Universal dynamic scaling and Contact dynamics in quenched quantum gases
Jia-Nan Cui, Zhengqiang Zhou, Mingyuan Sun
Universal dynamic scaling and Contact dynamics in quenched quantum gases
Recently universal dynamic scaling is observed in several systems, which exhibit a spatiotemporal self-similar scaling behavior, analogous to the spatial scaling near phase transition. The latter one arises from the emergent continuous scaling symmetry. Motivated by this, we investigate the possible relation between the scaling dynamics and the continuous scaling symmetry in this paper. We derive a theorem that the scaling invariance of the quenched Hamiltonian and the initial density matrix can lead to the universal dynamic scaling. It is further demonstrated both in a two-body system analytically and in a many-body system numerically. For the latter one, we calculate the dynamics of quantum gases quenched from the zero interaction to a finite interaction via the non-equilibrium high-temperature virial expansion. A dynamic scaling of the momentum distribution appears in certain momentum-time windows at unitarity as well as in the weak interacting limit. Remarkably, this universal scaling dynamics persists approximately with smaller scaling exponents even if the scaling symmetry is fairly broken. Our findings may offer a new perspective to interpret the related experiments. We also study the Contact dynamics in the BEC−BCS crossover. Surprisingly, the half-way time displays a maximum near unitarity while some damping oscillations occur on the BEC side due to the dimer state, which can be used to detect possible two-body bound states in experiments.
dynamic scaling / Contact dynamics / quantum gases / cold atom / quench dynamics / virial expansion / continuous scaling symmetry
[1] |
P. Makotyn , C. E. Klauss , D. L. Goldberger , E. A. Cornell , D. S. Jin . Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 2014, 10(2): 116
CrossRef
ADS
Google scholar
|
[2] |
C. Eigen , J. A. P. Glidden , R. Lopes , N. Navon , Z. Hadzibabic , R. P. Smith . Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett., 2017, 119(25): 250404
CrossRef
ADS
Google scholar
|
[3] |
C. Eigen , J. A. Glidden , R. Lopes , E. A. Cornell , R. P. Smith , Z. Hadzibabic . Universal prethermal dynamics of Bose gases quenched to unitarity. Nature, 2018, 563(7730): 221
CrossRef
ADS
Google scholar
|
[4] |
M. Prüfer , P. Kunkel , H. Strobel , S. Lannig , D. Linnemann , C. M. Schmied , J. Berges , T. Gasenzer , M. K. Oberthaler . Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 2018, 563(7730): 217
CrossRef
ADS
Google scholar
|
[5] |
S. Erne , R. Bucker , T. Gasenzer , J. Berges , J. Schmiedmayer . Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 2018, 563(7730): 225
CrossRef
ADS
Google scholar
|
[6] |
J. A. P. Glidden , C. Eigen , L. H. Dogra , T. A. Hilker , R. P. Smith , Z. Hadzibabic . Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys., 2021, 17(4): 457
CrossRef
ADS
Google scholar
|
[7] |
M. Gałka , P. Christodoulou , M. Gazo , A. Karailiev , N. Dogra , J. Schmitt , Z. Hadzibabic . Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett., 2022, 129(19): 190402
CrossRef
ADS
Google scholar
|
[8] |
D. Wei , A. Rubio-Abadal , B. Ye , F. Machado , J. Kemp , K. Srakaew , S. Hollerith , J. Rui , S. Gopalakrishnan , N. Y. Yao , I. Bloch , J. Zeiher . Quantum gas microscopy of Kardar‒Parisi‒Zhang superdiffusion. Science, 2022, 376(6594): 716
CrossRef
ADS
Google scholar
|
[9] |
S.HuhK.MukherjeeK.KwonJ.SeoS.I. MistakidisH.R. SadeghpourJ.Y. Choi, Classifying the universal coarsening dynamics of a quenched ferromagnetic condensate, arXiv: 2303.05230 (2023)
|
[10] |
X. Yin , L. Radzihovsky . Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A, 2013, 88(6): 063611
CrossRef
ADS
Google scholar
|
[11] |
A. G. Sykes , J. P. Corson , J. P. D’Incao , A. P. Koller , C. H. Greene , A. M. Rey , K. R. Hazzard , J. L. Bohn . Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A, 2014, 89(2): 021601
CrossRef
ADS
Google scholar
|
[12] |
A. Rançon , K. Levin . Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes. Phys. Rev. A, 2014, 90(2): 021602
CrossRef
ADS
Google scholar
|
[13] |
B. Kain , H. Y. Ling . Nonequilibrium states of a quenched Bose gas. Phys. Rev. A, 2014, 90(6): 063626
CrossRef
ADS
Google scholar
|
[14] |
J. P. Corson , J. L. Bohn . Bound-state signatures in quenched Bose‒Einstein condensates. Phys. Rev. A, 2015, 91(1): 013616
CrossRef
ADS
Google scholar
|
[15] |
F. Ancilotto , M. Rossi , L. Salasnich , F. Toigo . Quenched dynamics of the momentum distribution of the unitary Bose gas. Few-Body Syst., 2015, 56(11-12): 801
CrossRef
ADS
Google scholar
|
[16] |
X. Yin , L. Radzihovsky . Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A, 2016, 93(3): 033653
CrossRef
ADS
Google scholar
|
[17] |
S. Y. Wu , H. H. Zhong , J. H. Huang , X. Z. Qin , C. H. Lee . Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 110301
CrossRef
ADS
Google scholar
|
[18] |
V. E. Colussi , J. P. Corson , J. P. D’Incao . Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 120(10): 100401
CrossRef
ADS
Google scholar
|
[19] |
V. E. Colussi , S. Musolino , S. J. J. M. F. Kokkelmans . Dynamical formation of the unitary Bose gas. Phys. Rev. A, 2018, 98(5): 051601
CrossRef
ADS
Google scholar
|
[20] |
M. Van Regemortel , H. Kurkjian , M. Wouters , I. Carusotto . Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys. Rev. A, 2018, 98(5): 053612
CrossRef
ADS
Google scholar
|
[21] |
J. P. D’Incao , J. Wang , V. E. Colussi . Efimov physics in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 121(2): 023401
CrossRef
ADS
Google scholar
|
[22] |
S. Musolino , V. E. Colussi , S. J. J. M. F. Kokkelmans . Pair formation in quenched unitary Bose gases. Phys. Rev. A, 2019, 100(1): 013612
CrossRef
ADS
Google scholar
|
[23] |
C. Gao , M. Y. Sun , P. Zhang , H. Zhai . Universal dynamics of a degenerate Bose gas quenched to unitarity. Phys. Rev. Lett., 2020, 124(4): 040403
CrossRef
ADS
Google scholar
|
[24] |
A. Muñoz de las Heras , M. M. Parish , F. M. Marchetti . Early-time dynamics of Bose gases quenched into the strongly interacting regime. Phys. Rev. A, 2019, 99(2): 023623
CrossRef
ADS
Google scholar
|
[25] |
V. E. Colussi , B. E. van Zwol , J. P. D’Incao , S. J. J. M. F. Kokkelmans . Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas. Phys. Rev. A, 2019, 99(4): 043604
CrossRef
ADS
Google scholar
|
[26] |
G. Bougas , S. I. Mistakidis , P. Schmelcher . Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap. Phys. Rev. A, 2019, 100(5): 053602
CrossRef
ADS
Google scholar
|
[27] |
M. Y. Sun , P. Zhang , H. Zhai . High temperature virial expansion to universal quench dynamics. Phys. Rev. Lett., 2020, 125(11): 110404
CrossRef
ADS
Google scholar
|
[28] |
V. E. Colussi , H. Kurkjian , M. Van Regemortel , S. Musolino , J. van de Kraats , M. Wouters , S. J. J. M. F. Kokkelmans . Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics. Phys. Rev. A, 2020, 102(6): 063314
CrossRef
ADS
Google scholar
|
[29] |
G. Bougas , S. I. Mistakidis , G. M. Alshalan , P. Schmelcher . Stationary and dynamical properties of two harmonically trapped bosons in the crossover from two dimensions to one. Phys. Rev. A, 2020, 102(1): 013314
CrossRef
ADS
Google scholar
|
[30] |
S. Musolino , H. Kurkjian , M. Van Regemortel , M. Wouters , S. J. J. M. F. Kokkelmans , V. E. Colussi . Bose‒Einstein condensation of Efimovian triples in the unitary Bose gas. Phys. Rev. Lett., 2022, 128(2): 020401
CrossRef
ADS
Google scholar
|
[31] |
T. Enss , N. Cuadra Braatz , G. Gori . Complex scaling flows in the quench dynamics of interacting particles. Phys. Rev. A, 2022, 106(1): 013308
CrossRef
ADS
Google scholar
|
[32] |
G. W. Fan , X. L. Chen , P. Zou . Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin‒orbit coupling. Front. Phys., 2022, 17(5): 52502
CrossRef
ADS
Google scholar
|
[33] |
Y. M. Hu , Y. F. Fei , X. L. Chen , Y. B. Zhang . Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
CrossRef
ADS
Google scholar
|
[34] |
D. A. Abanin , E. Altman , I. Bloch , M. Serbyn . Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 2019, 91(2): 021001
CrossRef
ADS
Google scholar
|
[35] |
C. Wang , P. F. Zhang , X. Chen , J. L. Yu , H. Zhai . Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett., 2017, 118(18): 185701
CrossRef
ADS
Google scholar
|
[36] |
W. Sun , C. R. Yi , B. Z. Wang , W. W. Zhang , B. C. Sanders , X. T. Xu , Z. Y. Wang , J. Schmiedmayer , Y. Deng , X. J. Liu , S. Chen , J. W. Pan . Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
CrossRef
ADS
Google scholar
|
[37] |
M. Tarnowski F. N. Unal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock , C. Weitenberg. . Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
CrossRef
ADS
Google scholar
|
[38] |
C. Gao , H. Zhai , Z. Y. Shi . Dynamical fractal in quantum gases with discrete scaling symmetry. Phys. Rev. Lett., 2019, 122(23): 230402
CrossRef
ADS
Google scholar
|
[39] |
K.Huang, Statistical Mechanics, John Wiley & Sons, New York, 1987
|
[40] |
S.Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999
|
[41] |
R. Micha , I. I. Tkachev . Turbulent thermalization. Phys. Rev. D, 2004, 70(4): 043538
CrossRef
ADS
Google scholar
|
[42] |
J. Berges , A. Rothkopf , J. Schmidt . Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 2008, 101(4): 041603
CrossRef
ADS
Google scholar
|
[43] |
B. Nowak , J. Schole , D. Sexty , T. Gasenzer . Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 2012, 85(4): 043627
CrossRef
ADS
Google scholar
|
[44] |
B. Nowak , J. Schole , T. Gasenzer . Universal dynamics on the way to thermalization. New J. Phys., 2014, 16(9): 093052
CrossRef
ADS
Google scholar
|
[45] |
J. Berges , K. Boguslavski , S. Schlichting , R. Venugopalan . Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 2015, 114(6): 061601
CrossRef
ADS
Google scholar
|
[46] |
A. P. Orioli , K. Boguslavski , J. Berges . Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 2015, 92(2): 025041
CrossRef
ADS
Google scholar
|
[47] |
I. Chantesana , A. P. Orioli , T. Gasenzer . Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A, 2019, 99(4): 043620
CrossRef
ADS
Google scholar
|
[48] |
A. N. Mikheev , C. M. Schmied , T. Gasenzer . Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A, 2019, 99(6): 063622
CrossRef
ADS
Google scholar
|
[49] |
C. M. Schmied , A. N. Mikheev , T. Gasenzer . Non-thermal fixed points: Universal dynamics far from equilibrium. Int. J. Mod. Phys. A, 2019, 34(29): 1941006
CrossRef
ADS
Google scholar
|
[50] |
S. Bhattacharyya , J. F. Rodriguez-Nieva , E. Demler . Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett., 2020, 125(23): 230601
CrossRef
ADS
Google scholar
|
[51] |
J. Berges , K. Boguslavski , M. Mace , J. M. Pawlowski . Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D, 2020, 102(3): 034014
CrossRef
ADS
Google scholar
|
[52] |
K. Fujimoto , R. Hamazaki , Y. Kawaguchi . Family‒Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett., 2020, 124(21): 210604
CrossRef
ADS
Google scholar
|
[53] |
T. Preis , M. P. Heller , J. Berges . Stable and unstable perturbations in universal scaling phenomena far from equilibrium. Phys. Rev. Lett., 2023, 130(3): 031602
CrossRef
ADS
Google scholar
|
[54] |
S. Tan . Large momentum part of a strongly correlated Fermi gas. Ann. Phys., 2008, 323(12): 2971
CrossRef
ADS
Google scholar
|
[55] |
S. Zhang , A. J. Leggett . Universal properties of the ultracold Fermi gas. Phys. Rev. A, 2009, 79(2): 023601
CrossRef
ADS
Google scholar
|
[56] |
A. B. Bardon , S. Beattie , C. Luciuk , W. Cairncross , D. Fine , N. S. Cheng , G. J. A. Edge , E. Taylor , S. Zhang , S. Trotzky , J. H. Thywissen . Transverse demagnetization dynamics of a unitary Fermi gas. Science, 2014, 344(6185): 722
CrossRef
ADS
Google scholar
|
[57] |
R. J. Fletcher , R. Lopes , J. Man , N. Navon , R. P. Smith , M. W. Zwierlein , Z. Hadzibabic . Two- and three-body contacts in the unitary Bose gas. Science, 2017, 355(6323): 377
CrossRef
ADS
Google scholar
|
[58] |
C. Luciuk , S. Smale , F. Böttcher , H. Sharum , B. A. Olsen , S. Trotzky , T. Enss , J. H. Thywissen . Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases. Phys. Rev. Lett., 2017, 118(13): 130405
CrossRef
ADS
Google scholar
|
[59] |
F. Werner , Y. Castin . Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A, 2006, 74(5): 053604
CrossRef
ADS
Google scholar
|
[60] |
In three-dimensional unitary Bose gas, the scale invariance is only approximate because of the three-body parameter. However, experiments [1–3] show that its contribution can be insignificant in quench dynamics
|
[61] |
R. Qi , Z. Y. Shi , H. Zhai . Maximum energy growth rate in dilute quantum gases. Phys. Rev. Lett., 2021, 126(24): 240401
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |