Universal dynamic scaling and Contact dynamics in quenched quantum gases

Jia-Nan Cui, Zhengqiang Zhou, Mingyuan Sun

PDF(5502 KB)
PDF(5502 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 22201. DOI: 10.1007/s11467-023-1341-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Universal dynamic scaling and Contact dynamics in quenched quantum gases

Author information +
History +

Abstract

Recently universal dynamic scaling is observed in several systems, which exhibit a spatiotemporal self-similar scaling behavior, analogous to the spatial scaling near phase transition. The latter one arises from the emergent continuous scaling symmetry. Motivated by this, we investigate the possible relation between the scaling dynamics and the continuous scaling symmetry in this paper. We derive a theorem that the scaling invariance of the quenched Hamiltonian and the initial density matrix can lead to the universal dynamic scaling. It is further demonstrated both in a two-body system analytically and in a many-body system numerically. For the latter one, we calculate the dynamics of quantum gases quenched from the zero interaction to a finite interaction via the non-equilibrium high-temperature virial expansion. A dynamic scaling of the momentum distribution appears in certain momentum-time windows at unitarity as well as in the weak interacting limit. Remarkably, this universal scaling dynamics persists approximately with smaller scaling exponents even if the scaling symmetry is fairly broken. Our findings may offer a new perspective to interpret the related experiments. We also study the Contact dynamics in the BEC−BCS crossover. Surprisingly, the half-way time displays a maximum near unitarity while some damping oscillations occur on the BEC side due to the dimer state, which can be used to detect possible two-body bound states in experiments.

Graphical abstract

Keywords

dynamic scaling / Contact dynamics / quantum gases / cold atom / quench dynamics / virial expansion / continuous scaling symmetry

Cite this article

Download citation ▾
Jia-Nan Cui, Zhengqiang Zhou, Mingyuan Sun. Universal dynamic scaling and Contact dynamics in quenched quantum gases. Front. Phys., 2024, 19(2): 22201 https://doi.org/10.1007/s11467-023-1341-z

References

[1]
P. Makotyn , C. E. Klauss , D. L. Goldberger , E. A. Cornell , D. S. Jin . Universal dynamics of a degenerate unitary Bose gas. Nat. Phys., 2014, 10(2): 116
CrossRef ADS Google scholar
[2]
C. Eigen , J. A. P. Glidden , R. Lopes , N. Navon , Z. Hadzibabic , R. P. Smith . Universal scaling laws in the dynamics of a homogeneous unitary Bose gas. Phys. Rev. Lett., 2017, 119(25): 250404
CrossRef ADS Google scholar
[3]
C. Eigen , J. A. Glidden , R. Lopes , E. A. Cornell , R. P. Smith , Z. Hadzibabic . Universal prethermal dynamics of Bose gases quenched to unitarity. Nature, 2018, 563(7730): 221
CrossRef ADS Google scholar
[4]
M. Prüfer , P. Kunkel , H. Strobel , S. Lannig , D. Linnemann , C. M. Schmied , J. Berges , T. Gasenzer , M. K. Oberthaler . Observation of universal dynamics in a spinor Bose gas far from equilibrium. Nature, 2018, 563(7730): 217
CrossRef ADS Google scholar
[5]
S. Erne , R. Bucker , T. Gasenzer , J. Berges , J. Schmiedmayer . Universal dynamics in an isolated one-dimensional Bose gas far from equilibrium. Nature, 2018, 563(7730): 225
CrossRef ADS Google scholar
[6]
J. A. P. Glidden , C. Eigen , L. H. Dogra , T. A. Hilker , R. P. Smith , Z. Hadzibabic . Bidirectional dynamic scaling in an isolated Bose gas far from equilibrium. Nat. Phys., 2021, 17(4): 457
CrossRef ADS Google scholar
[7]
M. Gałka , P. Christodoulou , M. Gazo , A. Karailiev , N. Dogra , J. Schmitt , Z. Hadzibabic . Emergence of isotropy and dynamic scaling in 2D wave turbulence in a homogeneous Bose gas. Phys. Rev. Lett., 2022, 129(19): 190402
CrossRef ADS Google scholar
[8]
D. Wei , A. Rubio-Abadal , B. Ye , F. Machado , J. Kemp , K. Srakaew , S. Hollerith , J. Rui , S. Gopalakrishnan , N. Y. Yao , I. Bloch , J. Zeiher . Quantum gas microscopy of Kardar‒Parisi‒Zhang superdiffusion. Science, 2022, 376(6594): 716
CrossRef ADS Google scholar
[9]
S.HuhK.MukherjeeK.KwonJ.SeoS.I. MistakidisH.R. SadeghpourJ.Y. Choi, Classifying the universal coarsening dynamics of a quenched ferromagnetic condensate, arXiv: 2303.05230 (2023)
[10]
X. Yin , L. Radzihovsky . Quench dynamics of a strongly interacting resonant Bose gas. Phys. Rev. A, 2013, 88(6): 063611
CrossRef ADS Google scholar
[11]
A. G. Sykes , J. P. Corson , J. P. D’Incao , A. P. Koller , C. H. Greene , A. M. Rey , K. R. Hazzard , J. L. Bohn . Quenching to unitarity: Quantum dynamics in a three-dimensional Bose gas. Phys. Rev. A, 2014, 89(2): 021601
CrossRef ADS Google scholar
[12]
A. Rançon , K. Levin . Equilibrating dynamics in quenched Bose gases: Characterizing multiple time regimes. Phys. Rev. A, 2014, 90(2): 021602
CrossRef ADS Google scholar
[13]
B. Kain , H. Y. Ling . Nonequilibrium states of a quenched Bose gas. Phys. Rev. A, 2014, 90(6): 063626
CrossRef ADS Google scholar
[14]
J. P. Corson , J. L. Bohn . Bound-state signatures in quenched Bose‒Einstein condensates. Phys. Rev. A, 2015, 91(1): 013616
CrossRef ADS Google scholar
[15]
F. Ancilotto , M. Rossi , L. Salasnich , F. Toigo . Quenched dynamics of the momentum distribution of the unitary Bose gas. Few-Body Syst., 2015, 56(11-12): 801
CrossRef ADS Google scholar
[16]
X. Yin , L. Radzihovsky . Postquench dynamics and prethermalization in a resonant Bose gas. Phys. Rev. A, 2016, 93(3): 033653
CrossRef ADS Google scholar
[17]
S. Y. Wu , H. H. Zhong , J. H. Huang , X. Z. Qin , C. H. Lee . Dynamic fragmentation in a quenched two-mode Bose–Einstein condensate. Front. Phys., 2016, 11(3): 110301
CrossRef ADS Google scholar
[18]
V. E. Colussi , J. P. Corson , J. P. D’Incao . Dynamics of three-body correlations in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 120(10): 100401
CrossRef ADS Google scholar
[19]
V. E. Colussi , S. Musolino , S. J. J. M. F. Kokkelmans . Dynamical formation of the unitary Bose gas. Phys. Rev. A, 2018, 98(5): 051601
CrossRef ADS Google scholar
[20]
M. Van Regemortel , H. Kurkjian , M. Wouters , I. Carusotto . Prethermalization to thermalization crossover in a dilute Bose gas following an interaction ramp. Phys. Rev. A, 2018, 98(5): 053612
CrossRef ADS Google scholar
[21]
J. P. D’Incao , J. Wang , V. E. Colussi . Efimov physics in quenched unitary Bose gases. Phys. Rev. Lett., 2018, 121(2): 023401
CrossRef ADS Google scholar
[22]
S. Musolino , V. E. Colussi , S. J. J. M. F. Kokkelmans . Pair formation in quenched unitary Bose gases. Phys. Rev. A, 2019, 100(1): 013612
CrossRef ADS Google scholar
[23]
C. Gao , M. Y. Sun , P. Zhang , H. Zhai . Universal dynamics of a degenerate Bose gas quenched to unitarity. Phys. Rev. Lett., 2020, 124(4): 040403
CrossRef ADS Google scholar
[24]
A. Muñoz de las Heras , M. M. Parish , F. M. Marchetti . Early-time dynamics of Bose gases quenched into the strongly interacting regime. Phys. Rev. A, 2019, 99(2): 023623
CrossRef ADS Google scholar
[25]
V. E. Colussi , B. E. van Zwol , J. P. D’Incao , S. J. J. M. F. Kokkelmans . Bunching, clustering, and the buildup of few-body correlations in a quenched unitary Bose gas. Phys. Rev. A, 2019, 99(4): 043604
CrossRef ADS Google scholar
[26]
G. Bougas , S. I. Mistakidis , P. Schmelcher . Analytical treatment of the interaction quench dynamics of two bosons in a two-dimensional harmonic trap. Phys. Rev. A, 2019, 100(5): 053602
CrossRef ADS Google scholar
[27]
M. Y. Sun , P. Zhang , H. Zhai . High temperature virial expansion to universal quench dynamics. Phys. Rev. Lett., 2020, 125(11): 110404
CrossRef ADS Google scholar
[28]
V. E. Colussi , H. Kurkjian , M. Van Regemortel , S. Musolino , J. van de Kraats , M. Wouters , S. J. J. M. F. Kokkelmans . Cumulant theory of the unitary Bose gas: Prethermal and Efimovian dynamics. Phys. Rev. A, 2020, 102(6): 063314
CrossRef ADS Google scholar
[29]
G. Bougas , S. I. Mistakidis , G. M. Alshalan , P. Schmelcher . Stationary and dynamical properties of two harmonically trapped bosons in the crossover from two dimensions to one. Phys. Rev. A, 2020, 102(1): 013314
CrossRef ADS Google scholar
[30]
S. Musolino , H. Kurkjian , M. Van Regemortel , M. Wouters , S. J. J. M. F. Kokkelmans , V. E. Colussi . Bose‒Einstein condensation of Efimovian triples in the unitary Bose gas. Phys. Rev. Lett., 2022, 128(2): 020401
CrossRef ADS Google scholar
[31]
T. Enss , N. Cuadra Braatz , G. Gori . Complex scaling flows in the quench dynamics of interacting particles. Phys. Rev. A, 2022, 106(1): 013308
CrossRef ADS Google scholar
[32]
G. W. Fan , X. L. Chen , P. Zou . Probing two Higgs oscillations in a one-dimensional Fermi superfluid with Raman-type spin‒orbit coupling. Front. Phys., 2022, 17(5): 52502
CrossRef ADS Google scholar
[33]
Y. M. Hu , Y. F. Fei , X. L. Chen , Y. B. Zhang . Collisional dynamics of symmetric two-dimensional quantum droplets. Front. Phys., 2022, 17(6): 61505
CrossRef ADS Google scholar
[34]
D. A. Abanin , E. Altman , I. Bloch , M. Serbyn . Many-body localization, thermalization, and entanglement. Rev. Mod. Phys., 2019, 91(2): 021001
CrossRef ADS Google scholar
[35]
C. Wang , P. F. Zhang , X. Chen , J. L. Yu , H. Zhai . Scheme to measure the topological number of a Chern insulator from quench dynamics. Phys. Rev. Lett., 2017, 118(18): 185701
CrossRef ADS Google scholar
[36]
W. Sun , C. R. Yi , B. Z. Wang , W. W. Zhang , B. C. Sanders , X. T. Xu , Z. Y. Wang , J. Schmiedmayer , Y. Deng , X. J. Liu , S. Chen , J. W. Pan . Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
CrossRef ADS Google scholar
[37]
M. Tarnowski F. N. Unal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock , C. Weitenberg. . Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
CrossRef ADS Google scholar
[38]
C. Gao , H. Zhai , Z. Y. Shi . Dynamical fractal in quantum gases with discrete scaling symmetry. Phys. Rev. Lett., 2019, 122(23): 230402
CrossRef ADS Google scholar
[39]
K.Huang, Statistical Mechanics, John Wiley & Sons, New York, 1987
[40]
S.Sachdev, Quantum Phase Transitions, Cambridge University Press, Cambridge, 1999
[41]
R. Micha , I. I. Tkachev . Turbulent thermalization. Phys. Rev. D, 2004, 70(4): 043538
CrossRef ADS Google scholar
[42]
J. Berges , A. Rothkopf , J. Schmidt . Nonthermal fixed points: Effective weak coupling for strongly correlated systems far from equilibrium. Phys. Rev. Lett., 2008, 101(4): 041603
CrossRef ADS Google scholar
[43]
B. Nowak , J. Schole , D. Sexty , T. Gasenzer . Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas. Phys. Rev. A, 2012, 85(4): 043627
CrossRef ADS Google scholar
[44]
B. Nowak , J. Schole , T. Gasenzer . Universal dynamics on the way to thermalization. New J. Phys., 2014, 16(9): 093052
CrossRef ADS Google scholar
[45]
J. Berges , K. Boguslavski , S. Schlichting , R. Venugopalan . Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions. Phys. Rev. Lett., 2015, 114(6): 061601
CrossRef ADS Google scholar
[46]
A. P. Orioli , K. Boguslavski , J. Berges . Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points. Phys. Rev. D, 2015, 92(2): 025041
CrossRef ADS Google scholar
[47]
I. Chantesana , A. P. Orioli , T. Gasenzer . Kinetic theory of nonthermal fixed points in a Bose gas. Phys. Rev. A, 2019, 99(4): 043620
CrossRef ADS Google scholar
[48]
A. N. Mikheev , C. M. Schmied , T. Gasenzer . Low-energy effective theory of nonthermal fixed points in a multicomponent Bose gas. Phys. Rev. A, 2019, 99(6): 063622
CrossRef ADS Google scholar
[49]
C. M. Schmied , A. N. Mikheev , T. Gasenzer . Non-thermal fixed points: Universal dynamics far from equilibrium. Int. J. Mod. Phys. A, 2019, 34(29): 1941006
CrossRef ADS Google scholar
[50]
S. Bhattacharyya , J. F. Rodriguez-Nieva , E. Demler . Universal prethermal dynamics in Heisenberg ferromagnets. Phys. Rev. Lett., 2020, 125(23): 230601
CrossRef ADS Google scholar
[51]
J. Berges , K. Boguslavski , M. Mace , J. M. Pawlowski . Gauge-invariant condensation in the nonequilibrium quark-gluon plasma. Phys. Rev. D, 2020, 102(3): 034014
CrossRef ADS Google scholar
[52]
K. Fujimoto , R. Hamazaki , Y. Kawaguchi . Family‒Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett., 2020, 124(21): 210604
CrossRef ADS Google scholar
[53]
T. Preis , M. P. Heller , J. Berges . Stable and unstable perturbations in universal scaling phenomena far from equilibrium. Phys. Rev. Lett., 2023, 130(3): 031602
CrossRef ADS Google scholar
[54]
S. Tan . Large momentum part of a strongly correlated Fermi gas. Ann. Phys., 2008, 323(12): 2971
CrossRef ADS Google scholar
[55]
S. Zhang , A. J. Leggett . Universal properties of the ultracold Fermi gas. Phys. Rev. A, 2009, 79(2): 023601
CrossRef ADS Google scholar
[56]
A. B. Bardon , S. Beattie , C. Luciuk , W. Cairncross , D. Fine , N. S. Cheng , G. J. A. Edge , E. Taylor , S. Zhang , S. Trotzky , J. H. Thywissen . Transverse demagnetization dynamics of a unitary Fermi gas. Science, 2014, 344(6185): 722
CrossRef ADS Google scholar
[57]
R. J. Fletcher , R. Lopes , J. Man , N. Navon , R. P. Smith , M. W. Zwierlein , Z. Hadzibabic . Two- and three-body contacts in the unitary Bose gas. Science, 2017, 355(6323): 377
CrossRef ADS Google scholar
[58]
C. Luciuk , S. Smale , F. Böttcher , H. Sharum , B. A. Olsen , S. Trotzky , T. Enss , J. H. Thywissen . Observation of quantum-limited spin transport in strongly interacting two-dimensional Fermi gases. Phys. Rev. Lett., 2017, 118(13): 130405
CrossRef ADS Google scholar
[59]
F. Werner , Y. Castin . Unitary gas in an isotropic harmonic trap: Symmetry properties and applications. Phys. Rev. A, 2006, 74(5): 053604
CrossRef ADS Google scholar
[60]
In three-dimensional unitary Bose gas, the scale invariance is only approximate because of the three-body parameter. However, experiments [1–3] show that its contribution can be insignificant in quench dynamics
[61]
R. Qi , Z. Y. Shi , H. Zhai . Maximum energy growth rate in dilute quantum gases. Phys. Rev. Lett., 2021, 126(24): 240401
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We thank Zheyu Shi, Pengfei Zhang, Ran Qi, Zhiyuan Yao, Lei Pan, Ren Zhang, and Hui Zhai for inspiring discussion. The project was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 12004049) and the Fund of State Key Laboratory of IPOC (BUPT) (Nos. 600119525 and 505019124).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5502 KB)

Accesses

Citations

Detail

Sections
Recommended

/