Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors

Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye

PDF(3704 KB)
PDF(3704 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 23201. DOI: 10.1007/s11467-023-1337-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors

Author information +
History +

Abstract

Non-orthogonality in non-Hermitian quantum systems gives rise to tremendous exotic quantum phenomena, which can be fundamentally traced back to non-unitarity. In this paper, we introduce an interesting quantity (denoted as η) as a new variant of the Petermann factor to directly and efficiently measure non-unitarity and the associated non-Hermitian physics. By tuning the model parameters of underlying non-Hermitian systems, we find that the discontinuity of both η and its first-order derivative (denoted as η) pronouncedly captures rich physics that is fundamentally caused by non-unitarity. More concretely, in the 1D non-Hermitian topological systems, two mutually orthogonal edge states that are respectively localized on two boundaries become non-orthogonal in the vicinity of discontinuity of η as a function of the model parameter, which is dubbed “edge state transition”. Through theoretical analysis, we identify that the appearance of edge state transition indicates the existence of exceptional points (EPs) in topological edge states. Regarding the discontinuity of η, we investigate a two-level non-Hermitian model and establish a connection between the points of discontinuity of η and EPs of bulk states. By studying this connection in more general lattice models, we find that some models have discontinuity of η, implying the existence of EPs in bulk states.

Graphical abstract

Keywords

non-Hermitian / Su−Schrieffer−Heeger (SSH) model / exceptional point

Cite this article

Download citation ▾
Yue-Yu Zou, Yao Zhou, Li-Mei Chen, Peng Ye. Detecting bulk and edge exceptional points in non-Hermitian systems through generalized Petermann factors. Front. Phys., 2024, 19(2): 23201 https://doi.org/10.1007/s11467-023-1337-8

References

[1]
C. M. Bender. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys., 2007, 70(6): 947
CrossRef ADS Google scholar
[2]
H. Cao, J. Wiersig. Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys., 2015, 87(1): 61
CrossRef ADS Google scholar
[3]
I. Rotter. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A Math. Theor., 2009, 42(15): 153001
CrossRef ADS Google scholar
[4]
Y. Ashida, Z. Gong, M. Ueda. Non-Hermitian physics. Adv. Phys., 2020, 69(3): 249
CrossRef ADS Google scholar
[5]
E. J. Bergholtz, J. C. Budich, F. K. Kunst. Exceptional topology of non-Hermitian systems. Rev. Mod. Phys., 2021, 93(1): 015005
CrossRef ADS Google scholar
[6]
R. Lin, T. Tai, L. Li, C. H. Lee. Topological non-Hermitian skin effect. Front. Phys., 2023, 18(5): 53605
CrossRef ADS Google scholar
[7]
S. Yao, Z. Wang. Edge states and topological invariants of non-Hermitian systems. Phys. Rev. Lett., 2018, 121(8): 086803
CrossRef ADS Google scholar
[8]
K. Yokomizo, S. Murakami. Non-Bloch band theory of non-Hermitian systems. Phys. Rev. Lett., 2019, 123(6): 066404
CrossRef ADS Google scholar
[9]
Z. Yang, K. Zhang, C. Fang, J. Hu. Non-Hermitian bulk−boundary correspondence and auxiliary generalized Brillouin zone theory. Phys. Rev. Lett., 2020, 125(22): 226402
CrossRef ADS Google scholar
[10]
W. D. Heiss. The physics of exceptional points. J. Phys. A, 2012, 45(44): 444016
CrossRef ADS Google scholar
[11]
T. Gao, E. Estrecho, K. Y. Bliokh, T. C. H. Liew, M. D. Fraser, S. Brodbeck, M. Kamp, C. Schneider, S. Höfling, Y. Yamamoto, F. Nori, Y. S. Kivshar, A. G. Truscott, R. G. Dall, E. A. Ostrovskaya. Observation of non-Hermitian degeneracies in a chaotic exciton‒polariton billiard. Nature, 2015, 526(7574): 554
CrossRef ADS Google scholar
[12]
B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S. L. Chua, J. D. Joannopoulos, M. Soljačić. Spawning rings of exceptional points out of Dirac cones. Nature, 2015, 525(7569): 354
CrossRef ADS Google scholar
[13]
C. Hahn, Y. Choi, J. W. Yoon, S. H. Song, C. H. Oh, P. Berini. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices. Nat. Commun., 2016, 7(1): 12201
CrossRef ADS Google scholar
[14]
D. Zhang, X. Q. Luo, Y. P. Wang, T. F. Li, J. Q. You. Observation of the exceptional point in cavity magnon-polaritons. Nat. Commun., 2017, 8(1): 1368
CrossRef ADS Google scholar
[15]
M. A. Miri, A. Alù. Exceptional points in optics and photonics. Science, 2019, 363(6422): eaar7709
CrossRef ADS Google scholar
[16]
S. Wang, B. Hou, W. Lu, Y. Chen, Z. Q. Zhang, C. T. Chan. Arbitrary order exceptional point induced by photonic spin–orbit interaction in coupled resonators. Nat. Commun., 2019, 10(1): 832
CrossRef ADS Google scholar
[17]
L. Xiao, T. Deng, K. Wang, Z. Wang, W. Yi, P. Xue. Observation of non-Bloch parity‒time symmetry and exceptional points. Phys. Rev. Lett., 2021, 126(23): 230402
CrossRef ADS Google scholar
[18]
H. Hu, S. Sun, S. Chen. Knot topology of exceptional point and non-Hermitian no−go theorem. Phys. Rev. Res., 2022, 4(2): L022064
CrossRef ADS Google scholar
[19]
F. K. Kunst, E. Edvardsson, J. C. Budich, E. J. Bergholtz. Biorthogonal bulk‒boundary correspondence in non-Hermitian systems. Phys. Rev. Lett., 2018, 121(2): 026808
CrossRef ADS Google scholar
[20]
C. H. Lee, R. Thomale. Anatomy of skin modes and topology in non-Hermitian systems. Phys. Rev. B, 2019, 99(20): 201103
CrossRef ADS Google scholar
[21]
N. Okuma, K. Kawabata, K. Shiozaki, M. Sato. Topological origin of non-Hermitian skin effects. Phys. Rev. Lett., 2020, 124(8): 086801
CrossRef ADS Google scholar
[22]
N. Okuma, M. Sato. Non-Hermitian skin effects in Hermitian correlated or disordered systems: Quantities sensitive or insensitive to boundary effects and pseudo-quantum-number. Phys. Rev. Lett., 2021, 126(17): 176601
CrossRef ADS Google scholar
[23]
K. Zhang, Z. Yang, C. Fang. Universal non-Hermitian skin effect in two and higher dimensions. Nat. Commun., 2022, 13(1): 2496
CrossRef ADS Google scholar
[24]
Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao, D. N. Christodoulides. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett., 2011, 106(21): 213901
CrossRef ADS Google scholar
[25]
S. Yao, F. Song, Z. Wang. Non-Hermitian Chern bands. Phys. Rev. Lett., 2018, 121(13): 136802
CrossRef ADS Google scholar
[26]
T. S. Deng, W. Yi. Non-Bloch topological invariants in a non-Hermitian domain wall system. Phys. Rev. B, 2019, 100(3): 035102
CrossRef ADS Google scholar
[27]
T. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, F. Nori. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett., 2019, 122(7): 076801
CrossRef ADS Google scholar
[28]
S. Longhi. Non-Bloch-band collapse and chiral Zener tunneling. Phys. Rev. Lett., 2020, 124(6): 066602
CrossRef ADS Google scholar
[29]
K. Zhang, Z. Yang, C. Fang. Correspondence between winding numbers and skin modes in non-Hermitian systems. Phys. Rev. Lett., 2020, 125(12): 126402
CrossRef ADS Google scholar
[30]
K. Kawabata, N. Okuma, M. Sato. Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Phys. Rev. B, 2020, 101(19): 195147
CrossRef ADS Google scholar
[31]
H. Shen, B. Zhen, L. Fu. Topological band theory for non-Hermitian Hamiltonians. Phys. Rev. Lett., 2018, 120(14): 146402
CrossRef ADS Google scholar
[32]
Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Higashikawa, M. Ueda. Topological phases of non-Hermitian systems. Phys. Rev. X, 2018, 8(3): 031079
CrossRef ADS Google scholar
[33]
K. Kawabata, T. Bessho, M. Sato. Classification of exceptional points and non-Hermitian topological semimetals. Phys. Rev. Lett., 2019, 123(6): 066405
CrossRef ADS Google scholar
[34]
K. Kawabata, K. Shiozaki, M. Ueda, M. Sato. Symmetry and topology in non-Hermitian physics. Phys. Rev. X, 2019, 9(4): 041015
CrossRef ADS Google scholar
[35]
H. Zhou, J. Y. Lee. Periodic table for topological bands with non-Hermitian symmetries. Phys. Rev. B, 2019, 99(23): 235112
CrossRef ADS Google scholar
[36]
L. Herviou, N. Regnault, J. H. Bardarson. Entanglement spectrum and symmetries in non-Hermitian fermionic non-interacting models. SciPost Phys., 2019, 7: 069
CrossRef ADS Google scholar
[37]
C. C. Wojcik, X. Q. Sun, T. Bzdušek, S. Fan. Homotopy characterization of non-Hermitian Hamiltonians. Phys. Rev. B, 2020, 101(20): 205417
CrossRef ADS Google scholar
[38]
P. Y. Chang, J. S. You, X. Wen, S. Ryu. Entanglement spectrum and entropy in topological non-Hermitian systems and nonunitary conformal field theory. Phys. Rev. Res., 2020, 2(3): 033069
CrossRef ADS Google scholar
[39]
L. M Chen, S. A. Chen, P. Ye. Entanglement, non-hermiticity, and duality. SciPost Phys., 2021, 11: 003
CrossRef ADS Google scholar
[40]
S. Sayyad, J. Yu, A. G. Grushin, L. M. Sieberer. Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Phys. Rev. Res., 2021, 3(3): 033022
CrossRef ADS Google scholar
[41]
Y. B. Guo, Y. C. Yu, R. Z. Huang, L. P. Yang, R. Z. Chi, H. J. Liao, T. Xiang. Entanglement entropy of non-Hermitian free fermions. J. Phys.: Condens. Matter, 2021, 33(47): 475502
CrossRef ADS Google scholar
[42]
L. M. Chen, Y. Zhou, S. A. Chen, P. Ye. Quantum entanglement of non-Hermitian quasicrystals. Phys. Rev. B, 2022, 105(12): L121115
CrossRef ADS Google scholar
[43]
S. Longhi. Topological phase transition in non-Hermitian quasicrystals. Phys. Rev. Lett., 2019, 122(23): 237601
CrossRef ADS Google scholar
[44]
Q. B. Zeng, Y. Xu. Winding numbers and generalized mobility edges in non-Hermitian systems. Phys. Rev. Res., 2020, 2(3): 033052
CrossRef ADS Google scholar
[45]
Y. Liu, X. P. Jiang, J. Cao, S. Chen. Non-Hermitian mobility edges in one-dimensional quasicrystals with parity‒time symmetry. Phys. Rev. B, 2020, 101(17): 174205
CrossRef ADS Google scholar
[46]
Y. Liu, Q. Zhou, S. Chen. Localization transition, spectrum structure, and winding numbers for one-dimensional non-Hermitian quasicrystals. Phys. Rev. B, 2021, 104(2): 024201
CrossRef ADS Google scholar
[47]
N. Hatano, D. R. Nelson. Localization transitions in Non-Hermitian quantum mechanics. Phys. Rev. Lett., 1996, 77(3): 570
CrossRef ADS Google scholar
[48]
N. Hatano, D. R. Nelson. Vortex pinning and non-Hermitian quantum mechanics. Phys. Rev. B, 1997, 56(14): 8651
CrossRef ADS Google scholar
[49]
N. Hatano, D. R. Nelson. Non-Hermitian delocalization and eigenfunctions. Phys. Rev. B, 1998, 58(13): 8384
CrossRef ADS Google scholar
[50]
Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, P. Xue. Observation of non-Hermitian topological Anderson insulator in quantum dynamics. Nat. Commun., 2022, 13(1): 3229
CrossRef ADS Google scholar
[51]
C. M. Bender. Introduction to PT-symmetric quantum theory. Contemp. Phys., 2005, 46(4): 277
CrossRef ADS Google scholar
[52]
J. Wiersig. Nonorthogonality constraints in open quantum and wave systems. Phys. Rev. Res., 2019, 1(3): 033182
CrossRef ADS Google scholar
[53]
K. Petermann. Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding. IEEE J. Quantum Electron., 1979, 15(7): 566
CrossRef ADS Google scholar
[54]
K. G. Makris, R. El-Ganainy, D. N. Christodoulides, Z. H. Musslimani. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett., 2008, 100(10): 103904
CrossRef ADS Google scholar
[55]
H. Schomerus. Excess quantum noise due to mode nonorthogonality in dielectric microresonators. Phys. Rev. A, 2009, 79(6): 061801
CrossRef ADS Google scholar
[56]
J. Wiersig, A. Eberspächer, J. B. Shim, J. W. Ryu, S. Shinohara, M. Hentschel, H. Schomerus. Nonorthogonal pairs of copropagating optical modes in deformed microdisk cavities. Phys. Rev. A, 2011, 84(2): 023845
CrossRef ADS Google scholar
[57]
Y. V. Fyodorov, D. V. Savin. Statistics of resonance width shifts as a signature of eigenfunction nonorthogonality. Phys. Rev. Lett., 2012, 108(18): 184101
CrossRef ADS Google scholar
[58]
K. G. Makris, L. Ge, H. E. Türeci. Anomalous transient amplification of waves in non-normal photonic media. Phys. Rev. X, 2014, 4(4): 041044
CrossRef ADS Google scholar
[59]
M. Davy, A. Z. Genack. Selectively exciting quasi-normal modes in open disordered systems. Nat. Commun., 2018, 9(1): 4714
CrossRef ADS Google scholar
[60]
M. Davy, A. Z. Genack. Probing nonorthogonality of eigenfunctions and its impact on transport through open systems. Phys. Rev. Res., 2019, 1(3): 033026
CrossRef ADS Google scholar
[61]
F. Song, S. Yao, Z. Wang. Non-Hermitian topological invariants in real space. Phys. Rev. Lett., 2019, 123(24): 246801
CrossRef ADS Google scholar
[62]
T. D. Lee, L. Wolfenstein. Analysis of CP-noninvariant interactions and the k10, k20 system. Phys. Rev., 1965, 138(6B): B1490
CrossRef ADS Google scholar
[63]
H. Wang, Y. H. Lai, Z. Yuan, M. G. Suh, K. Vahala. Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope. Nat. Commun., 2020, 11(1): 1610
CrossRef ADS Google scholar
[64]
J. Cheng, X. Zhang, M. H. Lu, Y. F. Chen. Competition between band topology and non-Hermiticity. Phys. Rev. B, 2022, 105(9): 094103
CrossRef ADS Google scholar
[65]
Z. Oztas, N. Candemir. Su‒Schrieffer‒Heeger model with imaginary gauge field. Phys. Lett. A, 2019, 383(15): 1821
CrossRef ADS Google scholar
[66]
X. R. Wang, C. X. Guo, S. P. Kou. Defective edge states and number-anomalous bulk‒boundary correspondence in non-Hermitian topological systems. Phys. Rev. B, 2020, 101(12): 121116
CrossRef ADS Google scholar
[67]
W. Zhu, W. X. Teo, L. Li, J. Gong. Delocalization of topological edge states. Phys. Rev. B, 2021, 103(19): 195414
CrossRef ADS Google scholar
[68]
Y.ZhouL. M. ChenP.Ye, to be appeared (2023)
[69]
J. W. Demmel. Nearest defective matrices and the geometry of ill-conditioning. Reliable Numer. Comput., 1990, 44: 35
[70]
C. H. Lee, P. Ye, X. L. Qi. Position‒momentum duality in the entanglement spectrum of free fermions. J. Stat. Mech., 2014, 2014(10): P10023
CrossRef ADS Google scholar
[71]
C. H. Lee, P. Ye. Free-fermion entanglement spectrum through Wannier interpolation. Phys. Rev. B, 2015, 91(8): 085119
CrossRef ADS Google scholar
[72]
Y. Long, H. Xue, B. Zhang. Non-Hermitian topological systems with eigenvalues that are always real. Phys. Rev. B, 2022, 105(10): L100102
CrossRef ADS Google scholar
[73]
A.Zettl, Sturm‒Liouville Theory, 121, American Mathematical Society, 2012

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) Grant No. 12074438, the Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100, the Open Project of Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices under Grant No. 2022B1212010008, and the Fundamental Research Funds for the Central Universities, Sun Yat-sen University (No. 23ptpy05).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(3704 KB)

Accesses

Citations

Detail

Sections
Recommended

/