Pure quantum gradient descent algorithm and full quantum variational eigensolver

Ronghang Chen, Zhou Guang, Cong Guo, Guanru Feng, Shi-Yao Hou

PDF(7124 KB)
PDF(7124 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 21202. DOI: 10.1007/s11467-023-1346-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Pure quantum gradient descent algorithm and full quantum variational eigensolver

Author information +
History +

Abstract

Optimization problems are prevalent in various fields, and the gradient-based gradient descent algorithm is a widely adopted optimization method. However, in classical computing, computing the numerical gradient for a function with d variables necessitates at least d+ 1 function evaluations, resulting in a computational complexity of O(d). As the number of variables increases, the classical gradient estimation methods require substantial resources, ultimately surpassing the capabilities of classical computers. Fortunately, leveraging the principles of superposition and entanglement in quantum mechanics, quantum computers can achieve genuine parallel computing, leading to exponential acceleration over classical algorithms in some cases. In this paper, we propose a novel quantum-based gradient calculation method that requires only a single oracle calculation to obtain the numerical gradient result for a multivariate function. The complexity of this algorithm is just O(1). Building upon this approach, we successfully implemented the quantum gradient descent algorithm and applied it to the variational quantum eigensolver (VQE), creating a pure quantum variational optimization algorithm. Compared with classical gradient-based optimization algorithm, this quantum optimization algorithm has remarkable complexity advantages, providing an efficient solution to optimization problems.The proposed quantum-based method shows promise in enhancing the performance of optimization algorithms, highlighting the potential of quantum computing in this field.

Graphical abstract

Keywords

quantum algorithm / gradient descent / variational quantum algorithm

Cite this article

Download citation ▾
Ronghang Chen, Zhou Guang, Cong Guo, Guanru Feng, Shi-Yao Hou. Pure quantum gradient descent algorithm and full quantum variational eigensolver. Front. Phys., 2024, 19(2): 21202 https://doi.org/10.1007/s11467-023-1346-7

References

[1]
E.FarhiJ. Goldstone, A quantum approximate optimization algorithm, arXiv: 1411.4028 (2014)
[2]
E.FarhiJ. GoldstoneS.GutmannM.Sipser, Quantum computation by adiabatic evolution, arXiv: quant-ph/0001106 (2000)
[3]
G. G. Guerreschi, A. Y. Matsuura. Qaoa for max-cut requires hundreds of qubits for quantum speed-up. Sci. Rep., 2019, 6(1): 6903
CrossRef ADS Google scholar
[4]
M.A. Nielsen, Neural Networks and Deep Learning, Determination Press, 2015
[5]
M.SchuldI. Sinayskiy, The quest for a quantum neural network, arXiv: 1408.7005 (2014)
[6]
V. Dunjko, J. M. Taylor, H. J. Briegel. Quantumenhanced machine learning. Phys. Rev. Lett., 2016, 117(13): 130501
CrossRef ADS Google scholar
[7]
T.Sakuma, Application of deep quantum neural networks to finance, arXiv: 2011.07319 (2020)
[8]
R.OrusS. MugelE.Lizaso, Quantum computing for finance: Overview and prospects, arXiv: 1807.03890v2 (2018)
[9]
D. J. Egger, C. Gambella, J. Marecek, S. McFaddin, M. Mevissen, R. Raymond, A. Simonetto, S. Woerner, E. Yndurain. Quantum computing for finance: State-of-the-art and future prospects. IEEE Trans. Quant. Eng., 2020, 1: 3101724
CrossRef ADS Google scholar
[10]
R. P. Feynmen. Forces in molecules. Phys. Rev. Lett., 1939, 56: 340
CrossRef ADS Google scholar
[11]
D. A. Fedorov, M. J. Otten, S. K. Gray, Y. Alexeev. Ab initio molecular dynamics on quantum computers. J. Chem. Phys., 2021, 154(16): 164103
CrossRef ADS Google scholar
[12]
V. Gandhi, G. Prasad, D. Coyle, L. Behera, T. M. McGinnity. Quantum neural network-based EEG filtering for a brain–computer interface. IEEE Trans. Neural Netw. Learn. Syst., 2014, 25(2): 278
CrossRef ADS Google scholar
[13]
A.PeruzzoJ. McCleanP.Shadbolt, ., A variational eigenvalue solver on a quantum processor, arXiv: 1304.3061 (2013)
[14]
S. Wei, H. Li, G. Long. A full quantum eigensolver for quantum chemistry simulations. Research, 2020, 2020: 1486935
CrossRef ADS Google scholar
[15]
S.Ruder, An overview of gradient descent optimization algorithms, arXiv: 1609.04747 (2016)
[16]
J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik. The theory of variational hybrid quantumclassical algorithms. New J. Phys., 2016, 18(2): 023023
CrossRef ADS Google scholar
[17]
M.CerezoA. ArrasmithR.BabbushS.C. BenjaminS.Endo K.FujiiJ. R. McCleanK.MitaraiX.YuanL.Cincio P.J. Coles, Variational quantum algorithms, arXiv: 2012.09265 (2020)
[18]
S. Y. Hou, G. Feng, Z. Wu, H. Zou, W. Shi, J. Zeng, C. Cao, S. Yu, Z. Sheng, X. Rao, B. Ren, D. Lu, J. Zou, G. Miao, J. Xiang, B. Zeng. Spinq gemini: A desktop quantum computing platform for education and research. EPJ Quantum Technol., 2021, 8(1): 20
CrossRef ADS Google scholar
[19]
G. Yuan, T. Li, W. Hu. A conjugate gradient algorithm and its application in large-scale optimization problems and image restoration. J. Inequal. Appl., 2019, 2019(1): 247
CrossRef ADS Google scholar
[20]
C. G. Broyden. The convergence of a class of double-rank minimization algorithms (1): General considerations. IMA J. Appl. Math., 1970, 6(1): 76
CrossRef ADS Google scholar
[21]
R. Fletcher. A new approach to variable metric algorithms. Comput. J., 1970, 13(3): 317
CrossRef ADS Google scholar
[22]
D. Goldfarb. A family of variable-metric methods derived by variational means. Math. Comput., 1970, 24(109): 23
CrossRef ADS Google scholar
[23]
D. F. Shanno. Conditioning of quasi-Newton methods for function minimization. Math. Comput., 1970, 24(111): 647
CrossRef ADS Google scholar
[24]
P. Gao, K. Li, S. Wei, J. Gao, G. Long. Quantum gradient algorithm for general polynomials. Phys. Rev. A, 2021, 103(4): 042403
CrossRef ADS Google scholar
[25]
M.NielsenI. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2010
[26]
D. P. DiVincenzo. Quantum computation. Science, 1995, 270(5234): 255
CrossRef ADS Google scholar
[27]
J. Preskill. Quantum computing in the NISQ era and beyond. Quantum, 2018, 2: 79
CrossRef ADS Google scholar
[28]
P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, in: Proceedings 35th Annual Symposium on Foundations of Computer Science, 1994, pp 124–134
[29]
T. Monz, D. Nigg, E. A. Martinez, M. F. Brandl, P. Schindler, R. Rines, S. X. Wang, I. L. Chuang, R. Blatt. Realization of a scalable Shor algorithm. Science, 2016, 351(6277): 1068
CrossRef ADS Google scholar
[30]
L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
CrossRef ADS Google scholar
[31]
G. L. Long. Grover algorithm with zero theoretical failure rate. Phys. Rev. A, 2001, 64(2): 022307
CrossRef ADS Google scholar
[32]
A. W. Harrow, A. Hassidim, S. Lloyd. Quantum algorithm for linear systems of equations. Phys. Rev. Lett., 2009, 103(15): 150502
CrossRef ADS Google scholar
[33]
B. Duan, J. Yuan, C. H. Yu, J. Huang, C. Y. Hsieh. A survey on HHLalgorithm: From theory to application in quantum machine learning. Phys. Lett. A, 2020, 384(24): 126595
CrossRef ADS Google scholar
[34]
S. P. Jordan. Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett., 2005, 95(5): 050501
CrossRef ADS Google scholar
[35]
R.WiersemaD. LewisD.WierichsJ.CarrasquillaN.Killoran, Here comes the SU(n): multivariate quantum gates and gradients, arXiv: 2303.11355 (2023)
[36]
A.GilyénS.ArunachalamN.Wiebe, Optimizing quantum optimization algorithms via faster quantum gradient computation, in: Proceedings of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms, 2019, pp 1425–1444
[37]
J. Li. General explicit difference formulas for numerical differentiation. J. Comput. Appl. Math., 2005, 183(1): 29
CrossRef ADS Google scholar
[38]
W.H. PressS. A. TeukolskyW.T. Vetterling, Numerical Recipes in C, Cambridge University Press, 1992
[39]
Y.LiM.Dou, A quantum addition operation method, device, electronic device and storage medium, Origin Quantum (2021)
[40]
C. Zhu, R. H. Byrd, P. Lu, J. Nocedal. Algorithm 778: L-BFGS-B. ACM Trans. Math. Softw., 1997, 23(4): 550
CrossRef ADS Google scholar
[41]
G.Aleksandrowicz, ., Qiskit: An open-source framework for quantum computing, 2019
[42]
R. M. Parrish, E. G. Hohenstein, P. L. McMahon, T. J. Martínez. Quantum computation of electronic transitions using a variational quantum eigensolver. Phys. Rev. Lett., 2019, 122(23): 230401
CrossRef ADS Google scholar
[43]
A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink, J. M. Chow, J. M. Gambetta. Hardwareefficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 2017, 549(7671): 242
CrossRef ADS Google scholar
[44]
C. Hempel, C. Maier, J. Romero, J. McClean, T. Monz, H. Shen, P. Jurcevic, B. P. Lanyon, P. Love, R. Babbush, A. Aspuru-Guzik, R. Blatt, C. F. Roos. Quantum chemistry calculations on a trapped-ion quantum simulator. Phys. Rev. X, 2018, 8(3): 031022
CrossRef ADS Google scholar
[45]
K. Mitarai, M. Negoro, M. Kitagawa, K. Fujii. Quantum circuit learning. Phys. Rev. A, 2018, 98(3): 032309
CrossRef ADS Google scholar
[46]
M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran. Evaluating analytic gradients on quantum hardware. Phys. Rev. A, 2019, 99(3): 032331
CrossRef ADS Google scholar
[47]
J. Lee, W. J. Huggins, M. Head-Gordon, K. B. Whaley. Generalized unitary coupled cluster wave functions for quantum computation. J. Chem. Theory Comput., 2019, 15(1): 311
CrossRef ADS Google scholar
[48]
D. Wecker, M. B. Hastings, M. Troyer. Progress towards practical quantum variational algorithms. Phys. Rev. A, 2015, 92(4): 042303
CrossRef ADS Google scholar
[49]
R. Wiersema, C. Zhou, Y. de Sereville, J. F. Carrasquilla, Y. B. Kim, H. Yuen. Exploring entanglement and optimization within the hamiltonian variational ansatz. PRX Quantum, 2020, 1(2): 020319
CrossRef ADS Google scholar
[50]
A.GilyénY.SuG.H. Low N.Wiebe, Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics, arXiv: 1806.01838 (2018)
[51]
G.H. LowI. L. Chuang, Hamiltonian simulation by qubitization, arXiv: 1610.06546 (2016)
[52]
A.M. ChildsN. Wiebe, Hamiltonian simulation using linear combinations of unitary operations, arXiv: 1202.5822 (2012)
[53]
L.Bottou, Large-scale machine learning with stochastic gradient descent, in: Proceedings of COMPSTAT’2010, edited by Y. Lechevallier and G. Saporta, Physica-Verlag HD, Heidelberg, 2010, pp 177–186

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

R. Chen and S. Y. Hou are supported by the National Natural Science Foundation of China under Grant No. 12105195.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7124 KB)

Accesses

Citations

Detail

Sections
Recommended

/