Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates

Guilong Li, Xunda Jiang, Bin Liu, Zhaopin Chen, Boris A. Malomed, Yongyao Li

PDF(3982 KB)
PDF(3982 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 22202. DOI: 10.1007/s11467-023-1338-7
RESEARCH ARTICLE

Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates

Author information +
History +

Abstract

Creation of stable intrinsically anisotropic self-bound states with embedded vorticity is a challenging issue. Previously, no such states in Bose−Einstein condensates (BECs) or other physical settings were known. Dipolar BEC suggests a unique possibility to predict stable two dimensional anisotropic vortex quantum droplets (2D-AVQDs). We demonstrate that they can be created with the vortex axis oriented perpendicular to the polarization of dipoles. The stability area and characteristics of the 2D-AVQDs in the parameter space are revealed by means of analytical and numerical methods. Further, the rotation of the polarizing magnetic field is considered, and the largest angular velocities, up to which spinning 2D-AVQDs can follow the rotation in clockwise and anti-clockwise directions, are found. Collisions between moving 2D-AVQDs are studied too, demonstrating formation of bound states with a vortex−antivortex−vortex structure. A stability domain for such stationary bound states is identified. Unstable dipolar states, that can be readily implemented by means of phase imprinting, quickly transform into robust 2D-AVQDs, which suggests a straightforward possibility for the creation of these states in the experiment.

Graphical abstract

Keywords

dipolar Bose−Einstein condensate / anisotropic vortex quantum droplets

Cite this article

Download citation ▾
Guilong Li, Xunda Jiang, Bin Liu, Zhaopin Chen, Boris A. Malomed, Yongyao Li. Two-dimensional anisotropic vortex quantum droplets in dipolar Bose−Einstein condensates. Front. Phys., 2024, 19(2): 22202 https://doi.org/10.1007/s11467-023-1338-7

References

[1]
G. Fibich , G. Papanicolaou . Self-focusing in the perturbed and unperturbed nonlinear Schrӧdinger equation in critical dimension. SIAM J. Appl. Math., 1999, 60(1): 183
CrossRef ADS Google scholar
[2]
L. Bergé . Wave collapse in physics: Principles and applications to light and plasma waves. Phys. Rep., 1998, 303(5−6): 259
CrossRef ADS Google scholar
[3]
E. A. Kuznetsov , F. Dias . Bifurcations of solitons and their stability. Phys. Rep., 2011, 507(2−3): 43
CrossRef ADS Google scholar
[4]
B. A. Malomed . Two-dimensional solitons in nonlocal media: A brief review. Symmetry (Basel), 2022, 14(8): 1565
CrossRef ADS Google scholar
[5]
B.A. Malomed, Multidimensional Solitons, American Institute of Physics: Melville, NY, 2022
[6]
R. Heidemann , U. Raitzsch , V. Bendkowsky , B. Butscher , R. Löw , T. Pfau . Rydberg excitation of Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(3): 033601
CrossRef ADS Google scholar
[7]
F. Maucher , N. Henkel , M. Saffman , W. Królikowski , S. Skupin , T. Pohl . Rydberg-induced solitons: Three-dimensional self-trapping of matter waves. Phys. Rev. Lett., 2011, 106(17): 170401
CrossRef ADS Google scholar
[8]
D. O’Dell , S. Giovanazzi , G. Kurizki , V. M. Akulin . Bose–Einstein condensates with 1/r interatomic attraction: Electromagnetically induced “gravity”. Phys. Rev. Lett., 2000, 84(25): 5687
CrossRef ADS Google scholar
[9]
J. Qin , G. Dong , B. A. Malomed . Stable giant vortex annuli in microwave-coupled atomic condensates. Phys. Rev. A, 2016, 94(5): 053611
CrossRef ADS Google scholar
[10]
T. Lahaye , C. Menotti , L. Santos , M. Lewenstein , T. Pfau . The physics of dipolar bosonic quantum gases. Rep. Prog. Phys., 2009, 72(12): 126401
CrossRef ADS Google scholar
[11]
P. Pedri , L. Santos . Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2005, 95(20): 200404
CrossRef ADS Google scholar
[12]
R. Nath , P. Pedri , L. Santos . Stability of dark solitons in three dimensional dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 101(21): 210402
CrossRef ADS Google scholar
[13]
I. Tikhonenkov , B. A. Malomed , A. Vardi . Anisotropic solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett., 2008, 100(9): 090406
CrossRef ADS Google scholar
[14]
M. Raghunandan , C. Mishra , K. Lakomy , P. Pedri , L. Santos , R. Nath . Two-dimensional bright solitons in dipolar Bose–Einstein condensates with tilted dipoles. Phys. Rev. A, 2015, 92(1): 013637
CrossRef ADS Google scholar
[15]
P. B. Blakie . Axial collective mode of a dipolar quantum droplet. Photonics, 2023, 10(4): 393
CrossRef ADS Google scholar
[16]
Y. Zhao , Y. Lei , Y. Xu , S. Xu , H. Triki , A. Biswas , Q. Zhou . Vector spatiotemporal solitons and their memory features in cold Rydberg gases. Chin. Phys. Lett., 2022, 39(3): 034202
CrossRef ADS Google scholar
[17]
I. Tikhonenkov , B. A. Malomed , A. Vardi . Vortex solitons in dipolar Bose–Einstein condensates. Phys. Rev. A, 2008, 78(4): 043614
CrossRef ADS Google scholar
[18]
X. Jiang , Z. Fan , Z. Chen , W. Pang , Y. Li , B. A. Malomed . Two-dimensional solitons in dipolar Bose-Einstein condensates with spin–orbit coupling. Phys. Rev. A, 2016, 93(2): 023633
CrossRef ADS Google scholar
[19]
B. Liao , Y. Ye , J. Zhuang , C. Huang , H. Deng , W. Pang , B. Liu , Y. Li . Anisotropic solitary semivortices in dipolar spinor condensates controlled by the twodimensional anisotropic spin–orbit coupling. Chaos Solitons Fractals, 2018, 116: 424
CrossRef ADS Google scholar
[20]
B. Liao , S. Li , C. Huang , Z. Luo , W. Pang , H. Tan , B. A. Malomed , Y. Li . Anisotropic semivortices in dipolar spinor condensates controlled by Zeeman splitting. Phys. Rev. A, 2017, 96(4): 043613
CrossRef ADS Google scholar
[21]
M. Schmitt , M. Wenzel , F. Böttcher , I. Ferrier-Barbut , T. Pfau . Self-bound droplets of a dilute magnetic quantum liquid. Nature, 2016, 539(7628): 259
CrossRef ADS Google scholar
[22]
L. Chomaz , S. Baier , D. Petter , M. J. Mark , F. Wächtler , L. Santos , F. Ferlaino . Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X, 2016, 6(4): 041039
CrossRef ADS Google scholar
[23]
C. R. Cabrera , L. Tanzi , J. Sanz , B. Naylor , P. Thomas , P. Cheiney , L. Tarruell . Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science, 2018, 359(6373): 301
CrossRef ADS Google scholar
[24]
G. Semeghini , G. Ferioli , L. Masi , C. Mazzinghi , L. Wolswijk , F. Minardi , M. Modugno , G. Modugno , M. Inguscio , M. Fattori . Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett., 2018, 120(23): 235301
CrossRef ADS Google scholar
[25]
C. D’Errico , A. Burchianti , M. Prevedelli , L. Salasnich , F. Ancilotto , M. Modugno , F. Minardi , C. Fort . Observation of quantum droplets in a heteronuclear bosonic mixture. Phys. Rev. Res., 2019, 1(3): 033155
CrossRef ADS Google scholar
[26]
D. S. Petrov . Quantum mechanical stabilization of a collapsing Bose–Bose mixture. Phys. Rev. Lett., 2015, 115(15): 155302
CrossRef ADS Google scholar
[27]
Z. Luo , W. Pang , B. Liu , Y. Li , B. A. Malomed . A new kind form of liquid matter: Quantum droplets. Front. Phys., 2021, 16(3): 32201
CrossRef ADS Google scholar
[28]
F. Böttcher , J. N. Schmidt , J. Hertkorn , K. S. H. Ng , S. D. Graham , M. Guo , T. Langen , T. Pfau . New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids. Rep. Prog. Phys., 2021, 84(1): 012403
CrossRef ADS Google scholar
[29]
M. Guo , T. Pfau . A new state of matter of quantum droplets. Front. Phys., 2021, 16(3): 32202
CrossRef ADS Google scholar
[30]
B. A. Malomed . The family of quantum droplets keeps expanding. Front. Phys., 2021, 16(2): 22504
CrossRef ADS Google scholar
[31]
Y. Li , Z. Chen , Z. Luo , C. Huang , H. Tan , W. Pang , B. A. Malomed . Two-dimensional vortex quantum droplets. Phys. Rev. A, 2018, 98(6): 063602
CrossRef ADS Google scholar
[32]
Y. V. Kartashov , B. A. Malomed , L. Tarruell , L. Torner . Three-dimensional droplets of swirling superfluids. Phys. Rev. A, 2018, 98(1): 013612
CrossRef ADS Google scholar
[33]
X. Zhang , X. Xu , Y. Zheng , Z. Chen , B. Liu , C. Huang , B. A. Malomed , Y. Li . Semidiscrete quantum droplets and vortices. Phys. Rev. Lett., 2019, 123: 113901
[34]
A. Cidrim , F. E. A. dos Santos , E. A. L. Henn , T. Macri . Vortices in self-bound dipolar droplets. Phys. Rev. A, 2018, 98(2): 023618
CrossRef ADS Google scholar
[35]
D. Baillie , R. M. Wilson , R. N. Bisset , P. B. Blakie . Self-bound dipolar droplet: A localized matter wave in free space. Phys. Rev. A, 2016, 94: 021602(R)
CrossRef ADS Google scholar
[36]
S. Sinha , L. Santos . Cold dipolar gases in quasi-one-dimensional geometries. Phys. Rev. Lett., 2007, 99(14): 140406
CrossRef ADS Google scholar
[37]
J. Cuevas , B. A. Malomed , P. G. Kevrekidis , D. J. Frantzeskakis . Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions. Phys. Rev. A, 2009, 79(5): 053608
CrossRef ADS Google scholar
[38]
N. G. Vakhitov , A. A. Kolokolov . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
CrossRef ADS Google scholar
[39]
Yu. S. Kivshar , B. A. Malomed . Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys., 1989, 61(4): 763
CrossRef ADS Google scholar
[40]
S. Burger , K. Bongs , S. Dettmer , W. Ertmer , K. Sengstock , A. Sanpera , G. V. Shlyapnikov , M. Lewenstein . Dark solitons in Bose−Einstein condensates. Phys. Rev. Lett., 1999, 83(25): 5198
CrossRef ADS Google scholar
[41]
B. P. Anderson , P. C. Haljan , C. A. Regal , D. L. Feder , L. A. Collins , C. W. Clark , E. A. Cornell . Watching dark solitons decay into vortex rings in a Bose–Einstein condensate. Phys. Rev. Lett., 2001, 86(14): 2926
CrossRef ADS Google scholar
[42]
Y. J. Shen , X. J. Wang , Z. W. Xie , C. J. Min , X. Fu , Q. Liu , M. L. Gong , X. C. Yuan . Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light Sci. Appl., 2019, 8(1): 90
CrossRef ADS Google scholar
[43]
B. Ramachandhran , B. Opanchuk , X. J. Liu , H. Pu , P. D. Drummond , H. Hu . Half-quantum vortex state in a spin–orbit-coupled Bose–Einstein condensate. Phys. Rev. A, 2012, 85(2): 023606
CrossRef ADS Google scholar
[44]
Y. Li , J. Liu , W. Pang , B. A. Malomed . Matter-wave solitons supported by field-induced dipole–dipole repulsion with spatially modulated strength. Phys. Rev. A, 2013, 88(5): 053630
CrossRef ADS Google scholar
[45]
Y. Li , Y. Liu , Z. Fan , W. Pang , S. Fu , B. A. Malomed . Two-dimensional dipolar gap solitons in free space with spin−orbit coupling. Phys. Rev. A, 2017, 95(6): 063613
CrossRef ADS Google scholar
[46]
C. Huang , Y. Ye , S. Liu , H. He , W. Pang , B. A. Malomed , Y. Li . Excited states of two-dimensional solitons supported by spin–orbit coupling and field-induced dipole–dipole repulsion. Phys. Rev. A, 2018, 97(1): 013636
CrossRef ADS Google scholar
[47]
A. Boudjemâa . Fluctuations and quantum self-bound droplets in a dipolar Bose–Bose mixture. Phys. Rev. A, 2018, 98(3): 033612
CrossRef ADS Google scholar
[48]
R. N. Bisset , L. A. P. Ardila , L. Santos . Quantum droplets of dipolar mixtures. Phys. Rev. Lett., 2021, 126(2): 025301
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) through Grant Nos. 12274077, 11874112, 12305013, and 11905032, the Natural Science Foundation of Guangdong Province through Grant Nos. 2021A1515010214 and 2021A1515111015, the Key Research Projects of General Colleges in Guangdong Province through Grant No. 2019KZDXM001, the Research Fund of Guangdong−Hong Kong−Macao Joint Laboratory for Intelligent Micro−Nano Optoelectronic Technology through Grant No. 2020B1212030010. The work of B.A.M. was supported, in part, by the Israel Science Foundation through Grant No. 1695/22.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3982 KB)

Accesses

Citations

Detail

Sections
Recommended

/