Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides

YanZuo Chen, ShaoGang Yu, Tao Jiang, XiaoJun Liu, XinBin Cheng, Di Huang

PDF(4027 KB)
PDF(4027 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23301. DOI: 10.1007/s11467-023-1345-8
VIEW & PERSPECTIVE

Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides

Author information +
History +

Abstract

Exciton physics in atomically thin transition-metal dichalcogenides (TMDCs) holds paramount importance for fundamental physics research and prospective applications. However, the experimental exploration of exciton physics, including excitonic coherence dynamics, exciton many-body interactions, and their optical properties, faces challenges stemming from factors such as spatial heterogeneity and intricate many-body effects. In this perspective, we elaborate upon how optical two-dimensional coherent spectroscopy (2DCS) emerges as an effective tool to tackle the challenges, and outline potential directions for gaining deeper insights into exciton physics in forthcoming experiments with the advancements in 2DCS techniques and new materials.

Graphical abstract

Keywords

monolayer transition-metal dichalcogenides / two-dimensional coherent spectroscopy

Cite this article

Download citation ▾
YanZuo Chen, ShaoGang Yu, Tao Jiang, XiaoJun Liu, XinBin Cheng, Di Huang. Optical two-dimensional coherent spectroscopy of excitons in transition-metal dichalcogenides. Front. Phys., 2024, 19(2): 23301 https://doi.org/10.1007/s11467-023-1345-8

References

[1]
A. Castellanos-Gomez. Why all the fuss about 2D semiconductors. Nat. Photonics, 2016, 10(4): 202
CrossRef ADS Google scholar
[2]
G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys., 2018, 90(2): 021001
CrossRef ADS Google scholar
[3]
W. P. Aue, E. Bartholdi, R. R. Ernst. Two dimensional spectroscopy. Application to nuclear magnetic resonance. J. Chem. Phys., 1976, 64(5): 2229
CrossRef ADS Google scholar
[4]
Y. Tanimura, S. Mukamel. Two-dimensional femtosecond vibrational spectroscopy of liquids. J. Chem. Phys., 1993, 99(12): 9496
CrossRef ADS Google scholar
[5]
S. T. Cundiff, S. Mukamel. Optical multidimensional coherent spectroscopy. Phys. Today, 2013, 66(7): 44
CrossRef ADS Google scholar
[6]
P. Hamm, M. Lim, W. F. DeGrado, R. M. Hochstrasser. The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three dimensional structure. Proc. Natl. Acad. Sci. USA, 1999, 96(5): 2036
CrossRef ADS Google scholar
[7]
O. Golonzka, M. Khalil, N. Demirdöven, A. Tokmakoff. Vibrational anharmonicities revealed by coherent two-dimensional infrared spectroscopy. Phys. Rev. Lett., 2001, 86(10): 2154
CrossRef ADS Google scholar
[8]
F. D. Fuller, J. P. Ogilvie. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem., 2015, 66(1): 667
CrossRef ADS Google scholar
[9]
M.Cho, Coherent Multidimensional Spectroscopy, Springer, 2019
[10]
H.LiB.Lomsadze G.MoodyC. SmallwoodS.T. Cundiff, Optical Multidimensional Coherent Spectroscopy, Oxford University Press, 2023
[11]
T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature, 2005, 434(7033): 625
CrossRef ADS Google scholar
[12]
E. Collini, C. Y. Wong, K. E. Wilk, P. M. Curmi, P. Brumer, G. D. Scholes. Coherently wired light harvesting in photosynthetic marine algae at ambient temperature. Nature, 2010, 463(7281): 644
CrossRef ADS Google scholar
[13]
C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, P. L. Geissler. Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science, 2003, 301(5640): 1698
CrossRef ADS Google scholar
[14]
B. Dereka, Q. Yu, N. H. C. Lewis, W. B. Carpenter, J. M. Bowman, A. Tokmakoff. Crossover from hydrogen to chemical bonding. Science, 2021, 371(6525): 160
CrossRef ADS Google scholar
[15]
X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, S. T. Cundiff. Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor. Phys. Rev. Lett., 2012, 108(19): 193201
CrossRef ADS Google scholar
[16]
S. Yu, M. Titze, Y. Zhu, X. Liu, H. Li. Observation of scalable and deterministic multi-atom Dicke states in an atomic vapor. Opt. Lett., 2019, 44(11): 2795
CrossRef ADS Google scholar
[17]
K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, K. A. Nelson. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science, 2009, 324(5931): 1169
CrossRef ADS Google scholar
[18]
J. M. Richter, F. Branchi, F. Valduga de Almeida Camargo, B. Zhao, R. H. Friend, G. Cerullo, F. Deschler. Ultrafast carrier thermalization in lead iodide perovskite probed with two-dimensional electronic spectroscopy. Nat. Commun., 2017, 8(1): 376
CrossRef ADS Google scholar
[19]
J. Nishida, J. P. Breen, K. P. Lindquist, D. Umeyama, H. I. Karunadasa, M. D. Fayer. Dynamically disordered lattice in a layered Pb−I−SCN perovskite thin film probed by two dimensional infrared spectroscopy. J. Am. Chem. Soc., 2018, 140(31): 9882
CrossRef ADS Google scholar
[20]
G. Moody, C. Kavir Dass, K. Hao, C. H. Chen, L. J. Li, A. Singh, K. Tran, G. Clark, X. Xu, G. Berghäuser, E. Malic, A. Knorr, X. Li. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nat. Commun., 2015, 6(1): 8315
CrossRef ADS Google scholar
[21]
L. Guo, C. A. Chen, Z. Zhang, D. M. Monahan, Y. H. Lee, G. R. Fleming. Lineshape characterization of excitons in monolayer WS2 by two-dimensional electronic spectroscopy. Nanoscale Adv., 2020, 2(6): 2333
CrossRef ADS Google scholar
[22]
T. Jakubczyk, V. Delmonte, M. Koperski, K. Nogajewski, C. Faugeras, W. Langbein, M. Potemski, J. Kasprzak. Radiatively limited dephasing and exciton dynamics in MoSe2 monolayers revealed with four-wave mixing microscopy. Nano Lett., 2016, 16(9): 5333
CrossRef ADS Google scholar
[23]
T. Jakubczyk, K. Nogajewski, M. R. Molas, M. Bartos, W. Langbein, M. Potemski, J. Kasprzak. Impact of environment on dynamics of exciton complexes in a WS2 monolayer. 2D Mater., 2018, 5: 031007
CrossRef ADS Google scholar
[24]
C. Boule, D. Vaclavkova, M. Bartos, K. Nogajewski, L. Zdražil, T. Taniguchi, K. Watanabe, M. Potemski, J. Kasprzak. Coherent dynamics and mapping of excitons in single-layer MoSe2 and WSe2 at the homogeneous limit. Phys. Rev. Mater., 2020, 4(3): 034001
CrossRef ADS Google scholar
[25]
T. L. Purz, E. W. Martin, W. G. Holtzmann, P. Rivera, A. Alfrey, K. M. Bates, H. Deng, X. Xu, S. T. Cundiff. Imaging dynamic exciton interactions and coupling in transition metal dichalcogenides. J. Chem. Phys., 2022, 156(21): 214704
CrossRef ADS Google scholar
[26]
K. F. Mak, K. He, J. Shan, T. F. Heinz. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol., 2012, 7(8): 494
CrossRef ADS Google scholar
[27]
Z. Ye, D. Sun, T. F. Heinz. Optical manipulation of valley pseudospin. Nat. Phys., 2017, 13(1): 26
CrossRef ADS Google scholar
[28]
K. Hao, G. Moody, F. Wu, C. K. Dass, L. Xu, C. H. Chen, L. Sun, M. Y. Li, L. J. Li, A. H. MacDonald, X. Li. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys., 2016, 12(7): 677
CrossRef ADS Google scholar
[29]
M. Titze, B. Li, X. Zhang, P. M. Ajayan, H. Li. Intrinsic coherence time of trions in monolayer MoSe2 measured via two-dimensional coherent spectroscopy. Phys. Rev. Mater., 2018, 2(5): 054001
CrossRef ADS Google scholar
[30]
K. Hao, L. Xu, F. Wu, P. Nagler, K. Tran, X. Ma, C. Schüller, T. Korn, A. H. MacDonald, G. Moody, X. Li. Trion valley coherence in monolayer semiconductors. 2D Mater., 2017, 4: 025105
CrossRef ADS Google scholar
[31]
J. B. Muir, J. Levinsen, S. K. Earl, M. A. Conway, J. H. Cole, M. Wurdack, R. Mishra, D. J. Ing, E. Estrecho, Y. Lu, D. K. Efimkin, J. O. Tollerud, E. A. Ostrovskaya, M. M. Parish, J. A. Davis. Interactions between Fermi polarons in monolayer WS2. Nat. Commun., 2022, 13(1): 6164
CrossRef ADS Google scholar
[32]
D. Huang, K. Sampson, Y. Ni, Z. Liu, D. Liang, K. Watanabe, T. Taniguchi, H. Li, E. Martin, J. Levinsen, M. M. Parish, E. Tutuc, D. K. Efimkin, X. Li. Quantum dynamics of attractive and repulsive polarons in a doped MoSe2 monolayer. Phys. Rev. X, 2023, 13(1): 011029
CrossRef ADS Google scholar
[33]
S. Helmrich, K. Sampson, D. Huang, M. Selig, K. Hao, K. Tran, A. Achstein, C. Young, A. Knorr, E. Malic, U. Woggon, N. Owschimikow, X. Li. Phonon-assisted intervalley scattering determines ultrafast exciton dynamics in MoSe2 bilayers. Phys. Rev. Lett., 2021, 127(15): 157403
CrossRef ADS Google scholar
[34]
D. Li, C. Trovatello, S. Dal Conte, M. Nuß, G. Soavi, G. Wang, A. C. Ferrari, G. Cerullo, T. Brixner. Exciton–phonon coupling strength in single-layer MoSe2 at room temperature. Nat. Commun., 2021, 12(1): 954
CrossRef ADS Google scholar
[35]
D. Li, H. Shan, C. Rupprecht, H. Knopf, K. Watanabe, T. Taniguchi, Y. Qin, S. Tongay, M. Nuß, S. Schröder, F. Eilenberger, S. Höfling, C. Schneider, T. Brixner. Hybridized exciton−photon−phonon states in a transition metal dichalcogenide van der Waals heterostructure microcavity. Phys. Rev. Lett., 2022, 128(8): 087401
CrossRef ADS Google scholar
[36]
L. Guo, M. Wu, T. Cao, D. M. Monahan, Y. H. Lee, S. G. Louie, G. R. Fleming. Exchange-driven intravalley mixing of excitons in monolayer transition metal dichalcogenides. Nat. Phys., 2019, 15(3): 228
CrossRef ADS Google scholar
[37]
L. T. Lloyd, R. E. Wood, F. Mujid, S. Sohoni, K. L. Ji, P. C. Ting, J. S. Higgins, J. Park, G. S. Engel. Sub-10 fs intervalley exciton coupling in monolayer MoS2 revealed by helicity-resolved two-dimensional electronic spectroscopy. ACS Nano, 2021, 15(6): 10253
CrossRef ADS Google scholar
[38]
V. Mapara, A. Barua, V. Turkowski, M. T. Trinh, C. Stevens, H. Liu, F. A. Nugera, N. Kapuruge, H. R. Gutierrez, F. Liu, X. Zhu, D. Semenov, S. A. McGill, N. Pradhan, D. J. Hilton, D. Karaiskaj. Bright and dark exciton coherent coupling and hybridization enabled by external magnetic fields. Nano Lett., 2022, 22(4): 1680
CrossRef ADS Google scholar
[39]
A. Singh, G. Moody, S. Wu, Y. Wu, N. J. Ghimire, J. Yan, D. G. Mandrus, X. Xu, X. Li. Coherent electronic coupling in atomically thin MoSe2. Phys. Rev. Lett., 2014, 112(21): 216804
CrossRef ADS Google scholar
[40]
K. Hao, L. Xu, P. Nagler, A. Singh, K. Tran, C. K. Dass, C. Schüller, T. Korn, X. Li, G. Moody. Coherent and incoherent coupling dynamics between neutral and charged excitons in monolayer MoSe2. Nano Lett., 2016, 16(8): 5109
CrossRef ADS Google scholar
[41]
A. Rodek, T. Hahn, J. Howarth, T. Taniguchi, K. Watanabe, M. Potemski, P. Kossacki, D. Wigger, J. Kasprzak. Controlled coherent-coupling and dynamics of exciton complexes in a MoSe2 monolayer. 2D Mater., 2023, 10: 025027
CrossRef ADS Google scholar
[42]
R. Tempelaar, T. C. Berkelbach. Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3419
CrossRef ADS Google scholar
[43]
K. Hao, J. F. Specht, P. Nagler, L. Xu, K. Tran, A. Singh, C. K. Dass, C. Schüller, T. Korn, M. Richter, A. Knorr, X. Li, G. Moody. Neutral and charged inter-valley biexcitons in monolayer MoSe2. Nat. Commun., 2017, 8(1): 15552
CrossRef ADS Google scholar
[44]
R. E. Wood, L. T. Lloyd, F. Mujid, L. Wang, M. A. Allodi, H. Gao, R. Mazuski, P. C. Ting, S. Xie, J. Park, G. S. Engel. Evidence for the dominance of carrier-induced band gap renormalization over biexciton formation in cryogenic ultrafast experiments on MoS2 monolayers. J. Phys. Chem. Lett., 2020, 11(7): 2658
CrossRef ADS Google scholar
[45]
M. A. Conway, J. B. Muir, S. K. Earl, M. Wurdack, R. Mishra, J. O. Tollerud, J. A. Davis. Direct measurement of biexcitons in monolayer WS2. 2D Mater., 2022, 9: 021001
CrossRef ADS Google scholar
[46]
C. Mai, A. Barrette, Y. Yu, Y. G. Semenov, K. W. Kim, L. Cao, K. Gundogdu. Many-body effects in valleytronics: Direct measurement of valley lifetimes in single-layer MoS2. Nano Lett., 2014, 14(1): 202
CrossRef ADS Google scholar
[47]
I. Kylänpää, H. P. Komsa. Binding energies of exciton-complexes in transition metal dichalcogenide monolayers and effect of dielectric environment. Phys. Rev. B, 2015, 92(20): 205418
CrossRef ADS Google scholar
[48]
M. Aeschlimann, T. Brixner, A. Fischer, C. Kramer, P. Melchior, W. Pfeiffer, C. Schneider, C. Strüber, P. Tuchscherer, D. V. Voronine. Coherent two-dimensional nanoscopy. Science, 2011, 333(6050): 1723
CrossRef ADS Google scholar
[49]
K. S. Novoselov, A. Mishchenko, A. Carvalho, A. H. Castro Neto. 2D materials and van der Waals heterostructures. Science, 2016, 353(6298): aac9439
CrossRef ADS Google scholar
[50]
T. L. Purz, E. W. Martin, P. Rivera, W. G. Holtzmann, X. Xu, S. T. Cundiff. Coherent exciton-exciton interactions and exciton dynamics in a MoSe2/WSe2 heterostructure. Phys. Rev. B, 2021, 104(24): L241302
CrossRef ADS Google scholar
[51]
V. R. Policht, M. Russo, F. Liu, C. Trovatello, M. Maiuri, Y. Bai, X. Zhu, S. Dal Conte, G. Cerullo. Dissecting interlayer hole and electron transfer in transition metal dichalcogenide heterostructures via two-dimensional electronic spectroscopy. Nano Lett., 2021, 21(11): 4738
CrossRef ADS Google scholar
[52]
D. Huang, J. Choi, C. K. Shih, X. Li. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol., 2022, 17(3): 227
CrossRef ADS Google scholar
[53]
K. F. Mak, J. Shan. Semiconductor moiré materials. Nat. Nanotechnol., 2022, 17(7): 686
CrossRef ADS Google scholar
[54]
C. E. Stevens, J. Paul, T. Cox, P. K. Sahoo, H. R. Gutiérrez, V. Turkowski, D. Semenov, S. A. McGill, M. D. Kapetanakis, I. E. Perakis, D. J. Hilton, D. Karaiskaj. Biexcitons in monolayer transition metal dichalcogenides tuned by magnetic fields. Nat. Commun., 2018, 9(1): 3720
CrossRef ADS Google scholar
[55]
V. Mapara, C. E. Stevens, J. Paul, A. Barua, J. L. Reno, S. A. McGill, D. J. Hilton, D. Karaiskaj. Multidimensional spectroscopy of magneto-excitons at high magnetic fields. J. Chem. Phys., 2021, 155(20): 204201
CrossRef ADS Google scholar
[56]
S. I. Azzam, K. Parto, G. Moody. Prospects and challenges of quantum emitters in 2D materials. Appl. Phys. Lett., 2021, 118(24): 240502
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors thank Xiaoqin Li for her valuable discussions. S. Y. and X. L. acknowledge the support from the National Natural Science Foundation of China (Grant Nos. 12121004 and 12004391), the China Postdoctoral Science Foundation (Grants Nos. 2020T130682 and 2019M662752), the Science and Technology Department of Hubei Province (Grant No. 2020CFA029), and the Knowledge Innovation Program of Wuhan-Shuguang Project. T. J. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 62175188 and 62005198) and the Shanghai Science and Technology Innovation Action Plan Project (Grant No. 23ZR1465800). X. C. acknowledges support from the National Natural Science Foundation of China (Grant Nos. 61925504, 62020106009, and 6201101335), Science and Technology Commission of Shanghai Municipality (Grant Nos. 17JC1400800, 20JC1414600, and 21JC1406100), and the Special Development Funds for Major Projects of Shanghai Zhangjiang National Independent Innovation Demonstration Zone (Grant No. ZJ2021-ZD-008). D. H. acknowledges the support from the Fundamental Research Funds for the Central Universities.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4027 KB)

Accesses

Citations

Detail

Sections
Recommended

/