
Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23201.
Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors
Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as
non-Hermitian / Su−Schrieffer−Heeger (SSH) model / exceptional point
Tab.1 The correspondence between the location of EPs and the discontinuity of |
Discontinuity | EPs | Model |
---|---|---|
| Topological edge states | I |
| Bulk states | II, III, IV |
Fig.1 (a) Real part of energy spectrum of the model-I (2) as a function of |
[1] |
C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
CrossRef
ADS
Google scholar
|
[2] |
H. Cao, J. Wiersig. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87(1): 61
CrossRef
ADS
Google scholar
|
[3] |
I. Rotter. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
CrossRef
ADS
Google scholar
|
[4] |
Y. Ashida, Z. Gong, M. Ueda. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
CrossRef
ADS
Google scholar
|
[5] |
E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
CrossRef
ADS
Google scholar
|
[6] |
R. Lin, T. Tai, L. Li, C. H. Lee. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
CrossRef
ADS
Google scholar
|
[7] |
S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef
ADS
Google scholar
|
[8] |
K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
CrossRef
ADS
Google scholar
|
[9] |
Z. Yang, K. Zhang, C. Fang, J. Hu. Non-Hermitian bulk−boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
CrossRef
ADS
Google scholar
|
[10] |
W. D. Heiss. The physics of exceptional points. J. Phys. A, 2012, 45(44): 444016
CrossRef
ADS
Google scholar
|
[11] |
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
CrossRef
ADS
Google scholar
|
[12] |
B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
CrossRef
ADS
Google scholar
|
[13] |
C. Hahn, Y. Choi, J. W. Yoon, S. H. Song, C. H. Oh, P. Berini. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun., 2016, 7(1): 12201
CrossRef
ADS
Google scholar
|
[14] |
D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
CrossRef
ADS
Google scholar
|
[15] |
M. A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
CrossRef
ADS
Google scholar
|
[16] |
S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 2019, 10(1): 832
CrossRef
ADS
Google scholar
|
[17] |
L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity‒time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
CrossRef
ADS
Google scholar
|
[18] |
H. Hu, S. Sun, S. Chen. Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
CrossRef
ADS
Google scholar
|
[19] |
F. K. Kunst, E. Edvardsson, J. C. Budich, E. J. Bergholtz. Biorthogonal bulk‒boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
CrossRef
ADS
Google scholar
|
[20] |
C. H. Lee, R. Thomale. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
CrossRef
ADS
Google scholar
|
[21] |
N. Okuma, K. Kawabata, K. Shiozaki, M. Sato. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
CrossRef
ADS
Google scholar
|
[22] |
N. Okuma, M. Sato. Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys. Rev. Lett., 2021, 126(17): 176601
CrossRef
ADS
Google scholar
|
[23] |
K. Zhang, Z. Yang, C. Fang. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
CrossRef
ADS
Google scholar
|
[24] |
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
CrossRef
ADS
Google scholar
|
[25] |
S. Yao, F. Song, Z. Wang. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
CrossRef
ADS
Google scholar
|
[26] |
T. S. Deng, W. Yi. Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
CrossRef
ADS
Google scholar
|
[27] |
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, F. Nori. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
CrossRef
ADS
Google scholar
|
[28] |
S. Longhi. Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
CrossRef
ADS
Google scholar
|
[29] |
K. Zhang, Z. Yang, C. Fang. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
CrossRef
ADS
Google scholar
|
[30] |
K. Kawabata, N. Okuma, M. Sato. Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Phys. Rev. B, 2020, 101(19): 195147
CrossRef
ADS
Google scholar
|
[31] |
H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
CrossRef
ADS
Google scholar
|
[32] |
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
CrossRef
ADS
Google scholar
|
[33] |
K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
CrossRef
ADS
Google scholar
|
[34] |
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
CrossRef
ADS
Google scholar
|
[35] |
H. Zhou, J. Y. Lee. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
CrossRef
ADS
Google scholar
|
[36] |
L. Herviou, N. Regnault, J. H. Bardarson. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys., 2019, 7: 069
CrossRef
ADS
Google scholar
|
[37] |
C. C. Wojcik, X. Q. Sun, T. Bzdušek, S. Fan. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(20): 205417
CrossRef
ADS
Google scholar
|
[38] |
P. Y. Chang, J. S. You, X. Wen, S. Ryu. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
CrossRef
ADS
Google scholar
|
[39] |
L. M Chen, S. A. Chen, P. Ye. Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
CrossRef
ADS
Google scholar
|
[40] |
S. Sayyad, J. Yu, A. G. Grushin, L. M. Sieberer. Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Phys. Rev. Res., 2021, 3(3): 033022
CrossRef
ADS
Google scholar
|
[41] |
Y. B. Guo, Y. C. Yu, R. Z. Huang, L. P. Yang, R. Z. Chi, H. J. Liao, T. Xiang. Entanglement entropy of non-Hermitian free fermions. J. Phys.: Condens. Matter, 2021, 33(47): 475502
CrossRef
ADS
Google scholar
|
[42] |
L. M. Chen, Y. Zhou, S. A. Chen, P. Ye. Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
CrossRef
ADS
Google scholar
|
[43] |
S. Longhi. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
CrossRef
ADS
Google scholar
|
[44] |
Q. B. Zeng, Y. Xu. Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
CrossRef
ADS
Google scholar
|
[45] |
Y. Liu, X. P. Jiang, J. Cao, S. Chen. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity‒time symmetry. Phys. Rev. B, 2020, 101(17): 174205
CrossRef
ADS
Google scholar
|
[46] |
Y. Liu, Q. Zhou, S. Chen. Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
CrossRef
ADS
Google scholar
|
[47] |
N. Hatano, D. R. Nelson. Localization transitions in Non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
CrossRef
ADS
Google scholar
|
[48] |
N. Hatano, D. R. Nelson. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 1997, 56(14): 8651
CrossRef
ADS
Google scholar
|
[49] |
N. Hatano, D. R. Nelson. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
CrossRef
ADS
Google scholar
|
[50] |
Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, P. Xue. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
CrossRef
ADS
Google scholar
|
[51] |
C. M. Bender. Introduction to PT-symmetric quantum theory. Contemp. Phys., 2005, 46(4): 277
CrossRef
ADS
Google scholar
|
[52] |
J. Wiersig. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res., 2019, 1(3): 033182
CrossRef
ADS
Google scholar
|
[53] |
K. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7): 566
CrossRef
ADS
Google scholar
|
[54] |
K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 2008, 100(10): 103904
CrossRef
ADS
Google scholar
|
[55] |
H. Schomerus. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A, 2009, 79(6): 061801
CrossRef
ADS
Google scholar
|
[56] |
J. Wiersig, A. Eberspächer, J. B. Shim, J. W. Ryu, S. Shinohara, M. Hentschel, H. Schomerus. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84(2): 023845
CrossRef
ADS
Google scholar
|
[57] |
Y. V. Fyodorov, D. V. Savin. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108(18): 184101
CrossRef
ADS
Google scholar
|
[58] |
K. G. Makris, L. Ge, H. E. Türeci. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X, 2014, 4(4): 041044
CrossRef
ADS
Google scholar
|
[59] |
M. Davy, A. Z. Genack. Selectively exciting quasi-normal modes in open disordered systems. Nat. Commun., 2018, 9(1): 4714
CrossRef
ADS
Google scholar
|
[60] |
M. Davy, A. Z. Genack. Probing nonorthogonality of eigenfunctions and its impact on transport through open systems. Phys. Rev. Res., 2019, 1(3): 033026
CrossRef
ADS
Google scholar
|
[61] |
F. Song, S. Yao, Z. Wang. Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
CrossRef
ADS
Google scholar
|
[62] |
T. D. Lee, L. Wolfenstein. Analysis of CP-noninvariant interactions and the k10, k20 system. Phys. Rev., 1965, 138(6B): B1490
CrossRef
ADS
Google scholar
|
[63] |
H. Wang, Y. H. Lai, Z. Yuan, M. G. Suh, K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 2020, 11(1): 1610
CrossRef
ADS
Google scholar
|
[64] |
J. Cheng, X. Zhang, M. H. Lu, Y. F. Chen. Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
CrossRef
ADS
Google scholar
|
[65] |
Z. Oztas, N. Candemir. Su‒Schrieffer‒Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
CrossRef
ADS
Google scholar
|
[66] |
X. R. Wang, C. X. Guo, S. P. Kou. Defective edge states and number-anomalous bulk‒boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
CrossRef
ADS
Google scholar
|
[67] |
W. Zhu, W. X. Teo, L. Li, J. Gong. Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
CrossRef
ADS
Google scholar
|
[68] |
Y.ZhouL. M. ChenP.Ye, to be appeared (2023)
|
[69] |
J. W. Demmel. Nearest defective matrices and the geometry of ill-conditioning. Reliable Numer. Comput., 1990, 44: 35
|
[70] |
C. H. Lee, P. Ye, X. L. Qi. Position‒momentum duality in the entanglement spectrum of free fermions. J. Stat. Mech., 2014, 2014(10): P10023
CrossRef
ADS
Google scholar
|
[71] |
C. H. Lee, P. Ye. Free-fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
CrossRef
ADS
Google scholar
|
[72] |
Y. Long, H. Xue, B. Zhang. Non-Hermitian topological systems with eigenvalues that are always real. Phys. Rev. B, 2022, 105(10): L100102
CrossRef
ADS
Google scholar
|
[73] |
A.Zettl, Sturm‒Liouville Theory, 121, American Mathematical Society, 2012
|
/
〈 |
|
〉 |