Google scholar
[44]
J. Lim , K. Hippalgaonkar , S. C. Andrews , A. Majumdar , P. Yang . Quantifying surface Roughness effects on phonon transport in silicon nanowires. Nano Lett., 2012, 12(5): 2475
CrossRef ADS Google scholar
[45]
L. Yang , Y. Tao , Y. Zhu , M. Akter , K. Wang , Z. Pan , Y. Zhao , Q. Zhang , Y. Q. Xu , R. Chen , T. T. Xu , Y. Chen , Z. Mao , D. Li . Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol., 2021, 16(7): 764
CrossRef ADS Google scholar
[46]
W.LuoA.D. OyedeleN.MaoA.PuretzkyK.XiaoL.LiangX.Ling, Excitation-dependent anisotropic Raman response of atomically thin pentagonal PdSe2, ACS Phys. Chem Au 2(6), 482 (2022)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12204244), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210556), and the Department of Science and Technology of Jiangsu Province (No. BK20220032). Y. S. Zhao acknowledges the support from the Jiangsu Specially-Appointed Professor Program.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(3337 KB)

Accesses

Citations

Detail

Sections
Recommended

/