Recent advances in halide perovskite memristors: From materials to applications
Sixian Liu, Jianmin Zeng, Qilai Chen, Gang Liu
Recent advances in halide perovskite memristors: From materials to applications
With the emergence of the Internet of Things (IoT) and the rapid growth of big data generated by edge devices, there has been a growing need for electronic devices that are capable of processing and transmitting data at low power and high speeds. Traditional Complementary Metal-Oxide-Semiconductor (CMOS) devices are nonvolatile and often limited by their ability for certain IoT applications due to their unnecessary power consumption for data movement in von Neuman architecture-based systems. This has led to a surge in research and development efforts aimed at creating innovative electronic components and systems that can overcome these shortcomings and meet the evolving needs of the information era, which share features such as improved energy efficiency, higher processing speeds, and increased functionality. Memristors are a novel type of electronic device that has the potential to break down the barrier between storage and computing. By storing data and processing information within the same device, memristors can minimize the need for data movement, which allows for faster processing speeds and reduced energy consumption. To further improve the energy efficiency and reliability of memristors, there has been a growing trend toward diversifying the selection of dielectric materials used in memristors. Halide perovskites (HPs) have unique electrical and optical properties, including ion migration, charge trapping effect caused by intrinsic defects, excellent optical absorption efficiency, and high charge mobility, which makes them highly promising in applications of memristors. In this paper, we provide a comprehensive overview of the recent development in resistive switching behaviors of HPs and the underlying mechanisms. Furthermore, we summarize the diverse range of HPs, their respective performance metrics, as well as their applications in various fields. Finally, we critically evaluate the current bottlenecks and possible opportunities in the future research of HP memristors.
halide perovskite / memristor / mechanism / neuromorphic computing / non-volatile memory
[1] |
Z. Xiao, J. Huang. Energy-efficient hybrid perovskite memristors and synaptic devices. Adv. Electron. Mater., 2016, 2(7): 1600100
CrossRef
ADS
Google scholar
|
[2] |
B.ZhangW. ChenJ.ZengF.FanJ.Gu X.ChenL. YanG.XieS.LiuQ.Yan S.J. BaikZ. G. ZhangW.ChenJ.HouM.E. El-KhoulyZ.ZhangG.LiuY.Chen, 90% yield production of polymer nano-memristor for in-memory computing, Nat. Commun. 12(1), 1984 (2021)
|
[3] |
L. Du, Z. Wang, G. Zhao. Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602
CrossRef
ADS
Google scholar
|
[4] |
Q. Li, T. Li, Y. Zhang, Y. Yu, Z. Chen, L. Jin, Y. Li, Y. Yang, H. Zhao, J. Li, J. Yao. Nonvolatile photoelectric memory with CsPbBr3 quantum dots embedded in poly(methyl methacrylate) as charge trapping layer. Org. Electron., 2020, 77: 105461
CrossRef
ADS
Google scholar
|
[5] |
Z. Hao, H. Wang, S. Jiang, J. Qian, X. Xu, Y. Li, M. Pei, B. Zhang, J. Guo, H. Zhao, J. Chen, Y. Tong, J. Wang, X. Wang, Y. Shi, Y. Li. Retina-inspired self-powered artificial optoelectronic synapses with selective detection in organic asymmetric heterojunctions. Adv. Sci. (Weinh.), 2022, 9(7): 2103494
CrossRef
ADS
Google scholar
|
[6] |
T. Y. Wang, J. L. Meng, Z. Y. He, L. Chen, H. Zhu, Q. Q. Sun, S. J. Ding, P. Zhou, D. W. Zhang. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. (Weinh.), 2020, 7(8): 1903480
CrossRef
ADS
Google scholar
|
[7] |
N. El-Atab. Memsor: Emergence of the in-memory sensing technology for the digital transformation. physica status solidi (a), 2022, 219(2): 2100528
CrossRef
ADS
Google scholar
|
[8] |
J. C. Gonzalez-Rosillo, S. Catalano, I. Maggio-Aprile, M. Gibert, X. Obradors, A. Palau, T. Puig. Nanoscale correlations between metal−insulator transition and resistive switching effect in metallic perovskite oxides. Small, 2020, 16(23): 2001307
CrossRef
ADS
Google scholar
|
[9] |
Y. Li, J. Chu, W. Duan, G. Cai, X. Fan, X. Wang, G. Wang, Y. Pei. Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598
CrossRef
ADS
Google scholar
|
[10] |
J. Rao, Z. Fan, L. Hong, S. Cheng, Q. Huang, J. Zhao, X. Xiang, E. J. Guo, H. Guo, Z. Hou, Y. Chen, X. Lu, G. Zhou, X. Gao, J. M. Liu. An electroforming-free, analog interface-type memristor based on a SrFeOx epitaxial heterojunction for neuromorphic computing. Mater. Today Phys., 2021, 18: 100392
CrossRef
ADS
Google scholar
|
[11] |
H. Guan, J. Sha, Z. Zhang, Y. Xiong, X. Dong, H. Bao, K. Sun, S. Wang, Y. Wang. Optical and oxide modification of CsFAMAPbIBr memristor achieving low power consumption. J. Alloys Compd., 2022, 891: 162096
CrossRef
ADS
Google scholar
|
[12] |
G.AbbasM. HassanQ.KhanH.WangG.Zhou M.ZubairX. XuZ.Peng, A low power-consumption and transient nonvolatile memory based on highly dense all-inorganic perovskite films, Adv. Electron. Mater. 8(9), 2101412 (2022)
|
[13] |
M. Lanza, A. Sebastian, W. D. Lu, M. Le Gallo, M. F. Chang, D. Akinwande, F. M. Puglisi, H. N. Alshareef, M. Liu, J. B. Roldan. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science, 2022, 376(6597): eabj9979
CrossRef
ADS
Google scholar
|
[14] |
X. Yan, Q. Zhao, A. P. Chen, J. Zhao, Z. Zhou, J. Wang, H. Wang, L. Zhang, X. Li, Z. Xiao, K. Wang, C. Qin, G. Wang, Y. Pei, H. Li, D. Ren, J. Chen, Q. Liu. Vacancy-induced synaptic behavior in 2D WS2 nanosheet-based memristor for low-power neuromorphic computing. Small, 2019, 15(24): 1901423
CrossRef
ADS
Google scholar
|
[15] |
J. M. Yang, J. H. Lee, Y. K. Jung, S. Y. Kim, J. H. Kim, S. G. Kim, J. H. Kim, S. Seo, D. A. Park, J. W. Lee, A. Walsh, J. H. Park, N. G. Park. Mixed-dimensional formamidinium bismuth iodides featuring in-situ formed type-I band structure for convolution neural networks. Adv. Sci. (Weinh.), 2022, 9(14): 2200168
CrossRef
ADS
Google scholar
|
[16] |
X. Xiao, J. Hu, S. Tang, K. Yan, B. Gao, H. Chen, D. Zou. Recent advances in halide perovskite memristors: Materials, structures, mechanisms, and applications. Adv. Mater. Technol., 2020, 5(6): 1900914
CrossRef
ADS
Google scholar
|
[17] |
Z. B. Yan, J. M. Liu. Resistance switching memory in perovskite oxides. Ann. Phys., 2015, 358: 206
CrossRef
ADS
Google scholar
|
[18] |
K. Kang, W. Hu, X. Tang. Halide perovskites for resistive switching memory. J. Phys. Chem. Lett., 2021, 12(48): 11673
CrossRef
ADS
Google scholar
|
[19] |
S. Majumdar, B. Chen, Q. H. Qin, H. S. Majumdar, S. Van Dijken. Electrode dependence of tunneling electroresistance and switching stability in organic ferroelectric P(VDF-TrFE)-based tunnel junctions. Adv. Funct. Mater., 2018, 28(15): 1703273
CrossRef
ADS
Google scholar
|
[20] |
G. K. Johnsen. An introduction to the memristor – a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimpedance, 2012, 3(1): 20
CrossRef
ADS
Google scholar
|
[21] |
L.SpazianiL. Lu, Silicon, GaN and SiC: There’s room for all: An application space overview of device considerations, in: 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 13−17 May, 2018, pp 8−11
|
[22] |
Y. N. Zhong, T. Wang, X. Gao, J. L. Xu, S. D. Wang. Synapse-like organic thin film memristors. Adv. Funct. Mater., 2018, 28(22): 1800854
CrossRef
ADS
Google scholar
|
[23] |
Y. Hao. Gallium oxide: Promise to provide more efficient life. J. Semicond., 2019, 40(1): 010301
CrossRef
ADS
Google scholar
|
[24] |
N. A. Tulina, I. Y. Borisenko, V. V. Sirotkin. Reproducible resistive switching effect for memory applications in heterocontacts based on strongly correlated electron systems. Phys. Lett. A, 2008, 372(44): 6681
CrossRef
ADS
Google scholar
|
[25] |
W. I. Park, J. M. Yoon, M. Park, J. Lee, S. K. Kim, J. W. Jeong, K. Kim, H. Y. Jeong, S. Jeon, K. S. No, J. Y. Lee, Y. S. Jung. Self-assembly-induced formation of high-density silicon oxide memristor nanostructures on graphene and metal electrodes. Nano Lett., 2012, 12(3): 1235
CrossRef
ADS
Google scholar
|
[26] |
Z. Ma, J. Ge, W. Chen, X. Cao, S. Diao, Z. Liu, S. Pan. Reliable memristor based on ultrathin native silicon oxide. ACS Appl. Mater. Interfaces, 2022, 14(18): 21207
CrossRef
ADS
Google scholar
|
[27] |
A. N. Mikhaylov, A. I. Belov, D. V. Guseinov, D. S. Korolev, I. N. Antonov, D. V. Efimovykh, S. V. Tikhov, A. P. Kasatkin, O. N. Gorshkov, D. I. Tetelbaum, A. I. Bobrov, N. V. Malekhonova, D. A. Pavlov, E. G. Gryaznov, A. P. Yatmanov. Bipolar resistive switching and charge transport in silicon oxide memristor. Mater. Sci. Eng. B, 2015, 194: 48
CrossRef
ADS
Google scholar
|
[28] |
Q. Gao, A. Huang, Q. Hu, X. Zhang, Y. Chi, R. Li, Y. Ji, X. Chen, R. Zhao, M. Wang, H. Shi, M. Wang, Y. Cui, Z. Xiao, P. K. Chu. Stability and repeatability of a Karst-like hierarchical porous silicon oxide-based memristor. ACS Appl. Mater. Interfaces, 2019, 11(24): 21734
CrossRef
ADS
Google scholar
|
[29] |
S. Kim, H. Kim, S. Hwang, M. H. Kim, Y. F. Chang, B. G. Park. Analog synaptic behavior of a silicon nitride memristor. ACS Appl. Mater. Interfaces, 2017, 9(46): 40420
CrossRef
ADS
Google scholar
|
[30] |
S. Kim, S. Jung, M. H. Kim, Y. C. Chen, Y. F. Chang, K. C. Ryoo, S. Cho, J. H. Lee, B. G. Park. Scaling effect on silicon nitride memristor with highly doped Si substrate. Small, 2018, 14(19): 1704062
CrossRef
ADS
Google scholar
|
[31] |
D. Kim, S. Kim, S. Kim. Logic-in-memory application of CMOS compatible silicon nitride memristor. Chaos Solitons Fractals, 2021, 153: 111540
CrossRef
ADS
Google scholar
|
[32] |
A. A. Gismatulin, V. A. Gritsenko, T. J. Yen, A. Chin. Charge transport mechanism in SiNx-based memristor. Appl. Phys. Lett., 2019, 115(25): 253502
CrossRef
ADS
Google scholar
|
[33] |
A. A. Gismatulin, O. M. Orlov, V. A. Gritsenko, V. N. Kruchinin, D. S. Mizginov, G. Y. Krasnikov. Charge transport mechanism in the metal–nitride–oxide–silicon forming-free memristor structure. Appl. Phys. Lett., 2020, 116(20): 203502
CrossRef
ADS
Google scholar
|
[34] |
R. Schmitt, M. Kubicek, E. Sediva, M. Trassin, M. C. Weber, A. Rossi, H. Hutter, J. Kreisel, M. Fiebig, J. L. M. Rupp. Accelerated ionic motion in amorphous memristor oxides for nonvolatile memories and neuromorphic computing. Adv. Funct. Mater., 2019, 29(5): 1804782
CrossRef
ADS
Google scholar
|
[35] |
Q. Lu, Y. Chen, H. Bluhm, B. Yildiz. Electronic structure evolution of SrCoOx during electrochemically driven phase transition probed by in situ X-ray spectroscopy. J. Phys. Chem. C, 2016, 120(42): 24148
CrossRef
ADS
Google scholar
|
[36] |
H. Nili, T. Ahmed, S. Walia, R. Ramanathan, A. E. Kandjani, S. Rubanov, J. Kim, O. Kavehei, V. Bansal, M. Bhaskaran, S. Sriram. Microstructure and dynamics of vacancy-induced nanofilamentary switching network in donor doped SrTiO3−x memristors. Nanotechnology, 2016, 27(50): 505210
CrossRef
ADS
Google scholar
|
[37] |
V. Mikheev, A. Chouprik, Y. Lebedinskii, S. Zarubin, A. M. Markeev, A. V. Zenkevich, D. Negrov. Memristor with a ferroelectric HfO2 layer: In which case it is a ferroelectric tunnel junction. Nanotechnology, 2020, 31(21): 215205
CrossRef
ADS
Google scholar
|
[38] |
G. U. Siddiqui, M. M. Rehman, K. H. Choi. Enhanced resistive switching in all-printed, hybrid and flexible memory device based on perovskite ZnSnO3 via PVOH polymer. Polymer (Guildf.), 2016, 100: 102
CrossRef
ADS
Google scholar
|
[39] |
T. Ahmed, S. Walia, E. L. H. Mayes, R. Ramanathan, P. Guagliardo, V. Bansal, M. Bhaskaran, J. J. Yang, S. Sriram. Inducing tunable switching behavior in a single memristor. Appl. Mater. Today, 2018, 11: 280
CrossRef
ADS
Google scholar
|
[40] |
S. Marinkovic, A. Fernandez-Rodriguez, S. Collienne, S. B. Alvarez, S. Melinte, B. Maiorov, G. Rius, X. Granados, N. Mestres, A. Palau, A. V. Silhanek. Direct visualization of current-stimulated oxygen migration in YBa2Cu3O7−δ thin films. ACS Nano, 2020, 14(9): 11765
CrossRef
ADS
Google scholar
|
[41] |
Z. Shen, C. Zhao, Y. Qi, I. Z. Mitrovic, L. Yang, J. Wen, Y. Huang, P. Li, C. Zhao. Memristive non-volatile memory based on graphene materials. Micromachines (Basel), 2020, 11(4): 341
CrossRef
ADS
Google scholar
|
[42] |
H. T. Zhang, T. J. Park, A. N. M. N. Islam, D. S. J. Tran, S. Manna, Q. Wang, S. Mondal, H. Yu, S. Banik, S. Cheng, H. Zhou, S. Gamage, S. Mahapatra, Y. Zhu, Y. Abate, N. Jiang, S. K. R. S. Sankaranarayanan, A. Sengupta, C. Teuscher, S. Ramanathan. Reconfigurable perovskite nickelate electronics for artificial intelligence. Science, 2022, 375(6580): 533
CrossRef
ADS
Google scholar
|
[43] |
B. J. Choi, A. C. Torrezan, J. P. Strachan, P. G. Kotula, A. J. Lohn, M. J. Marinella, Z. Li, R. S. Williams, J. J. Yang. High-speed and low-energy nitride memristors. Adv. Funct. Mater., 2016, 26(29): 5290
CrossRef
ADS
Google scholar
|
[44] |
B. J. Choi, J. J. Yang, M. X. Zhang, K. J. Norris, D. A. Ohlberg, N. P. Kobayashi, G. Medeiros-Ribeiro, R. S. Williams. Nitride memristors. Appl. Phys A, 2012, 109(1): 1
CrossRef
ADS
Google scholar
|
[45] |
V. K. Perla, S. K. Ghosh, K. Mallick. Transport mechanism of copper sulfide embedded carbon nitride thin films: A formation free memristor. Mater. Adv., 2020, 1(2): 228
CrossRef
ADS
Google scholar
|
[46] |
W. Zhang, H. Gao, C. Deng, T. Lv, S. Hu, H. Wu, S. Xue, Y. Tao, L. Deng, W. Xiong. An ultrathin memristor based on a two-dimensional WS2/MoS2 heterojunction. Nanoscale, 2021, 13(26): 11497
CrossRef
ADS
Google scholar
|
[47] |
A. N. Belov, A. A. Golishnikov, A. M. Mastinin, A. A. Perevalov, V. I. Shevyakov. Study of the formation process of memristor structures based on copper sulfide. Semiconductors, 2019, 53(15): 2024
CrossRef
ADS
Google scholar
|
[48] |
M. Patel, N. R. Hemanth, J. Gosai, R. Mohili, A. Solanki, M. Roy, B. Fang, N. K. Chaudhari. Mxenes: Promising 2D memristor materials for neuromorphic computing components. Trends Chem., 2022, 4(9): 835
CrossRef
ADS
Google scholar
|
[49] |
N. He, X. Liu, F. Gao, Q. Zhang, M. Zhang, Y. Wang, X. Shen, X. Wan, X. Lian, E. Hu, L. He, J. Xu, Y. Tong. Demonstration of 2D mxene memristor: Stability, conduction mechanism, and synaptic plasticity. Mater. Lett., 2020, 266: 127413
CrossRef
ADS
Google scholar
|
[50] |
K.WangY. JiaX.Yan, A biomimetic afferent nervous system based on the flexible artificial synapse, Nano Energy 100, 107486 (2022)
|
[51] |
Y.QiB.Sun G.FuT.Li S.ZhuL. ZhengS.MaoX.KanM.Lei Y.Chen, A nonvolatile organic resistive switching memory based on lotus leaves, Chem. Phys. 516, 168 (2019)
|
[52] |
T. Berzina, A. Smerieri, M. Bernabò, A. Pucci, G. Ruggeri, V. Erokhin, M. P. Fontana. Optimization of an organic memristor as an adaptive memory element. J. Appl. Phys., 2009, 105(12): 124515
CrossRef
ADS
Google scholar
|
[53] |
K. Sun, J. Chen, X. Yan. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
CrossRef
ADS
Google scholar
|
[54] |
K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish. Insights into 2D/2D MXene heterostructures for improved synergy in structure toward next-generation supercapacitors: A review. Adv. Funct. Mater., 2022, 32(18): 2110267
CrossRef
ADS
Google scholar
|
[55] |
X.FengZ. YuY.SunM.ShanR.Long X.Li, 3D MXene/Ag2S material as schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance, Separ. Purif. Tech. 266, 118606 (2021)
|
[56] |
L. Zhang, K. Khan, J. Zou, H. Zhang, Y. Li. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces, 2019, 6(22): 1901329
CrossRef
ADS
Google scholar
|
[57] |
G. Jonker, J. Van Santen. Ferromagnetic compounds of manganese with perovskite structure. Physica, 1950, 16(3): 337
|
[58] |
D. N. Jeong, J. M. Yang, N. G. Park. Roadmap on halide perovskite and related devices. Nanotechnology, 2020, 31(15): 152001
CrossRef
ADS
Google scholar
|
[59] |
Y. Fang, S. Zhai, L. Chu, J. Zhong. Advances in halide perovskite memristor from lead-based to lead-free materials. ACS Appl. Mater. Interfaces, 2021, 13(15): 17141
CrossRef
ADS
Google scholar
|
[60] |
K. Yan, B. Dong, X. Xiao, S. Chen, B. Chen, X. Gao, H. Hu, W. Wen, J. Zhou, D. Zou. Memristive property’s effects on the I−V characteristics of perovskite solar cells. Sci. Rep., 2017, 7(1): 6025
CrossRef
ADS
Google scholar
|
[61] |
H. J. Gogoi, A. T. Mallajosyula. Enhancing the switching performance of CH3NH3PbI3 memristors by the control of size and characterization parameters. Adv. Electron. Mater., 2021, 7(11): 2100472
CrossRef
ADS
Google scholar
|
[62] |
K. J. Kwak, J. H. Baek, D. E. Lee, I. H. Im, J. Kim, S. J. Kim, Y. J. Lee, J. Y. Kim, H. W. Jang. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010
CrossRef
ADS
Google scholar
|
[63] |
Y. Feng, X. Gao, Y. N. Zhong, J. L. Wu, J. L. Xu, S. D. Wang. Solution‐processed polymer thin‐film memristors with an electrochromic feature and frequency‐dependent synaptic plasticity. Adv. Intell. Syst., 2019, 1(3): 1900022
CrossRef
ADS
Google scholar
|
[64] |
R. A. John, N. Yantara, Y. F. Ng, G. Narasimman, E. Mosconi, D. Meggiolaro, M. R. Kulkarni, P. K. Gopalakrishnan, C. A. Nguyen, F. De Angelis, S. G. Mhaisalkar, A. Basu, N. Mathews. Ionotronic halide perovskite drift-diffusive synapses for low-power neuromorphic computation. Adv. Mater., 2018, 30(51): 1805454
CrossRef
ADS
Google scholar
|
[65] |
D. Li, H. Wu, H. C. Cheng, G. Wang, Y. Huang, X. Duan. Electronic and ionic transport dynamics in organolead halide perovskites. ACS Nano, 2016, 10(7): 6933
CrossRef
ADS
Google scholar
|
[66] |
P. Ramasamy, D. H. Lim, B. Kim, S. H. Lee, M. S. Lee, J. S. Lee. All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications. Chem. Commun. (Camb.), 2016, 52(10): 2067
CrossRef
ADS
Google scholar
|
[67] |
X. Hu, X. Zhang, L. Liang, J. Bao, S. Li, W. Yang, Y. Xie. High-performance flexible broadband photodetector based on organolead halide perovskite. Adv. Funct. Mater., 2014, 24(46): 7373
CrossRef
ADS
Google scholar
|
[68] |
E. Joseph, S. P. Madhusudanan, K. Mohanta, M. Karthega, S. K. Batabyal. Multiple negative differential resistance in perovskite (CH3NH3PbI3) decorated electrospun TiO2 nanofibers. Appl. Phys A, 2020, 126(9): 707
CrossRef
ADS
Google scholar
|
[69] |
D. Hao, J. Zhang, S. Dai, J. Zhang, J. Huang. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl. Mater. Interfaces, 2020, 12(35): 39487
CrossRef
ADS
Google scholar
|
[70] |
P. Wang, X. Bai, C. Sun, X. Zhang, T. Zhang, Y. Zhang. Multicolor fluorescent light-emitting diodes based on cesium lead halide perovskite quantum dots. Appl. Phys. Lett., 2016, 109(6): 063106
CrossRef
ADS
Google scholar
|
[71] |
Y. Sun, L. Qian, D. Xie, Y. Lin, M. Sun, W. Li, L. Ding, T. Ren, T. Palacios. Photoelectric synaptic plasticity realized by 2D perovskite. Adv. Funct. Mater., 2019, 29(28): 1902538
CrossRef
ADS
Google scholar
|
[72] |
Y. Sun.
CrossRef
ADS
Google scholar
|
[73] |
Q. You, F. Huang, F. Fang, J. Zhu, Y. Zheng, S. Fang, B. Zhou, H. Li, C. Han, Y. Shi. Controllable volatile-to-nonvolatile memristive switching in single-crystal lead-free double perovskite with ultralow switching electric field. Sci. China Mater., 2023, 66(1): 241
CrossRef
ADS
Google scholar
|
[74] |
L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX, X = Cl. Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 2015, 15(6): 3692
CrossRef
ADS
Google scholar
|
[75] |
B. D. Folie, J. A. Tan, J. Huang, P. C. Sercel, M. Delor, M. Lai, J. L. Lyons, N. Bernstein, A. L. Efros, P. Yang, N. S. Ginsberg. Effect of anisotropic confinement on electronic structure and dynamics of band edge excitons in inorganic perovskite nanowires. J. Phys. Chem. A, 2020, 124(9): 1867
CrossRef
ADS
Google scholar
|
[76] |
P. Li, Y. Chen, T. Yang, Z. Wang, H. Lin, Y. Xu, L. Li, H. Mu, B. N. Shivananju, Y. Zhang, Q. Zhang, A. Pan, S. Li, D. Tang, B. Jia, H. Zhang, Q. Bao. Two-dimensional CH3NH3PbI3 perovskite nanosheets for ultrafast pulsed fiber lasers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12759
CrossRef
ADS
Google scholar
|
[77] |
X. Liu, Y. Wang, T. Wu, X. He, X. Meng, J. Barbaud, H. Chen, H. Segawa, X. Yang, L. Han. Efficient and stable tin perovskite solar cells enabled by amorphous-polycrystalline structure. Nat. Commun., 2020, 11(1): 2678
CrossRef
ADS
Google scholar
|
[78] |
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107): 643
CrossRef
ADS
Google scholar
|
[79] |
H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel, N. G. Park. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep., 2012, 2(1): 591
CrossRef
ADS
Google scholar
|
[80] |
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050
CrossRef
ADS
Google scholar
|
[81] |
NREL
|
[82] |
L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J. Am. Chem. Soc., 2014, 136(3): 850
CrossRef
ADS
Google scholar
|
[83] |
Y. H. Kim, J. S. Kim, T. W. Lee. Strategies to improve luminescence efficiency of metal‐halide perovskites and light‐emitting diodes. Adv. Mater., 2019, 31(47): 1804595
CrossRef
ADS
Google scholar
|
[84] |
H. C. Wang, W. Wang, A. C. Tang, H. Y. Tsai, Z. Bao, T. Ihara, N. Yarita, H. Tahara, Y. Kanemitsu, S. Chen, R. S. Liu. High‐performance CsPb1−xSnxBr3 perovskite quantum dots for light‐emitting diodes. Angew. Chem., 2017, 129(44): 13838
CrossRef
ADS
Google scholar
|
[85] |
L. Basiricò, A. Ciavatti, B. Fraboni. Solution-grown organic and perovskite X-ray detectors: A new paradigm for the direct detection of ionizing radiation. Adv. Mater. Technol., 2021, 6(1): 2000475
CrossRef
ADS
Google scholar
|
[86] |
M.AhmadiT. WuB.Hu, A review on organic–inorganic halide perovskite photodetectors: Device engineering and fundamental physics, Adv. Mater. 29(41), 1605242 (2017)
|
[87] |
S.F. LeungK. T. HoP.K. KungV.K. S. HsiaoH.N. AlshareefZ.L. WangJ.H. He, A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity, Adv. Mater. 30(8), 1704611 (2018)
|
[88] |
Y. H. Kim, S. Kim, A. Kakekhani, J. Park, J. Park, Y. H. Lee, H. Xu, S. Nagane, R. B. Wexler, D. H. Kim, S. H. Jo, L. Martínez-Sarti, P. Tan, A. Sadhanala, G. S. Park, Y. W. Kim, B. Hu, H. J. Bolink, S. Yoo, R. H. Friend, A. M. Rappe, T. W. Lee. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photonics, 2021, 15(2): 148
CrossRef
ADS
Google scholar
|
[89] |
M. Hu, S. Jia, Y. Liu, J. Cui, Y. Zhang, H. Su, S. Cao, L. Mo, D. Chu, G. Zhao, K. Zhao, Z. Yang, S. F. Liu. Large and dense organic–inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity. ACS Appl. Mater. Interfaces, 2020, 12(14): 16592
CrossRef
ADS
Google scholar
|
[90] |
W. Tress, N. Marinova, T. Moehl, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Grätzel. Understanding the rate-dependent J−V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: The role of a compensated electric field. Energy Environ. Sci., 2015, 8(3): 995
CrossRef
ADS
Google scholar
|
[91] |
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun., 2014, 5(1): 5784
CrossRef
ADS
Google scholar
|
[92] |
E. L. Unger, E. T. Hoke, C. D. Bailie, W. H. Nguyen, A. R. Bowring, T. Heumüller, M. G. Christoforo, M. D. Mcgehee. Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci., 2014, 7(11): 3690
CrossRef
ADS
Google scholar
|
[93] |
W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh, S. I. Seok. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science, 2017, 356(6345): 1376
CrossRef
ADS
Google scholar
|
[94] |
Y. Yu, J. Li, D. Geng, J. Wang, L. Zhang, T. L. Andrew, M. S. Arnold, X. Wang. Development of lead iodide perovskite solar cells using three-dimensional titanium dioxide nanowire architectures. ACS Nano, 2015, 9(1): 564
CrossRef
ADS
Google scholar
|
[95] |
R. S. Sanchez, V. Gonzalez-Pedro, J. W. Lee, N. G. Park, Y. S. Kang, I. Mora-Sero, J. Bisquert. Slow dynamic processes in lead halide perovskite solar cells: Characteristic times and hysteresis. J. Phys. Chem. Lett., 2014, 5(13): 2357
CrossRef
ADS
Google scholar
|
[96] |
J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee, S. H. Im. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv. Mater., 2015, 27(22): 3424
CrossRef
ADS
Google scholar
|
[97] |
P. Zawal, T. Mazur, M. Lis, A. Chiolerio, K. Szacilowski. Light-induced synaptic effects controlled by incorporation of charge-trapping layer into hybrid perovskite memristor. Adv. Electron. Mater., 2022, 8(4): 2100838
CrossRef
ADS
Google scholar
|
[98] |
C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O’regan, A. Walsh, M. S. Islam. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun., 2015, 6(1): 7497
CrossRef
ADS
Google scholar
|
[99] |
J. M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis. Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci., 2015, 8(7): 2118
CrossRef
ADS
Google scholar
|
[100] |
P. Liu, W. Wang, S. Liu, H. Yang, Z. Shao. Fundamental understanding of photocurrent hysteresis in perovskite solar cells. Adv. Energy Mater., 2019, 9(13): 1803017
CrossRef
ADS
Google scholar
|
[101] |
H. Kim, J. S. Han, J. Choi, S. Y. Kim, H. W. Jang. Halide perovskites for applications beyond photovoltaics. Small Methods, 2018, 2(3): 1700310
CrossRef
ADS
Google scholar
|
[102] |
T. Li, H. Yu, S. H. Y. Chen, Y. Zhou, S. T. Han. The strategies of filament control for improving the resistive switching performance. J. Mater. Chem. C, 2020, 8(46): 16295
CrossRef
ADS
Google scholar
|
[103] |
T.LiH.Yu Z.XiongZ. GaoY.ZhouS.T. Han, 2D oriented covalent organic frameworks for alcohol-sensory synapses, Mater. Horiz. 8(7), 2041 (2021)
|
[104] |
Y. Yang, W. Gao, Z. Xie, Y. Wang, G. Yuan, J. M. Liu. An all-inorganic, transparent, flexible, and nonvolatile resistive memory. Adv. Electron. Mater., 2018, 4(12): 1800412
CrossRef
ADS
Google scholar
|
[105] |
X. Tian, L. Wang, J. Wei, S. Yang, W. Wang, Z. Xu, X. Bai. Filament growth dynamics in solid electrolyte-based resistive memories revealed by in situ tem. Nano Res., 2014, 7(7): 1065
CrossRef
ADS
Google scholar
|
[106] |
J. Chen, Z. Feng, M. Luo, J. Wang, Z. Wang, Y. Gong, S. Huang, F. Qian, Y. Zhou, S. T. Han. High-performance perovskite memristor by integrating a tip-shape contact. J. Mater. Chem. C, 2021, 9(43): 15435
CrossRef
ADS
Google scholar
|
[107] |
H. L. Park, M. H. Kim, S. H. Lee. Introduction of interfacial load polymeric layer to organic flexible memristor for regulating conductive filament growth. Adv. Electron. Mater., 2020, 6(10): 2000582
CrossRef
ADS
Google scholar
|
[108] |
Q. Chen, M. Lin, Z. Wang, X. Zhao, Y. Cai, Q. Liu, Y. Fang, Y. Yang, M. He, R. Huang. Low power parylene-based memristors with a graphene barrier layer for flexible electronics applications. Adv. Electron. Mater., 2019, 5(9): 1800852
CrossRef
ADS
Google scholar
|
[109] |
E. Yoo, M. Lyu, J. H. Yun, C. Kang, Y. Choi, L. Wang. Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH3NH3PbI3−xClx/FTO structure. J. Mater. Chem. C, 2016, 4(33): 7824
CrossRef
ADS
Google scholar
|
[110] |
J. Choi, Q. V. Le, K. Hong, C. W. Moon, J. S. Han, K. C. Kwon, P. R. Cha, Y. Kwon, S. Y. Kim, H. W. Jang. Enhanced endurance organolead halide perovskite resistive switching memories operable under an extremely low bending radius. ACS Appl. Mater. Interfaces, 2017, 9(36): 30764
CrossRef
ADS
Google scholar
|
[111] |
S. Lee, S. Wolfe, J. Torres, M. Yun, J. K. Lee. Asymmetric bipolar resistive switching of halide perovskite film in contact with TiO2 layer. ACS Appl. Mater. Interfaces, 2021, 13(23): 27209
CrossRef
ADS
Google scholar
|
[112] |
B. Ku, B. Koo, A. S. Sokolov, M. J. Ko, C. Choi. Two-terminal artificial synapse with hybrid organic-inorganic perovskite (CH3NH3)PbI3 and low operating power energy (similar to 47 fJ/μm2). J. Alloys Compd., 2020, 833: 155064
CrossRef
ADS
Google scholar
|
[113] |
C. Gonzales, A. Guerrero. Mechanistic and kinetic analysis of perovskite memristors with buffer layers: The case of a two-step set process. J. Phys. Chem. Lett., 2023, 14(6): 1395
CrossRef
ADS
Google scholar
|
[114] |
H. Tan, G. Liu, X. Zhu, H. Yang, B. Chen, X. Chen, J. Shang, W. D. Lu, Y. Wu, R. W. Li. An optoelectronic resistive switching memory with integrated demodulating and arithmetic functions. Adv. Mater., 2015, 27(17): 2797
CrossRef
ADS
Google scholar
|
[115] |
W. Ruan, Y. Hu, T. Qiu, F. Bai, S. Zhang, F. Xu. Morphological regulation of all-inorganic perovskites for multilevel resistive switching. J. Phys. Chem. Solids, 2019, 127: 258
CrossRef
ADS
Google scholar
|
[116] |
S. Ge, X. Guan, Y. Wang, C. H. Lin, Y. Cui, Y. Huang, X. Zhang, R. Zhang, X. Yang, T. Wu. Low-dimensional lead-free inorganic perovskites for resistive switching with ultralow bias. Adv. Funct. Mater., 2020, 30(25): 2002110
CrossRef
ADS
Google scholar
|
[117] |
S. Paramanik, A. Maiti, S. Chatterjee, A. J. Pal. Large resistive switching and artificial synaptic behaviors in layered Cs3Sb2I9 lead-free perovskite memory devices. Adv. Electron. Mater., 2022, 8(1): 2100237
CrossRef
ADS
Google scholar
|
[118] |
Z. Liu, P. Cheng, Y. Li, R. Kang, J. Zhou, J. Zhao, Z. Zuo. Multilevel halide perovskite memristors based on optical & electrical resistive switching effects. Mater. Chem. Phys., 2022, 288: 126393
CrossRef
ADS
Google scholar
|
[119] |
S. Wu, L. Ren, J. Qing, F. Yu, K. Yang, M. Yang, Y. Wang, M. Meng, W. Zhou, X. Zhou, S. Li. Bipolar resistance switching in transparent ITO/LaAlO3/SrTiO3 memristors. ACS Appl. Mater. Interfaces, 2014, 6(11): 8575
CrossRef
ADS
Google scholar
|
[120] |
H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, S. Sriram. Nanoscale resistive switching in amorphous perovskite oxide (a-SrTiO3) memristors. Adv. Funct. Mater., 2014, 24(43): 6741
CrossRef
ADS
Google scholar
|
[121] |
J. S. Han, Q. V. Le, J. Choi, H. Kim, S. G. Kim, K. Hong, C. W. Moon, T. L. Kim, S. Y. Kim, H. W. Jang. Lead-free all-inorganic cesium tin iodide perovskite for filamentary and interface-type resistive switching toward environment-friendly and temperature-tolerant nonvolatile memories. ACS Appl. Mater. Interfaces, 2019, 11(8): 8155
CrossRef
ADS
Google scholar
|
[122] |
J. Xu, Y. Wu, Z. Li, X. Liu, G. Cao, J. Yao. Resistive switching in nonperovskite-phase CsPbI3 film-based memory devices. ACS Appl. Mater. Interfaces, 2020, 12(8): 9409
CrossRef
ADS
Google scholar
|
[123] |
X. Zhang, H. Yang, Z. Jiang, Y. Zhang, S. Wu, H. Pan, N. Khisro, X. Chen. Photoresponse of nonvolatile resistive memory device based on all-inorganic perovskite CsPbBr3 nanocrystals. J. Phys. D, 2019, 52(12): 125103
CrossRef
ADS
Google scholar
|
[124] |
B. Cho, S. Song, Y. Ji, T. W. Kim, T. Lee. Organic resistive memory devices: Performance enhancement, integration, and advanced architectures. Adv. Funct. Mater., 2011, 21(15): 2806
CrossRef
ADS
Google scholar
|
[125] |
P. N. Murgatroyd. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D, 1970, 3(2): 151
CrossRef
ADS
Google scholar
|
[126] |
Q. Luo, X. Zhang, Y. Hu, T. Gong, X. Xu, P. Yuan, H. Ma, D. Dong, H. Lv, S. Long, Q. Liu, M. Liu. Self-rectifying and forming-free resistive-switching device for embedded memory application. IEEE Electron Device Lett., 2018, 39(5): 664
CrossRef
ADS
Google scholar
|
[127] |
B. S. Anjali, B. S. Patial, N. Thakur. High field conduction in Pb doped amorphous Se−Te system. AIP Conf. Proc., 2018, 1953(1): 090032
CrossRef
ADS
Google scholar
|
[128] |
Z. H. Liu, G. I. Ng, S. Arulkumaran, Y. K. T. Maung, H. Zhou. Temperature-dependent forward gate current transport in atomic-layer-deposited Al2O3/AlGaN/GaN metal−insulator−semiconductor high electron mobility transistor. Appl. Phys. Lett., 2011, 98(16): 163501
CrossRef
ADS
Google scholar
|
[129] |
C. Xu, B. Zhang, A. C. Wang, W. Cai, Y. Zi, P. Feng, Z. L. Wang. Effects of metal work function and contact potential difference on electron thermionic emission in contact electrification. Adv. Funct. Mater., 2019, 29(29): 1903142
CrossRef
ADS
Google scholar
|
[130] |
W.LiD.Jena H.G. Xing, A unified thermionic and thermionic-field emission (TE–TFE) model for ideal Schottky reverse-bias leakage current, J. Appl. Phys. 131(1), 015702 (2022)
|
[131] |
S.KunwarC. B. SomodiR.A. LalkB.X. RutherfordZ.Corey P.RoyD. ZhangM.HellenbrandM.XiaoJ.L. Macmanus-DriscollQ.JiaH.WangJ.Joshua YangW.NieA.Chen, Protons: Critical species for resistive switching in interface-type memristors Adv. Electron. Mater. 9(1), 2200816 (2023)
|
[132] |
S. Bagdzevicius, K. Maas, M. Boudard, M. Burriel. Interface-type resistive switching in perovskite materials. J. Electroceram., 2017, 39(1−4): 157
CrossRef
ADS
Google scholar
|
[133] |
D. Drozdowski, A. Gągor, D. Stefańska, J. K. Zarȩba, K. Fedoruk, M. Mączka, A. Sieradzki. Three-dimensional methylhydrazinium lead halide perovskites: Structural changes and effects on dielectric, linear, and nonlinear optical properties entailed by the halide tuning. J. Phys. Chem. C, 2022, 126(3): 1600
CrossRef
ADS
Google scholar
|
[134] |
G. Tang, Z. Xiao, J. Hong. Designing two-dimensional properties in three-dimensional halide perovskites via orbital engineering. J. Phys. Chem. Lett., 2019, 10(21): 6688
CrossRef
ADS
Google scholar
|
[135] |
B. Saparov, D. B. Mitzi. Organic–inorganic perovskites: Structural versatility for functional materials design. Chem. Rev., 2016, 116(7): 4558
CrossRef
ADS
Google scholar
|
[136] |
S. Tao, I. Schmidt, G. Brocks, J. Jiang, I. Tranca, K. Meerholz, S. Olthof. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun., 2019, 10(1): 2560
CrossRef
ADS
Google scholar
|
[137] |
R. L. Z. Hoye, J. Hidalgo, R. A. Jagt, J. P. Correa-Baena, T. Fix, J. L. Macmanus-Driscoll. The role of dimensionality on the optoelectronic properties of oxide and halide perovskites, and their halide derivatives. Adv. Energy Mater., 2022, 12(4): 2100499
CrossRef
ADS
Google scholar
|
[138] |
Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, J. Huang. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci., 2015, 8(5): 1544
CrossRef
ADS
Google scholar
|
[139] |
Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci., 2014, 7(8): 2619
CrossRef
ADS
Google scholar
|
[140] |
A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T. W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic–inorganic tri-halide perovskites. Nat. Phys., 2015, 11(7): 582
CrossRef
ADS
Google scholar
|
[141] |
C. C. Stoumpos, M. G. Kanatzidis. Halide perovskites: Poor man’s high-performance semiconductors. Adv. Mater., 2016, 28(28): 5778
CrossRef
ADS
Google scholar
|
[142] |
X. Zhao, H. Xu, Z. Wang, Y. Lin, Y. Liu. Memristors with organic-inorganic halide perovskites. InfoMat, 2019, 1(2): 183
CrossRef
ADS
Google scholar
|
[143] |
Y. Liu, L. A. Renna, H. B. Thompson, Z. A. Page, T. Emrick, M. D. Barnes, M. Bag, D. Venkataraman, T. P. Russell. Role of ionic functional groups on ion transport at perovskite interfaces. Adv. Energy Mater., 2017, 7(21): 1701235
CrossRef
ADS
Google scholar
|
[144] |
V. Gupta, G. Lucarelli, S. Castro-Hermosa, T. Brown, M. Ottavi. Investigation of hysteresis in hole transport layer free metal halide perovskites cells under dark conditions. Nanotechnology, 2020, 31(44): 445201
CrossRef
ADS
Google scholar
|
[145] |
F. Haque, M. Mativenga. Halide perovskite memtransistor enabled by ion migration. Jpn. J. Appl. Phys., 2020, 59(8): 081002
CrossRef
ADS
Google scholar
|
[146] |
H. Patil, H. Kim, K. D. Kadam, S. Rehman, S. A. Patil, J. Aziz, T. D. Dongale, Z. Ali Sheikh, M. Khalid Rahmani, M. F. Khan, D. K. Kim. Flexible organic–inorganic halide perovskite-based diffusive memristor for artificial nociceptors. ACS Appl. Mater. Interfaces, 2023, 15(10): 13238
CrossRef
ADS
Google scholar
|
[147] |
J. Q. Yang, R. Wang, Z. P. Wang, Q. Y. Ma, J. Y. Mao, Y. Ren, X. Yang, Y. Zhou, S. T. Han. Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828
CrossRef
ADS
Google scholar
|
[148] |
N. M. Samardzic, J. S. Bajic, D. L. Sekulic, S. Dautovic. Volatile memristor in leaky integrate-and-fire neurons: Circuit simulation and experimental study. Electronics (Basel), 2022, 11(6): 894
CrossRef
ADS
Google scholar
|
[149] |
T. J. Lee, S. K. Kim, T. Y. Seong. Sputtering-deposited amorphous SrVOx-based memristor for use in neuromorphic computing. Sci. Rep., 2020, 10(1): 5761
CrossRef
ADS
Google scholar
|
[150] |
Y. Gong, X. Xing, Z. Lv, J. Chen, P. Xie, Y. Wang, S. Huang, Y. Zhou, S. T. Han. Ultrasensitive flexible memory phototransistor with detectivity of 1.8 × 1013 Jones for artificial visual nociceptor. Adv. Intell. Syst., 2022, 4(8): 2100257
CrossRef
ADS
Google scholar
|
[151] |
R. A. John, N. Yantara, S. E. Ng, M. I. B. Patdillah, M. R. Kulkarni, N. F. Jamaludin, J. Basu, S. G. Ankit, S. G. Mhaisalkar, A. Basu, N. Mathews. Diffusive and drift halide perovskite memristive barristors as nociceptive and synaptic emulators for neuromorphic computing. Adv. Mater., 2021, 33(15): 2007851
CrossRef
ADS
Google scholar
|
[152] |
U. Das, P. Sarkar, B. Paul, A. Roy. Halide perovskite two-terminal analog memristor capable of photo-activated synaptic weight modulation for neuromorphic computing. Appl. Phys. Lett., 2021, 118(18): 182103
CrossRef
ADS
Google scholar
|
[153] |
S.WangY. XiongX.DongJ.ShaY.Wu W.LiY.Wang Capacitive coupling behaviors based on triple cation organic−inorganic hybrid perovskite memristor J. Alloys Compd. 874, 159884 (2021)
|
[154] |
G. Zhou, B. Sun, Z. Ren, L. Wang, C. Xu, B. Wu, P. Li, Y. Yao, S. Duan. Resistive switching behaviors and memory logic functions in single MnOx nanorod modulated by moisture. Chem. Commun. (Camb.), 2019, 55(67): 9915
CrossRef
ADS
Google scholar
|
[155] |
M.A. HaqueA. SyedF.H. AkhtarR.ShevateS.Singh K.V. PeinemannD.BaranT.Wu, Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism ACS Appl. Mater. Interfaces 11(33), 29821 (2019)
|
[156] |
A. M. A. Leguy, Y. Hu, M. Campoy-Quiles, M. I. Alonso, O. J. Weber, P. Azarhoosh, M. Van Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo, P. R. F. Barnes. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater., 2015, 27(9): 3397
CrossRef
ADS
Google scholar
|
[157] |
X. Zhang, X. Zhao, X. Shan, Q. Tian, Z. Wang, Y. Lin, H. Xu, Y. Liu. Humidity effect on resistive switching characteristics of the CH3NH3PbI3 memristor. ACS Appl. Mater. Interfaces, 2021, 13(24): 28555
CrossRef
ADS
Google scholar
|
[158] |
M. Kulbak, D. Cahen, G. Hodes. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3 cells. J. Phys. Chem. Lett., 2015, 6(13): 2452
CrossRef
ADS
Google scholar
|
[159] |
Y.YinZ. YaoY.XiaH.Chen, A method to improve the performance of all-inorganic halide perovskite CsPbBr3 memory, Mater. Res. Express 9(6), 065007 (2022)
|
[160] |
Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. All-inorganic colloidal perovskite quantum dots: A new class of lasing materials with favorable characteristics. Adv. Mater., 2015, 27(44): 7101
CrossRef
ADS
Google scholar
|
[161] |
S. Liu, J. Guan, L. Yin, L. Zhou, J. Huang, Y. Mu, S. Han, X. Pi, G. Liu, P. Gao, S. Zhou. Solution-processed synaptic memristors based on halide perovskite nanocrystals. J. Phys. Chem. Lett., 2022, 13(47): 10994
CrossRef
ADS
Google scholar
|
[162] |
C. Cheng, C. Zhu, B. Huang, H. Zhang, H. Zhang, R. Chen, W. Pei, Q. Chen, H. Chen. Processing halide perovskite materials with semiconductor technology. Adv. Mater. Technol., 2019, 4(7): 1800729
CrossRef
ADS
Google scholar
|
[163] |
Z. Liu, P. Cheng, Y. Li, R. Kang, Z. Zhang, Z. Zuo, J. Zhao. High temperature CsPbBrxI3−x memristors based on hybrid electrical and optical resistive switching effects. ACS Appl. Mater. Interfaces, 2021, 13(49): 58885
CrossRef
ADS
Google scholar
|
[164] |
S. Zhai, J. Gong, Y. Feng, Z. Que, W. Mao, X. He, Y. Xie, X. A. Li, L. Chu. Multilevel resistive switching in stable all-inorganic n−i−p double perovskite memristor. iScience, 2023, 26(4): 106461
CrossRef
ADS
Google scholar
|
[165] |
P. D. Dissanayake, K. M. Yeom, B. Sarkar, D. S. Alessi, D. Hou, J. Rinklebe, J. H. Noh, Y. S. Ok. Environmental impact of metal halide perovskite solar cells and potential mitigation strategies: A critical review. Environ. Res., 2023, 219: 115066
CrossRef
ADS
Google scholar
|
[166] |
Y.ZhengF. LuoL.RuanJ.TongL.Yan C.SunX. Zhang, A facile fabrication of lead-free Cs2NaBiI6 double perovskite films for memory device application, J. Alloys Compd. 909, 164613 (2022)
|
[167] |
J.ZhangS. HanC.JiW.ZhangY.Wang K.TaoZ. SunJ.Luo, [(CH3)3NH]3Bi2I9: A polar lead-free hybrid perovskite-like material as a potential semiconducting absorber, Chemistry 23(68), 17304 (2017)
|
[168] |
Z.NiY.Zhu S.JuZ.Xu F.TianH. HuT.GuoF.Li, E-synapse based on lead-free organic halide perovskite (CH3NH3)3Sb2Cl9 for neuromorphic computing, IEEE Trans. Electron Dev. 68(9), 4425 (2021)
|
[169] |
T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, S. G. Mhaisalkar. Lead-free germanium iodide perovskite materials for photovoltaic applications. J. Mater. Chem. A, 2015, 3(47): 23829
CrossRef
ADS
Google scholar
|
[170] |
H. Shankar, A. Jha, P. Kar. Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures. Mater. Adv., 2022, 3(1): 658
CrossRef
ADS
Google scholar
|
[171] |
J. C. Hebig, I. Kühn, J. Flohre, T. Kirchartz. Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications. ACS Energy Lett., 2016, 1(1): 309
CrossRef
ADS
Google scholar
|
[172] |
N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, H. J. Snaith. Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci., 2014, 7(9): 3061
CrossRef
ADS
Google scholar
|
[173] |
S. Ge, Y. Wang, Z. Xiang, Y. Cui. Reset voltage-dependent multilevel resistive switching behavior in CsPb1–xBixI3 perovskite-based memory device. ACS Appl. Mater. Interfaces, 2018, 10(29): 24620
CrossRef
ADS
Google scholar
|
[174] |
W. Ruan, Y. Hu, F. Xu, S. Zhang. Resistive switching behavior of organic-metallic halide perovskites CH3NH3Pb1−xBixBr3. Org. Electron., 2019, 70: 252
CrossRef
ADS
Google scholar
|
[175] |
F. Lv, C. Gao, H. A. Zhou, P. Zhang, K. Mi, X. Liu. Nonvolatile bipolar resistive switching behavior in the perovskite-like (CH3NH3)2FeCl4. ACS Appl. Mater. Interfaces, 2016, 8(29): 18985
CrossRef
ADS
Google scholar
|
[176] |
J. M. Yang, E. S. Choi, S. Y. Kim, J. H. Kim, J. H. Park, N. G. Park. Perovskite-related (CH3NH3)3-Sb2Br9 for forming-free memristor and low-energy-consuming neuromorphic computing. Nanoscale, 2019, 11(13): 6453
CrossRef
ADS
Google scholar
|
[177] |
F. Zeng, Y. Guo, W. Hu, Y. Tan, X. Zhang, J. Feng, X. Tang. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Appl. Mater. Interfaces, 2020, 12(20): 23094
CrossRef
ADS
Google scholar
|
[178] |
R. Wang, P. Chen, D. Hao, J. Zhang, Q. Shi, D. Liu, L. Li, L. Xiong, J. Zhou, J. Huang. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces, 2021, 13(36): 43144
CrossRef
ADS
Google scholar
|
[179] |
J. Lao, W. Xu, C. Jiang, N. Zhong, B. Tian, H. Lin, C. Luo, J. Travas-Sejdic, H. Peng, C. G. Duan. An air-stable artificial synapse based on a lead-free double perovskite Cs2AgBiBr6 film for neuromorphic computing. J. Mater. Chem. C, 2021, 9(17): 5706
CrossRef
ADS
Google scholar
|
[180] |
C. Wu, Q. Zhang, Y. Liu, W. Luo, X. Guo, Z. Huang, H. Ting, W. Sun, X. Zhong, S. Wei, S. Wang, Z. Chen, L. Xiao. The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film. Adv. Sci. (Weinh.), 2018, 5(3): 1700759
CrossRef
ADS
Google scholar
|
[181] |
X. F. Cheng, W. H. Qian, J. Wang, C. Yu, J. H. He, H. Li, Q. F. Xu, D. Y. Chen, N. J. Li, J. M. Lu. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731
CrossRef
ADS
Google scholar
|
[182] |
W. Wang, G. Zhou. Moisture influence in emerging neuromorphic device. Front. Phys., 2023, 18(5): 53601
CrossRef
ADS
Google scholar
|
[183] |
Z. Guo, R. Xiong, Y. Zhu, Z. Wang, J. Zhou, Y. Liu, D. Luo, Y. Wang, H. Wang. High-performance and humidity robust multilevel lead-free all-inorganic Cs3Cu2Br5 perovskite-based memristors. Appl. Phys. Lett., 2023, 122(5): 053502
CrossRef
ADS
Google scholar
|
[184] |
W. H. Qian, X. F. Cheng, J. Zhou, J. H. He, H. Li, Q. F. Xu, N. J. Li, D. Y. Chen, Z. G. Yao, J. M. Lu. Lead-free perovskite MASnBr3-based memristor for quaternary information storage. InfoMat, 2020, 2(4): 743
CrossRef
ADS
Google scholar
|
[185] |
Y. Ren, X. Bu, M. Wang, Y. Gong, J. Wang, Y. Yang, G. Li, M. Zhang, Y. Zhou, S. T. Han. Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity. Nat. Commun., 2022, 13(1): 5585
CrossRef
ADS
Google scholar
|
[186] |
X. Guan, Z. Lei, X. Yu, C. H. Lin, J. K. Huang, C. Y. Huang, L. Hu, F. Li, A. Vinu, J. Yi, T. Wu. Low-dimensional metal-halide perovskites as high-performance materials for memory applications. Small, 2022, 18(38): 2203311
CrossRef
ADS
Google scholar
|
[187] |
U. Das, P. K. Sarkar, D. Das, B. Paul, A. Roy. Influence of nanoscale charge trapping layer on the memory and synaptic characteristics of a novel rubidium lead chloride quantum dot based memristor. Adv. Electron. Mater., 2022, 8(5): 2101015
CrossRef
ADS
Google scholar
|
[188] |
C. Gonzales, A. Guerrero, J. Bisquert. Spectral properties of the dynamic state transition in metal halide perovskite-based memristor exhibiting negative capacitance. Appl. Phys. Lett., 2021, 118(7): 073501
CrossRef
ADS
Google scholar
|
[189] |
S. Batool, M. Idrees, S. R. Zhang, S. T. Han, Y. Zhou. Novel charm of 2D materials engineering in memristor: When electronics encounter layered morphology. Nanoscale Horiz., 2022, 7(5): 480
CrossRef
ADS
Google scholar
|
[190] |
J. Di, Z. Lin, J. Su, J. Wang, J. Zhang, S. Liu, J. Chang, Y. Hao. Two-dimensional (C6H5C2H4NH3)2-PbI4 perovskite single crystal resistive switching memory devices. IEEE Electron Device Lett., 2021, 42(3): 327
CrossRef
ADS
Google scholar
|
[191] |
J. Liu, K. Chen, S. A. Khan, B. Shabbir, Y. Zhang, Q. Khan, Q. Bao. Synthesis and optical applications of low dimensional metal-halide perovskites. Nanotechnology, 2020, 31(15): 152002
CrossRef
ADS
Google scholar
|
[192] |
S. J. Kim, T. H. Lee, J. M. Yang, J. W. Yang, Y. J. Lee, M. J. Choi, S. A. Lee, J. M. Suh, K. J. Kwak, J. H. Baek, I. H. Im, D. E. Lee, J. Y. Kim, J. Kim, J. S. Han, S. Y. Kim, D. Lee, N. G. Park, H. W. Jang. Vertically aligned two-dimensional halide perovskites for reliably operable artificial synapses. Mater. Today, 2022, 52: 19
CrossRef
ADS
Google scholar
|
[193] |
D. Thrithamarassery Gangadharan, D. Ma. Searching for stability at lower dimensions: Current trends and future prospects of layered perovskite solar cells. Energy Environ. Sci., 2019, 12(10): 2860
CrossRef
ADS
Google scholar
|
[194] |
H. Tian, L. Zhao, X. Wang, Y. W. Yeh, N. Yao, B. P. Rand, T. L. Ren. Extremely low operating current resistive memory based on exfoliated 2D perovskite single crystals for neuromorphic computing. ACS Nano, 2017, 11(12): 12247
CrossRef
ADS
Google scholar
|
[195] |
M. Kumar, M. Patel, D. Y. Park, H. S. Kim, M. S. Jeong, J. Kim. Switchable two-terminal transparent optoelectronic devices based on 2D perovskite. Adv. Electron. Mater., 2019, 5(2): 1800662
CrossRef
ADS
Google scholar
|
[196] |
J.M. YangS. G. KimJ.Y. SeoC.CuhadarD.Y. Son D.LeeN. G. Park, 1D hexagonal HC(NH2)2-PbI3 for multilevel resistive switching nonvolatile memory, Adv. Electron. Mater. 4(9), 1800190 (2018)
|
[197] |
S. Poddar, Y. Zhang, L. Gu, D. Zhang, Q. Zhang, S. Yan, M. Kam, S. Zhang, Z. Song, W. Hu, L. Liao, Z. Fan. Down-scalable and ultra-fast memristors with ultra-high density three-dimensional arrays of perovskite quantum wires. Nano Lett., 2021, 21(12): 5036
CrossRef
ADS
Google scholar
|
[198] |
G. Zhou, D. Kuang, G. Wang, X. He, C. Xu, J. Dong, Z. Dai, G. Xu, D. Lu, P. Guo, B. Sun, Q. Song. PbI3-ion abnormal migration in CH3NH3PbIxCl3−x ultralong single nanowire for resistive switching memories. Mater. Charact., 2023, 199: 112762
CrossRef
ADS
Google scholar
|
[199] |
Z. Chen, Y. Yu, L. Jin, Y. Li, Q. Li, T. Li, Y. Zhang, H. Dai, J. Yao. Artificial synapses with photoelectric plasticity and memory behaviors based on charge trapping memristive system. Mater. Des., 2020, 188: 108415
CrossRef
ADS
Google scholar
|
[200] |
Y. Gong, Y. Wang, R. Li, J. Q. Yang, Z. Lv, X. Xing, Q. Liao, J. Wang, J. Chen, Y. Zhou, S. T. Han. Tailoring synaptic plasticity in a perovskite QD-based asymmetric memristor. J. Mater. Chem. C, 2020, 8(9): 2985
CrossRef
ADS
Google scholar
|
[201] |
G.V. NenashevA.N. AleshinI.P. ShcherbakovV.N. Petrov, Effect of temperature variations on the behavior of a two-terminal organic−inorganic halide perovskite rewritable memristor for neuromorphic operations, Solid State Commun. 348−349, 114768 (2022)
|
[202] |
T. K. Su, W. K. Cheng, C. Y. Chen, W. C. Wang, Y. T. Chuang, G. H. Tan, H. C. Lin, C. H. Hou, C. M. Liu, Y. C. Chang, J. J. Shyue, K. C. Wu, H. W. Lin. Room-temperature fabricated multilevel nonvolatile lead-free cesium halide memristors for reconfigurable in-memory computing. ACS Nano, 2022, 16(8): 12979
CrossRef
ADS
Google scholar
|
[203] |
R. A. John, Y. Demirag, Y. Shynkarenko, Y. Berezovska, N. Ohannessian, M. Payvand, P. Zeng, M. I. Bodnarchuk, F. Krumeich, G. Kara, I. Shorubalko, M. V. Nair, G. A. Cooke, T. Lippert, G. Indiveri, M. V. Kovalenko. Reconfigurable halide perovskite nanocrystal memristors for neuromorphic computing. Nat. Commun., 2022, 13(1): 2074
CrossRef
ADS
Google scholar
|
[204] |
Y. Wang, N. Xu, Y. Yuan, W. Zhang, Q. Huang, X. Tang, F. Qi. Achieving adjustable digital-to-analog conversion in memristors with embedded Cs2AgSbBr6 nanoparticles. Nanoscale, 2023, 15(16): 7344
CrossRef
ADS
Google scholar
|
[205] |
Z.ZhangD. YangH.LiC.LiZ.Wang L.SunH. Yang, 2d materials and van der waals heterojunctions for neuromorphic computing, Neuromorph. Comput. Eng. 2(3), 032004 (2022)
|
[206] |
Z. Zhou, F. Yang, S. Wang, L. Wang, X. Wang, C. Wang, Y. Xie, Q. Liu. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef
ADS
Google scholar
|
[207] |
Q.B. ZhuB. LiD.D. YangC.LiuS.Feng M.L. ChenY. SunY.N. TianX.SuX.M. Wang S.QiuQ. W. LiX.M. LiH.B. ZengH.M. Cheng D.M. Sun, A flexible ultrasensitive optoelectronic sensor array for neuromorphic vision systems, Nat. Commun. 12(1), 1798 (2021)
|
[208] |
L. Yin, W. Huang, R. Xiao, W. Peng, Y. Zhu, Y. Zhang, X. Pi, D. Yang. Optically stimulated synaptic devices based on the hybrid structure of silicon nanomembrane and perovskite. Nano Lett., 2020, 20(5): 3378
CrossRef
ADS
Google scholar
|
[209] |
Y. Wu, Y. Wei, Y. Huang, F. Cao, D. Yu, X. Li, H. Zeng. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Res., 2017, 10(5): 1584
CrossRef
ADS
Google scholar
|
[210] |
Y. Wang, Z. Lv, Q. Liao, H. Shan, J. Chen, Y. Zhou, L. Zhou, X. Chen, V. L. Roy, Z. Wang, Z. Xu, Y. J. Zeng, S. T. Han. Synergies of electrochemical metallization and valance change in all-inorganic perovskite quantum dots for resistive switching. Adv. Mater., 2018, 30(28): 1800327
CrossRef
ADS
Google scholar
|
[211] |
B. Pradhan, S. Das, J. Li, F. Chowdhury, J. Cherusseri, D. Pandey, D. Dev, A. Krishnaprasad, E. Barrios, A. Towers, A. Gesquiere, L. Tetard, T. Roy, J. Thomas. Ultrasensitive and ultrathin phototransistors and photonic synapses using perovskite quantum dots grown from graphene lattice. Sci. Adv., 2020, 6(7): eaay5225
CrossRef
ADS
Google scholar
|
[212] |
X. Cheng, Y. Han, B. B. Cui. Fabrication strategies and optoelectronic applications of perovskite heterostructures. Adv. Opt. Mater., 2022, 10(5): 2102224
CrossRef
ADS
Google scholar
|
[213] |
D. Liu, H. Yu, Y. Chai. Low-power computing with neuromorphic engineering. Adv. Intell. Syst., 2021, 3(2): 2000150
CrossRef
ADS
Google scholar
|
[214] |
S. J. Kim, S. Kim, H. W. Jang. Competing memristors for brain-inspired computing. iScience, 2021, 24(1): 101889
CrossRef
ADS
Google scholar
|
[215] |
X. Zhu, W. D. Lu. Optogenetics-inspired tunable synaptic functions in memristors. ACS Nano, 2018, 12(2): 1242
CrossRef
ADS
Google scholar
|
[216] |
X. Zhao, Z. Wang, W. Li, S. Sun, H. Xu, P. Zhou, J. Xu, Y. Lin, Y. Liu. Photoassisted electroforming method for reliable low-power organic−inorganic perovskite memristors. Adv. Funct. Mater., 2020, 30(17): 1910151
CrossRef
ADS
Google scholar
|
[217] |
G. Lin, Y. Lin, R. Cui, H. Huang, X. Guo, C. Li, J. Dong, X. Guo, B. Sun. An organic−inorganic hybrid perovskite logic gate for better computing. J. Mater. Chem. C, 2015, 3(41): 10793
CrossRef
ADS
Google scholar
|
[218] |
J. Xing, C. Zhao, Y. Zou, W. Kong, Z. Yu, Y. Shan, Q. Dong, D. Zhou, W. Yu, C. Guo. Modulating the optical and electrical properties of MAPbBr3 single crystals via voltage regulation engineering and application in memristors. Light Sci. Appl., 2020, 9(1): 111
CrossRef
ADS
Google scholar
|
[219] |
S. Ke, L. Jiang, Y. Zhao, Y. Xiao, B. Jiang, G. Cheng, F. Wu, G. Cao, Z. Peng, M. Zhu, C. Ye. Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef
ADS
Google scholar
|
[220] |
A. S. Sokolov, H. Abbas, Y. Abbas, C. Choi. Towards engineering in memristors for emerging memory and neuromorphic computing: A review. J. Semicond., 2021, 42(1): 013101
CrossRef
ADS
Google scholar
|
[221] |
T. J. Huang. Imitating the brain with neurocomputer a new way towards artificial general intelligence. Inter. J. Autom. Comput., 2017, 14(5): 520
CrossRef
ADS
Google scholar
|
[222] |
F. Zahoor, T. Z. Azni Zulkifli, F. A. Khanday. Resistive random access memory (RRAM): An overview of materials, switching mechanism, performance, multilevel cell (mlc) storage, modeling, and applications. Nanoscale Res. Lett., 2020, 15(1): 90
CrossRef
ADS
Google scholar
|
[223] |
F. Chen, Y. Zhou, Y. Zhu, R. Zhu, P. Guan, J. Fan, L. Zhou, N. Valanoor, F. Von Wegner, E. Saribatir, I. Birznieks, T. Wan, D. Chu. Recent progress in artificial synaptic devices: Materials, processing and applications. J. Mater. Chem. C, 2021, 9(27): 8372
CrossRef
ADS
Google scholar
|
[224] |
K. J. Kwak, J. H. Baek, D. E. Lee, I. H. Im, J. Kim, S. J. Kim, Y. J. Lee, J. Y. Kim, H. W. Jang. Ambient stable all inorganic CsCu2I3 artificial synapses for neurocomputing. Nano Lett., 2022, 22(14): 6010
CrossRef
ADS
Google scholar
|
[225] |
X. Zhu, Q. Wang, W. D. Lu. Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
CrossRef
ADS
Google scholar
|
[226] |
W. Huang, P. Hang, Y. Wang, K. Wang, S. Han, Z. Chen, W. Peng, Y. Zhu, M. Xu, Y. Zhang, Y. Fang, X. Yu, D. Yang, X. Pi. Zero-power optoelectronic synaptic devices. Nano Energy, 2020, 73: 104790
CrossRef
ADS
Google scholar
|
[227] |
R. A. John, A. Milozzi, S. Tsarev, R. Brönnimann, S. C. Boehme, E. Wu, I. Shorubalko, M. V. Kovalenko, D. Ielmini. Ionic-electronic halide perovskite memdiodes enabling neuromorphic computing with a second-order complexity. Sci. Adv., 2022, 8(51): eade0072
CrossRef
ADS
Google scholar
|
[228] |
A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhanen, M. J. Bailey. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater., 2015, 14(2): 199
CrossRef
ADS
Google scholar
|
[229] |
Y. Lee, T. W. Lee. Organic synapses for neuromorphic electronics: From brain-inspired computing to sensorimotor nervetronics. Acc. Chem. Res., 2019, 52(4): 964
CrossRef
ADS
Google scholar
|
[230] |
X. Yan, X. Han, Z. Fang, Z. Zhao, Z. Zhang, J. Sun, Y. Shao, Y. Zhang, L. Wang, S. Sun, Z. Guo, X. Jia, Y. Zhang, Z. Guan, T. Shi. Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301
CrossRef
ADS
Google scholar
|
[231] |
Q. Chen, Y. Zhang, S. Liu, T. Han, X. Chen, Y. Xu, Z. Meng, G. Zhang, X. Zheng, J. Zhao, G. Cao, G. Liu. Switchable perovskite photovoltaic sensors for bioinspired adaptive machine vision. Adv. Intell. Syst., 2020, 2(9): 2070092
CrossRef
ADS
Google scholar
|
[232] |
X.YangZ. XiongY.ChenY.RenL.Zhou H.LiY.Zhou F.PanS. T. Han, A self-powered artificial retina perception system for image preprocessing based on photovoltaic devices and memristive arrays, Nano Energy 78, 105246 (2020)
|
[233] |
R. A. John, N. Shah, S. K. Vishwanath, S. E. Ng, B. Febriansyah, M. Jagadeeswararao, C. H. Chang, A. Basu, N. Mathews. Halide perovskite memristors as flexible and reconfigurable physical unclonable functions. Nat. Commun., 2021, 12(1): 3681
CrossRef
ADS
Google scholar
|
[234] |
H. J. Gogoi, K. Bajpai, A. T. Mallajosyula, A. Solanki. Advances in flexible memristors with hybrid perovskites. J. Phys. Chem. Lett., 2021, 12(36): 8798
CrossRef
ADS
Google scholar
|
[235] |
K. A. Campbell. Self-directed channel memristor for high temperature operation. Microelectronics, 2017, 59: 10
CrossRef
ADS
Google scholar
|
[236] |
K. Song, B. Chen, X. Lin, H. Yang, Y. Liu, Y. Liu, H. Li, Z. Chen. Thermal enhanced resistive switching performance of ⟨ 100⟩-oriented perovskite [(TZ-H)2(PbBr4)]n with high working temperature: A triazolium/(PbBr4)n2n− interfacial interaction insight. Adv. Electron. Mater., 2022, 8(11): 2200537
CrossRef
ADS
Google scholar
|
[237] |
A.SoosaimanickamP.J. Rodríguez-CantóJ.P. Martínez-PastorR.Abargues, Nanostructured, functional, and flexible materials for energy conversion and storage systems, edited by A. Pandikumar and P. Rameshkumar, Elsevier, 2020, pp 157−228
|
[238] |
J. Sun, F. Li, J. Yuan, W. Ma. Advances in metal halide perovskite film preparation: The role of anti-solvent treatment. Small Methods, 2021, 5(5): 2100046
CrossRef
ADS
Google scholar
|
[239] |
P.RoyN. Kumar SinhaS.TiwariA.Khare, A review on perovskite solar cells: Evolution of architecture, fabrication techniques, commercialization issues and status, Sol. Energy 198, 665 (2020)
|
[240] |
L. Gil-Escrig, C. Momblona, M. G. La-Placa, P. P. Boix, M. Sessolo, H. J. Bolink. Vacuum deposited triple-cation mixed-halide perovskite solar cells. Adv. Energy Mater., 2018, 8(14): 1703506
CrossRef
ADS
Google scholar
|
[241] |
S. Xie, A. Osherov, V. Bulović. All-vacuum-deposited inorganic cesium lead halide perovskite light-emitting diodes. APL Mater., 2020, 8(5): 051113
CrossRef
ADS
Google scholar
|
[242] |
N. Zhang, W. Sun, S. P. Rodrigues, K. Wang, Z. Gu, S. Wang, W. Cai, S. Xiao, Q. Song. Highly reproducible organometallic halide perovskite microdevices based on top-down lithography. Adv. Mater., 2017, 29(15): 1606205
CrossRef
ADS
Google scholar
|
[243] |
S. Parveen, L. T. Manamel, A. Mukherjee, S. Sagar, B. C. Das. Analog memristor of lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals as solid-state electronic synapse for neuromorphic computing. Adv. Mater. Interfaces, 2022, 9(30): 2200562
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |