Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides
YanZuo Chen, ShaoGang Yu, Tao Jiang, XiaoJun Liu, XinBin Cheng, Di Huang
Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides
Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.
monolayer transition-metal dichalcogenides / two-dimensional coherent spectroscopy
[1] |
A. Castellanos-Gomez. Why all the fuss about 2D semiconductors. Nat. Photonics, 2016, 10(4): 202
CrossRef
ADS
Google scholar
|
[2] |
G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 2018, 90(2): 021001
CrossRef
ADS
Google scholar
|
[3] |
W. P. Aue, E. Bartholdi, R. R. Ernst. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5): 2229
CrossRef
ADS
Google scholar
|
[4] |
Y. Tanimura, S. Mukamel. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys., 1993, 99(12): 9496
CrossRef
ADS
Google scholar
|
[5] |
S. T. Cundiff, S. Mukamel. Optical multidimensional coherent spectroscopy. Phys. Today, 2013, 66(7): 44
CrossRef
ADS
Google scholar
|
[6] |
P. Hamm, M. Lim, W. F. DeGrado, R. M. Hochstrasser. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure. Proc. Natl. Acad. Sci. USA, 1999, 96(5): 2036
CrossRef
ADS
Google scholar
|
[7] |
O. Golonzka, M. Khalil, N. Demirdöven, A. Tokmakoff. Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy. Phys. Rev. Lett., 2001, 86(10): 2154
CrossRef
ADS
Google scholar
|
[8] |
F. D. Fuller, J. P. Ogilvie. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem., 2015, 66(1): 667
CrossRef
ADS
Google scholar
|
[9] |
M.Cho, Coherent Multidimensional Spectroscopy, Springer, 2019
|
[10] |
H.LiB.Lomsadze G.MoodyC. SmallwoodS.T. Cundiff, Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023
|
[11] |
T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434(7033): 625
CrossRef
ADS
Google scholar
|
[12] |
E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, G. D. Scholes. Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463(7281): 644
CrossRef
ADS
Google scholar
|
[13] |
C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, P. L. Geissler. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301(5640): 1698
CrossRef
ADS
Google scholar
|
[14] |
B. Dereka, Q. Yu, N. H. C. Lewis, W. B. Carpenter, J. M. Bowman, A. Tokmakoff. Crossover from hydrogen to chemical bonding. Science, 2021, 371(6525): 160
CrossRef
ADS
Google scholar
|
[15] |
X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, S. T. Cundiff. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett., 2012, 108(19): 193201
CrossRef
ADS
Google scholar
|
[16] |
S. Yu, M. Titze, Y. Zhu, X. Liu, H. Li. Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett., 2019, 44(11): 2795
CrossRef
ADS
Google scholar
|
[17] |
K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, K. A. Nelson. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science, 2009, 324(5931): 1169
CrossRef
ADS
Google scholar
|
[18] |
J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, F. Deschler. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun., 2017, 8(1): 376
CrossRef
ADS
Google scholar
|
[19] |
J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, M. D. Fayer. Dynamically disordered lattice in a layered Pb−I−SCN perovskite thin film probed by two dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140(31): 9882
CrossRef
ADS
Google scholar
|
[20] |
G. Moody, C. Kavir Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, X. Li. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2015, 6(1): 8315
CrossRef
ADS
Google scholar
|
[21] |
L. Guo, C. A. Chen, Z. Zhang, D. M. Monahan, Y. H. Lee, G. R. Fleming. Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Adv., 2020, 2(6): 2333
CrossRef
ADS
Google scholar
|
[22] |
T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, J. Kasprzak. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett., 2016, 16(9): 5333
CrossRef
ADS
Google scholar
|
[23] |
T. Jakubczyk, K. Nogajewski, M. R. Molas, M. Bartos, W. Langbein, M. Potemski, J. Kasprzak. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater., 2018, 5: 031007
CrossRef
ADS
Google scholar
|
[24] |
C. Boule, D. Vaclavkova, M. Bartos, K. Nogajewski, L. Zdražil, T. Taniguchi, K. Watanabe, M. Potemski, J. Kasprzak. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater., 2020, 4(3): 034001
CrossRef
ADS
Google scholar
|
[25] |
T. L. Purz, E. W. Martin, W. G. Holtzmann, P. Rivera, A. Alfrey, K. M. Bates, H. Deng, X. Xu, S. T. Cundiff. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys., 2022, 156(21): 214704
CrossRef
ADS
Google scholar
|
[26] |
K. F. Mak, K. He, J. Shan, T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
CrossRef
ADS
Google scholar
|
[27] |
Z. Ye, D. Sun, T. F. Heinz. Optical manipulation of valley pseudospin. Nat. Phys., 2017, 13(1): 26
CrossRef
ADS
Google scholar
|
[28] |
K. Hao, G. Moody, F. Wu, C. K. Dass, L. Xu, C. H. Chen, L. Sun, M. Y. Li, L. J. Li, A. H. MacDonald, X. Li. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys., 2016, 12(7): 677
CrossRef
ADS
Google scholar
|
[29] |
M. Titze, B. Li, X. Zhang, P. M. Ajayan, H. Li. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy. Phys. Rev. Mater., 2018, 2(5): 054001
CrossRef
ADS
Google scholar
|
[30] |
K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, X. Li. Trion valley coherence in monolayer semiconductors. 2D Mater., 2017, 4: 025105
CrossRef
ADS
Google scholar
|
[31] |
J. B. Muir, J. Levinsen, S. K. Earl, M. A. Conway, J. H. Cole, M. Wurdack, R. Mishra, D. J. Ing, E. Estrecho, Y. Lu, D. K. Efimkin, J. O. Tollerud, E. A. Ostrovskaya, M. M. Parish, J. A. Davis. Interactions between Fermi polarons in monolayer WS2. Nat. Commun., 2022, 13(1): 6164
CrossRef
ADS
Google scholar
|
[32] |
D. Huang, K. Sampson, Y. Ni, Z. Liu, D. Liang, K. Watanabe, T. Taniguchi, H. Li, E. Martin, J. Levinsen, M. M. Parish, E. Tutuc, D. K. Efimkin, X. Li. Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer. Phys. Rev. X, 2023, 13(1): 011029
CrossRef
ADS
Google scholar
|
[33] |
S. Helmrich, K. Sampson, D. Huang, M. Selig, K. Hao, K. Tran, A. Achstein, C. Young, A. Knorr, E. Malic, U. Woggon, N. Owschimikow, X. Li. Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers. Phys. Rev. Lett., 2021, 127(15): 157403
CrossRef
ADS
Google scholar
|
[34] |
D. Li, C. Trovatello, S. Dal Conte, M. Nuß, G. Soavi, G. Wang, A. C. Ferrari, G. Cerullo, T. Brixner. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun., 2021, 12(1): 954
CrossRef
ADS
Google scholar
|
[35] |
D. Li, H. Shan, C. Rupprecht, H. Knopf, K. Watanabe, T. Taniguchi, Y. Qin, S. Tongay, M. Nuß, S. Schröder, F. Eilenberger, S. Höfling, C. Schneider, T. Brixner. Hybridized exciton−photon−phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett., 2022, 128(8): 087401
CrossRef
ADS
Google scholar
|
[36] |
L. Guo, M. Wu, T. Cao, D. M. Monahan, Y. H. Lee, S. G. Louie, G. R. Fleming. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys., 2019, 15(3): 228
CrossRef
ADS
Google scholar
|
[37] |
L. T. Lloyd, R. E. Wood, F. Mujid, S. Sohoni, K. L. Ji, P. C. Ting, J. S. Higgins, J. Park, G. S. Engel. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy. ACS Nano, 2021, 15(6): 10253
CrossRef
ADS
Google scholar
|
[38] |
V. Mapara, A. Barua, V. Turkowski, M. T. Trinh, C. Stevens, H. Liu, F. A. Nugera, N. Kapuruge, H. R. Gutierrez, F. Liu, X. Zhu, D. Semenov, S. A. McGill, N. Pradhan, D. J. Hilton, D. Karaiskaj. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett., 2022, 22(4): 1680
CrossRef
ADS
Google scholar
|
[39] |
A. Singh, G. Moody, S. Wu, Y. Wu, N. J. Ghimire, J. Yan, D. G. Mandrus, X. Xu, X. Li. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett., 2014, 112(21): 216804
CrossRef
ADS
Google scholar
|
[40] |
K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, G. Moody. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett., 2016, 16(8): 5109
CrossRef
ADS
Google scholar
|
[41] |
A. Rodek, T. Hahn, J. Howarth, T. Taniguchi, K. Watanabe, M. Potemski, P. Kossacki, D. Wigger, J. Kasprzak. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2D Mater., 2023, 10: 025027
CrossRef
ADS
Google scholar
|
[42] |
R. Tempelaar, T. C. Berkelbach. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3419
CrossRef
ADS
Google scholar
|
[43] |
K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, G. Moody. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552
CrossRef
ADS
Google scholar
|
[44] |
R. E. Wood, L. T. Lloyd, F. Mujid, L. Wang, M. A. Allodi, H. Gao, R. Mazuski, P. C. Ting, S. Xie, J. Park, G. S. Engel. Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers. J. Phys. Chem. Lett., 2020, 11(7): 2658
CrossRef
ADS
Google scholar
|
[45] |
M. A. Conway, J. B. Muir, S. K. Earl, M. Wurdack, R. Mishra, J. O. Tollerud, J. A. Davis. Direct measurement of biexcitons in monolayer WS2. 2D Mater., 2022, 9: 021001
CrossRef
ADS
Google scholar
|
[46] |
C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao, K. Gundogdu. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett., 2014, 14(1): 202
CrossRef
ADS
Google scholar
|
[47] |
I. Kylänpää, H. P. Komsa. Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B, 2015, 92(20): 205418
CrossRef
ADS
Google scholar
|
[48] |
M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D. V. Voronine. Coherent two-dimensional nanoscopy. Science, 2011, 333(6050): 1723
CrossRef
ADS
Google scholar
|
[49] |
K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
CrossRef
ADS
Google scholar
|
[50] |
T. L. Purz, E. W. Martin, P. Rivera, W. G. Holtzmann, X. Xu, S. T. Cundiff. Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302
CrossRef
ADS
Google scholar
|
[51] |
V. R. Policht, M. Russo, F. Liu, C. Trovatello, M. Maiuri, Y. Bai, X. Zhu, S. Dal Conte, G. Cerullo. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738
CrossRef
ADS
Google scholar
|
[52] |
D. Huang, J. Choi, C. K. Shih, X. Li. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
CrossRef
ADS
Google scholar
|
[53] |
K. F. Mak, J. Shan. Semiconductor moiré materials. Nat. Nanotechnol., 2022, 17(7): 686
CrossRef
ADS
Google scholar
|
[54] |
C. E. Stevens, J. Paul, T. Cox, P. K. Sahoo, H. R. Gutiérrez, V. Turkowski, D. Semenov, S. A. McGill, M. D. Kapetanakis, I. E. Perakis, D. J. Hilton, D. Karaiskaj. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields. Nat. Commun., 2018, 9(1): 3720
CrossRef
ADS
Google scholar
|
[55] |
V. Mapara, C. E. Stevens, J. Paul, A. Barua, J. L. Reno, S. A. McGill, D. J. Hilton, D. Karaiskaj. Multidimensional spectroscopy of magneto-excitons at high magnetic fields. J. Chem. Phys., 2021, 155(20): 204201
CrossRef
ADS
Google scholar
|
[56] |
S. I. Azzam, K. Parto, G. Moody. Prospects and challenges of quantum emitters in 2D materials. Appl. Phys. Lett., 2021, 118(24): 240502
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |