A semiclassical perspective on nuclear chirality

Radu Budaca

PDF(7627 KB)
PDF(7627 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 24301. DOI: 10.1007/s11467-023-1339-6
VIEW & PERSPECTIVE
VIEW & PERSPECTIVE

A semiclassical perspective on nuclear chirality

Author information +
History +

Abstract

The application of the semiclassical description to a particle-core system with imbued chiral symmetry is presented. The classical features of the chiral geometry in atomic nuclei and the associated dynamics are investigated for various core deformations and single-particle alignments. Distinct dynamical characteristics are identified in specific angular momentum ranges, triaxiality and alignment conditions. Quantum observables will be extracted from the classical picture for a quantitative description of experimental data provided as numerical examples of the model’s performance.

Graphical abstract

Keywords

chiral symmetry / triaxial nuclei / semiclassical description

Cite this article

Download citation ▾
Radu Budaca. A semiclassical perspective on nuclear chirality. Front. Phys., 2024, 19(2): 24301 https://doi.org/10.1007/s11467-023-1339-6

References

[1]
S. Frauendorf, J. Meng. Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
CrossRef ADS Google scholar
[2]
S. Frauendorf. Spontaneous symmetry breaking in rotating nuclei. Rev. Mod. Phys., 2001, 73(2): 463
CrossRef ADS Google scholar
[3]
K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krücken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J. Zhang, S. Frauendorf, V. I. Dimitrov. Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
CrossRef ADS Google scholar
[4]
J. Meng, S. Q. Zhang. Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
CrossRef ADS Google scholar
[5]
J. Meng, Q. B. Chen, S. Q. Zhang. Chirality in atomic nuclei: 2013. Int. J. Mod. Phys. E, 2014, 23(11): 1430016
CrossRef ADS Google scholar
[6]
R. A. Bark, E. O. Lieder, R. M. Lieder, E. A. Lawrie, J. J. Lawrie, S. P. Bvumbi, N. Y. Kheswa, S. S. Ntshangase, T. E. Madiba, P. L. Masiteng, S. M. Mullins, S. Murray, P. Papka, O. Shirinda, Q. B. Chen, S. Q. Zhang, Z. H. Zhang, P. W. Zhao, C. Xu, J. Meng, D. G. Roux, Z. P. Li, J. Peng, B. Qi, S. Y. Wang, Z. G. Xiao. Studies of chirality in the mass 80, 100 and 190 regions. Int. J. Mod. Phys. E, 2014, 23(7): 1461001
CrossRef ADS Google scholar
[7]
A. A. Raduta. Specific features and symmetries for magnetic and chiral bands in nuclei. Prog. Part. Nucl. Phys., 2016, 90: 241
CrossRef ADS Google scholar
[8]
K. Starosta, T. Koike. Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
CrossRef ADS Google scholar
[9]
B. W. Xiong, Y. Y. Wang. Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
CrossRef ADS Google scholar
[10]
S. Y. Wang. Recent progress in multiple chiral doublet bands. Chin. Phys. C, 2020, 44(11): 112001
CrossRef ADS Google scholar
[11]
J. Meng, J. Peng, S. Q. Zhang, S. G. Zhou. Possible existence of multiple chiral doublets in 106Rh. Phys. Rev. C, 2006, 73(3): 037303
CrossRef ADS Google scholar
[12]
B. F. Lv, C. M. Petrache, A. Astier, E. Dupont, A. Lopez-Martens, P. T. Greenlees, H. Badran, T. Calverley, D. M. Cox, T. Grahn, J. Hilton, R. Julin, S. Juutinen, J. Konki, M. Leino, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, A. Herzán, B. Cederwall, A. Ertoprak, H. Liu, S. Guo, M. L. Liu, Y. H. Qiang, J. G. Wang, X. H. Zhou, I. Kuti, J. Timár, A. Tucholski, J. Srebrny, C. Andreoiu. Evolution from γ-soft to stable triaxiality in 136Nd as a prerequisite of chirality. Phys. Rev. C, 2018, 98(4): 044304
CrossRef ADS Google scholar
[13]
S. Guo, C. M. Petrache, D. Mengoni, Y. H. Qiang, Y. P. Wang, Y. Y. Wang, J. Meng, Y. K. Wang, S. Q. Zhang, P. W. Zhao, A. Astier, J. G. Wang, H. L. Fan, E. Dupont, B. F. Lv, D. Bazzacco, A. Boso, A. Goasduff, F. Recchia, D. Testov, F. Galtarossa, G. Jaworski, D. R. Napoli, S. Riccetto, M. Siciliano, J. J. Valiente-Dobon, M. L. Liu, G. S. Li, X. H. Zhou, Y. H. Zhang, C. Andreoiu, F. H. Garcia, K. Ortner, K. Whitmore, A. Ataç-Nyberg, T. Bäck, B. Cederwall, E. A. Lawrie, I. Kuti, D. Sohler, T. Marchlewski, J. Srebrny, A. Tucholski. Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572
CrossRef ADS Google scholar
[14]
Y. Zhang, B. Qi, S. Q. Zhang. Critical point symmetry for odd‒odd nuclei and collective multiple chiral doublet bands. Sci. China Phys. Mech. Astron., 2021, 64(12): 122011
CrossRef ADS Google scholar
[15]
S. Brant, D. Vretenar, A. Ventura. Interacting boson fermion-fermion model calculation of the πh11/2νh11/2 doublet bands in 134Pr. Phys. Rev. C, 2004, 69(1): 017304
CrossRef ADS Google scholar
[16]
D. Tonev, G. de Angelis, P. Petkov, A. Dewald, S. Brant, S. Frauendorf, D. L. Balabanski, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, A. Fitzler, A. Gadea, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, A. Paleni, C. M. Petrache, G. Prete, K. O. Zell, Y. H. Zhang, J. Zhang, Q. Zhong, D. Curien. Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96(5): 052501
CrossRef ADS Google scholar
[17]
D. Tonev, G. Angelis, S. Brant, S. Frauendorf, P. Petkov, A. Dewald, F. Dönau, D. L. Balabanski, Q. Zhong, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, D. Curien, F. D. Vedova, A. Fitzler, A. Gadea, G. L. Bianco, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, R. Orlandi, E. Sahin, A. Saltarelli, J. V. Dobon, K. O. Zell, J. Zhang, Y. H. Zhang. Question of dynamic chirality in nuclei: The case of 134Pr. Phys. Rev. C, 2007, 76(4): 044313
CrossRef ADS Google scholar
[18]
H. G. Ganev, A. I. Georgieva, S. Brant, A. Ventura. New description of the doublet bands in doubly odd nuclei. Phys. Rev. C, 2009, 79(4): 044322
CrossRef ADS Google scholar
[19]
B. Qi, S. Q. Zhang, J. Meng, S. Y. Wang, S. Frauendorf. Chirality in odd-A nucleus 135Nd in particle rotor model. Phys. Lett. B, 2009, 675(2): 175
CrossRef ADS Google scholar
[20]
I. Hamamoto. Possible presence and properties of multi-chiral-pair bands in odd‒odd nuclei with the same intrinsic configuration. Phys. Rev. C, 2013, 88(2): 024327
CrossRef ADS Google scholar
[21]
A.A. RadutaC. M. RadutaA.Faessler, A new picture for the chiral symmetry properties within a particle–core framework, J. Phys. G 41(3), 035105 (2014)
[22]
Y. Y. Wang, S. Q. Zhang, P. W. Zhao, J. Meng. Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model. Phys. Lett. B, 2019, 792: 454
CrossRef ADS Google scholar
[23]
A.BohrB. R. Mottelson, Nuclear Structure, Vol. 2, Benjamin, Reading, Massachusetts, 1975
[24]
G. H. Bhat, J. A. Sheikh, R. Palit. Triaxial projected shell model study of chiral rotation in odd–odd nuclei. Phys. Lett. B, 2012, 707(2): 250
CrossRef ADS Google scholar
[25]
G. H. Bhat, R. N. Ali, J. A. Sheikh, R. Palit. Investigation of doublet-bands in 124, 126, 130, 132Cs odd–odd nuclei using triaxial projected shell model approach. Nucl. Phys. A, 2014, 922: 150
CrossRef ADS Google scholar
[26]
F. Q. Chen, Q. B. Chen, Y. A. Luo, J. Meng, S. Q. Zhang. Chiral geometry in symmetry-restored states: Chiral doublet bands in 128Cs. Phys. Rev. C, 2017, 96(5): 051303
CrossRef ADS Google scholar
[27]
F. Q. Chen, J. Meng, S. Q. Zhang. Chiral geometry and rotational structure for 130Cs in the projected shell model. Phys. Lett. B, 2018, 785: 211
CrossRef ADS Google scholar
[28]
M. Shimada, Y. Fujioka, S. Tagami, Y. R. Shimizu. Rotational motion of triaxially deformed nuclei studied by the microscopic angular-momentum-projection method. II. Chiral doublet band. Phys. Rev. C, 2018, 97(2): 024319
CrossRef ADS Google scholar
[29]
Y. K. Wang, F. Q. Chen, P. W. Zhao, S. Q. Zhang, J. Meng. Multichiral facets in symmetry restored states: Five chiral doublet candidates in the even‒even nucleus 136Nd. Phys. Rev. C, 2019, 99(5): 054303
CrossRef ADS Google scholar
[30]
S. Mukhopadhyay, D. Almehed, U. Garg, S. Frauendorf, T. Li, P. V. M. Rao, X. Wang, S. S. Ghugre, M. P. Carpenter, S. Gros, A. Hecht, R. V. F. Janssens, F. G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu. From chiral vibration to static chirality in 135Nd. Phys. Rev. Lett., 2007, 99(17): 172501
CrossRef ADS Google scholar
[31]
D. Almehed, F. Dönau, S. Frauendorf. Chiral vibrations in the A = 135 region. Phys. Rev. C, 2011, 83(5): 054308
CrossRef ADS Google scholar
[32]
J. Meng, P. Zhao. Nuclear chiral and magnetic rotation in covariant density functional theory. Phys. Scr., 2016, 91(5): 053008
CrossRef ADS Google scholar
[33]
P. W. Zhao. Multiple chirality in nuclear rotation: A microscopic view. Phys. Lett. B, 2017, 773: 1
CrossRef ADS Google scholar
[34]
Z. X. Ren, P. W. Zhao, J. Meng. Dynamics of rotation in chiral nuclei. Phys. Rev. C, 2022, 105(1): L011301
CrossRef ADS Google scholar
[35]
Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, J. Meng. Collective Hamiltonian for chiral modes. Phys. Rev. C, 2013, 87(2): 024314
CrossRef ADS Google scholar
[36]
Q. B. Chen, S. Q. Zhang, P. W. Zhao, R. V. Jolos, J. Meng. Two-dimensional collective Hamiltonian for chiral and wobbling modes. Phys. Rev. C, 2016, 94(4): 044301
CrossRef ADS Google scholar
[37]
X. H. Wu, Q. B. Chen, P. W. Zhao, S. Q. Zhang, J. Meng. Two-dimensional collective Hamiltonian for chiral and wobbling modes. II. Electromagnetic transitions. Phys. Rev. C, 2018, 98(6): 064302
CrossRef ADS Google scholar
[38]
R. Budaca. Semiclassical description of chiral geometry in triaxial nuclei. Phys. Rev. C, 2018, 98(1): 014303
CrossRef ADS Google scholar
[39]
R. Budaca. Role of triaxiality in the structure of chiral partner bands. Phys. Lett. B, 2019, 797: 134853
CrossRef ADS Google scholar
[40]
R. Budaca. From chiral vibration to tilted-axis wobbling within broken chiral symmetry. Phys. Lett. B, 2021, 817: 136308
CrossRef ADS Google scholar
[41]
C. M. Raduta, A. A. Raduta, R. Poenaru, Al. H. Raduta. Simultaneous description of wobbling and chiral properties in even–odd triaxial nuclei. J. Phys. G, 2022, 49: 025105
CrossRef ADS Google scholar
[42]
J. Frauendiener. Quadratic hamiltonians on the unit sphere. Mech. Res. Commun., 1995, 22(4): 313
CrossRef ADS Google scholar
[43]
V. Lanchares, M. Inarrea, J. P. Salas, J. D. Sierra, A. Elipe. Surfaces of bifurcation in a triparametric quadratic Hamiltonian. Phys. Rev. E, 1995, 52(5): 5540
CrossRef ADS Google scholar
[44]
S. Iida, M. Yamamura. Utility of the elliptic function for classical SU(2)-models of nuclear collective motions. Prog. Theor. Phys., 1983, 70(3): 783
CrossRef ADS Google scholar
[45]
A. Gheorghe, A. A. Raduta, V. Ceausescu. Semiclassical treatment of the cranked triaxial rotator. Nucl. Phys. A, 1998, 637(2): 201
CrossRef ADS Google scholar
[46]
A. A. Raduta, R. Budaca, C. M. Raduta. Semiclassical description of a triaxial rigid rotor. Phys. Rev. C, 2007, 76(6): 064309
CrossRef ADS Google scholar
[47]
O. von Roos. Position-dependent effective masses in semiconductor theory. Phys. Rev. B, 1983, 27(12): 7547
CrossRef ADS Google scholar
[48]
Q. B. Chen, S. Q. Zhang, P. W. Zhao, J. Meng. Collective Hamiltonian for wobbling modes. Phys. Rev. C, 2014, 90(4): 044306
CrossRef ADS Google scholar
[49]
Q. B. Chen, S. Q. Zhang, J. Meng. Wobbling motion in 135Pr within a collective Hamiltonian. Phys. Rev. C, 2016, 94(5): 054308
CrossRef ADS Google scholar
[50]
Q.B. ChenK. StarostaT.Koike, Three-level mixing model for nuclear chiral rotation: Role of the planar component, Phys. Rev. C 97, 041303(R) (2018)
[51]
K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse. Chirality in odd–odd triaxial nuclei. Nucl. Phys. A., 2001, 682(1−4): 375
CrossRef ADS Google scholar
[52]
J. Timár, K. Starosta, I. Kuti, D. Sohler, D. B. Fossan, T. Koike, E. S. Paul, A. J. Boston, H. J. Chantler, M. Descovich, R. M. Clark, M. Cromaz, P. Fallon, I. Y. Lee, A. O. Macchiavelli, C. J. Chiara, R. Wadsworth, A. A. Hecht, D. Almehed, S. Frauendorf. Medium- and high-spin band structure of the chiral-candidate nucleus 134Pr. Phys. Rev. C, 2011, 84(4): 044302
CrossRef ADS Google scholar
[53]
K. Y. Ma, J. B. Lu, Z. Zhang, J. Q. Liu, D. Yang, Y. M. Liu, X. Xu, X. Y. Li, Y. Z. Liu, X. G. Wu, Y. Zheng, C. B. Li. Candidate chiral doublet bands in 138Pm. Phys. Rev. C, 2018, 97(1): 014305
CrossRef ADS Google scholar
[54]
C. M. Petrache, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis, M. De Poli, D. Bucurescu, C. A. Ur, P. B. Semmes, R. Wyss. Rotational bands in the doubly odd nucleus 134Pr. Nucl. Phys. A, 1996, 597(1): 106
CrossRef ADS Google scholar
[55]
K. Starosta, C. J. Chiara, D. B. Fossan, T. Koike, T. T. S. Kuo, D. R. LaFosse, S. G. Rohozinski, Ch. Droste, T. Morek, J. Srebrny. Role of chirality in angular momentum coupling for A ~ 130 odd‒odd triaxial nuclei: 132La. Phys. Rev. C, 2002, 65(4): 044328
CrossRef ADS Google scholar
[56]
P. Siwach, P. Arumugam, L. S. Ferreira, E. Maglione. Chirality in 136,138Pm. Phys. Lett. B, 2020, 811: 135937
CrossRef ADS Google scholar
[57]
P. MöllerA. J. Sierk, T. Ichikawa , H. Sagawa., Nuclear ground-state masses and deformations: FRDM(2012), At. Data Nucl. Data Tables 109–110, 1 (2016)
[58]
R. Budaca. Tilted-axis wobbling in odd-mass nuclei. Phys. Rev. C, 2018, 97(2): 024302
CrossRef ADS Google scholar
[59]
R. Budaca. Reconciliation of wobbling motion with rotational alignment in odd mass nuclei. Phys. Rev. C, 2021, 103(4): 044312
CrossRef ADS Google scholar
[60]
B. F. Lv, C. M. Petrache, R. Budaca, A. Astier, K. K. Zheng, P. Greenlees, H. Badran, T. Calverley, D. M. Cox, T. Grahn, J. Hilton, R. Julin, S. Juutinen, J. Konki, J. Pakarinen, P. Papadakis, J. Partanen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, B. Cederwall, A. Ertoprak, H. Liu, S. Guo, J. G. Wang, H. J. Ong, X. H. Zhou, Z. Y. Sun, I. Kuti, J. Timár, A. Tucholski, J. Srebrny, C. Andreoiu. Experimental evidence for transverse wobbling bands in 136Nd. Phys. Rev. C, 2022, 105(3): 034302
CrossRef ADS Google scholar
[61]
R. Budaca, C. M. Petrache. Beyond the harmonic approximation description of wobbling excitations in even‒even nuclei with frozen alignments. Phys. Rev. C, 2022, 106(1): 014313
CrossRef ADS Google scholar

Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitalization, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2021-0109, within PNCDI III.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7627 KB)

Accesses

Citations

Detail

Sections
Recommended

/