Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain
Peng-Fei Wei, Qi Luo, Huang-Qiu-Chen Wang, Shao-Jie Xiong, Bo Liu, Zhe Sun
Local quantum Fisher information and quantum correlation in the mixed-spin Heisenberg XXZ chain
We study the local quantum Fisher information (LQFI) in the mixed-spin Heisenberg XXZ chain. Both the maximal and minimal LQFI are studied and the former is essential to determine the accuracy of the quantum parameter estimation, the latter can be well used to characterize the discord-type quantum correlations. We investigate the effects of the temperature and the anisotropy parameter on the maximal LQFI and thus on the accuracy of the parameter estimation. Then we make use of the minimal LQFI to study the discord-type correlations of different site pairs. Different dimensions of the subsystems cause different values of the minimal LQFI which reflects the asymmetry of the discord-type correlation. In addition, the site pairs at different positions of the spin chains have different minimal LQFI, which reveals the influence of the surrounding spins on the bipartite quantum correlation. Our results show that the LQFI obtained through a simple calculation process provides a convenient way to investigate the discord-type correlation in high-dimensional systems.
local quantum Fisher information / quantum correlation / mixed-spin Heisenberg XXZ chain
[1] |
V. Giovannetti, S. Lloyd, L. Maccone. Quantum-enhanced measurements: Beating the standard quantum limit. Science, 2004, 306(5700): 1330
CrossRef
ADS
Google scholar
|
[2] |
D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W. Mitchell, S. Pirandola. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys., 2018, 90(3): 035006
CrossRef
ADS
Google scholar
|
[3] |
L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, P. Treutlein. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys., 2018, 90(3): 035005
CrossRef
ADS
Google scholar
|
[4] |
J. P. Dowling, K. P. Seshadreesan. Quantum optical technologies for metrology, sensing, and imaging. J. Lightwave Technol., 2015, 33(12): 2359
CrossRef
ADS
Google scholar
|
[5] |
J. Liu, M. Zhang, H. Chen, L. Wang, H. Yuan. Optimal scheme for quantum metrology. Adv. Quantum Technol., 2022, 5(1): 2100080
CrossRef
ADS
Google scholar
|
[6] |
R. Demkowicz-Dobrzański, L. Maccone. Using entanglement against noise in quantum metrology. Phys. Rev. Lett., 2014, 113(25): 250801
CrossRef
ADS
Google scholar
|
[7] |
L. Pezzé, A. Smerzi. Ultrasensitive two-mode interferometry with single-mode number squeezing. Phys. Rev. Lett., 2013, 110(16): 163604
CrossRef
ADS
Google scholar
|
[8] |
R. Schnabel, N. Mavalvala, D. E. McClelland, P. K. Lam. Quantum metrology for gravitational wave astronomy. Nat. Commun., 2010, 1(1): 121
CrossRef
ADS
Google scholar
|
[9] |
S. D. Huver, C. F. Wildfeuer, J. P. Dowling. Entangled Fock states for robust quantum optical metrology, imaging, and sensing. Phys. Rev. A, 2008, 78(6): 063828
CrossRef
ADS
Google scholar
|
[10] |
M. Ahmadi, D. E. Bruschi, C. Sab’ın, G. Adesso, I. Fuentes. Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies. Sci. Rep., 2014, 4(1): 4996
CrossRef
ADS
Google scholar
|
[11] |
Z. Sun, J. Ma, X. M. Lu, X. G. Wang. Fisher information in a quantum-critical environment. Phys. Rev. A, 2010, 82(2): 022306
CrossRef
ADS
Google scholar
|
[12] |
M. Zhang, H. M. Yu, H. D. Yuan, X. G. Wang, R. Demkowicz-Dobrzański, J. Liu. QuanEstimation: An open-source toolkit for quantum parameter estimation. Phys. Rev. Res., 2022, 4(4): 043057
CrossRef
ADS
Google scholar
|
[13] |
S. J. Gu. Fidelity approach to quantum phase transitions. Int. J. Mod. Phys. B, 2010, 24(23): 4371
CrossRef
ADS
Google scholar
|
[14] |
T. L. Wang, L. N. Wu, W. Yang, G. R. Jin, N. Lambert, F. Nori. Quantum Fisher information as a signature of the superradiant quantum phase transition. New J. Phys., 2014, 16(6): 063039
CrossRef
ADS
Google scholar
|
[15] |
U. Marzolino, T. Prosen. Fisher information approach to non-equilibrium phase transitions in a quantum XXZ spin chain with boundary noise. Phys. Rev. B, 2017, 96(10): 104402
CrossRef
ADS
Google scholar
|
[16] |
P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Weinfurter, L. Pezzé, A. Smerzi. Fisher information and multiparticle entanglement. Phys. Rev. A, 2012, 85(2): 022321
CrossRef
ADS
Google scholar
|
[17] |
G. Tóth. Multipartite entanglement and high-precision metrology. Phys. Rev. A, 2012, 85(2): 022322
CrossRef
ADS
Google scholar
|
[18] |
X. M. Lu, X. Wang, C. P. Sun. Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A, 2010, 82(4): 042103
CrossRef
ADS
Google scholar
|
[19] |
D. Girolami, A. M. Souza, V. Giovannetti, T. Tufarelli, J. G. Filgueiras, R. S. Sarthour, D. O. Soares-Pinto, I. S. Oliveira, G. Adesso. Quantum discord determines the interferometric power of quantum states. Phys. Rev. Lett., 2014, 112(21): 210401
CrossRef
ADS
Google scholar
|
[20] |
H. S. Dhar, M. N. Bera, G. Adesso. Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A, 2015, 91(3): 032115
CrossRef
ADS
Google scholar
|
[21] |
L. P. Chen, Y. N. Guo. Dynamics of local quantum uncertainty and local quantum fisher information for a two-qubit system driven by classical phase noisy laser. J. Mod. Opt., 2021, 68(4): 217
CrossRef
ADS
Google scholar
|
[22] |
A. B. A. Mohamed, H. Eleuch. Dynamics of two magnons coupled to an open microwave cavity: Local quantum Fisher- and local skew-information coherence. Eur. Phys. J. Plus, 2022, 137(7): 853
CrossRef
ADS
Google scholar
|
[23] |
A.SlaouiL. BakmouM.DaoudR.Ahl Laamara, A comparative study of local quantum Fisher information and local quantum uncertainty in Heisenberg XY model, Phys. Lett. A 383(19), 2241 (2019)
|
[24] |
N. Habiballah, Y. Khedif, M. Daoud. Local quantum uncertainty in XYZ Heisenberg spin models with Dzyaloshinski‒Moriya interaction. Eur. Phys. J. D, 2018, 72(9): 154
CrossRef
ADS
Google scholar
|
[25] |
F. Ozaydin, A. A. Altintas. Parameter estimation with Dzyaloshinski‒Moriya interaction under external magnetic fields. Opt. Quantum Electron., 2020, 52(2): 70
CrossRef
ADS
Google scholar
|
[26] |
F. Ozaydin, A. A. Altintas. Quantum metrology: Surpassing the shot-noise limit with Dzyaloshinskii‒Moriya interaction. Sci. Rep., 2015, 5(1): 16360
CrossRef
ADS
Google scholar
|
[27] |
S. Haseli. Local quantum Fisher information and local quantum uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii‒Moriya interactions. Laser Phys., 2020, 30(10): 105203
CrossRef
ADS
Google scholar
|
[28] |
A. V. Fedorova, M. A. Yurischev. Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Inform. Process., 2022, 21(3): 92
CrossRef
ADS
Google scholar
|
[29] |
J. Liu, X. X. Jing, W. Zhong, X. G. Wang. Quantum Fisher information for density matrices with arbitrary ranks. Commum. Theor. Phys., 2014, 61(1): 45
CrossRef
ADS
Google scholar
|
[30] |
M.A. NielsenI.L. Chuang, Quantum Computation and Quantum Information, Cambridge: Cambridge University Press, 2000
|
[31] |
H. Ollivier, W. H. Zurek. Quantum discord: A measure of the quantumness of correlations. Phys. Rev. Lett., 2001, 88(1): 017901
CrossRef
ADS
Google scholar
|
[32] |
B. Groisman, S. Popescu, A. Winter. Quantum, classical, and total amount of correlations in a quantum state. Phys. Rev. A, 2005, 72(3): 032317
CrossRef
ADS
Google scholar
|
[33] |
B. Dakić, V. Vedral, Č. Brukner. Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett., 2010, 105(19): 190502
CrossRef
ADS
Google scholar
|
[34] |
X.M. LuZ. J. XiZ.SunX.G. Wang, Geometric measure of quantum discord under decoherence, Quantum Inf. Comput. 10(11–12), 0994 (2010)
|
[35] |
T. Werlang, S. Souza, F. F. Fanchini, C. J. Villas Boas. Robustness of quantum discord to sudden death. Phys. Rev. A, 2009, 80(2): 024103
CrossRef
ADS
Google scholar
|
[36] |
A. Datta, A. Shaji, C. M. Caves. Quantum discord and the power of one qubit. Phys. Rev. Lett., 2008, 100(5): 050502
CrossRef
ADS
Google scholar
|
[37] |
S. L. Luo, S. S. Fu. Geometric measure of quantum discord. Phys. Rev. A, 2010, 82(3): 034302
CrossRef
ADS
Google scholar
|
[38] |
L. Henderson, V. Vedral. Classical, quantum and total correlations. J. Phys. Math. Gen., 2001, 34(35): 6899
CrossRef
ADS
Google scholar
|
[39] |
Y. X. Chen, Z. Yin. Thermal quantum discord in anisotropic Heisenberg XXZ model with Dzyaloshinskii‒Moriya interaction. Commum. Theor. Phys., 2010, 54(1): 60
CrossRef
ADS
Google scholar
|
[40] |
Q. Chen, C. Zhang, S. Yu, X. X. Yi, C. H. Oh. Quantum discord of two-qubit X states. Phys. Rev. A, 2011, 84(4): 042313
CrossRef
ADS
Google scholar
|
[41] |
M. Ali, A. R. P. Rau, G. Alber. Quantum discord for two-qubit X states. Phys. Rev. A, 2010, 81(4): 042105
CrossRef
ADS
Google scholar
|
[42] |
S. L. Braunstein, C. M. Caves. Statistical distance and the geometry of quantum states. Phys. Rev. Lett., 1994, 72(22): 3439
CrossRef
ADS
Google scholar
|
[43] |
G. Vidal, R. F. Werner. Computable measure of entanglement. Phys. Rev. A, 2002, 65(3): 032314
CrossRef
ADS
Google scholar
|
[44] |
Z. Sun, X. G. Wang, A. Z. Hu, Y. Q. Li. Entanglement properties in mixed-spin Heisenberg systems. Physica A, 2006, 370(2): 483
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |