Emerging memristors and applications in reservoir computing

Hao Chen, Xin-Gui Tang, Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang

PDF(12663 KB)
PDF(12663 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13401. DOI: 10.1007/s11467-023-1335-x
TOPICAL REVIEW
TOPICAL REVIEW

Emerging memristors and applications in reservoir computing

Author information +
History +

Abstract

Recently, with the emergence of ChatGPT, the field of artificial intelligence has garnered widespread attention from various sectors of society. Reservoir Computing (RC) is a neuromorphic computing algorithm used to analyze time-series data. Unlike traditional artificial neural networks that require the weight values of all nodes in the trained network, RC only needs to train the readout layer. This makes the training process faster and more efficient, and it has been used in various applications, including speech recognition, image classification, and control systems. Its flexibility and efficiency make it a popular choice for processing large amounts of complex data. A recent research trend is to develop physical RC, which utilizes the nonlinear dynamic and short-term memory properties of physical systems (photonic modules, spintronic devices, memristors, etc.) to construct a fixed random neural network structure for processing input data to reduce computing time and energy. In this paper, we introduced the recent development of memristors and demonstrated the remarkable data processing capability of RC systems based on memristors. Not only do they possess excellent data processing ability comparable to digital RC systems, but they also have lower energy consumption and greater robustness. Finally, we discussed the development prospects and challenges faced by memristors-based RC systems.

Graphical abstract

Keywords

reservoir computing / memristor / resistive switching / artificial synapse / neuromorphic computing

Cite this article

Download citation ▾
Hao Chen, Xin-Gui Tang, Zhihao Shen, Wen-Tao Guo, Qi-Jun Sun, Zhenhua Tang, Yan-Ping Jiang. Emerging memristors and applications in reservoir computing. Front. Phys., 2024, 19(1): 13401 https://doi.org/10.1007/s11467-023-1335-x

References

[1]
J. Misra , I. Saha . Artificial neural networks in hardware: A survey of two decades of progress. Neurocomputing, 2010, 74(1−3): 239
CrossRef ADS Google scholar
[2]
Z. Liu , J. Tang , B. Gao , X. Li , P. Yao , Y. Lin , D. Liu , B. Hong , H. Qian , H. Wu . Multichannel parallel processing of neural signals in memristor arrays. Sci. Adv., 2020, 6(41): eabc4797
CrossRef ADS Google scholar
[3]
W. Wang , G. Zhou . Moisture influence in emerging neuromorphic device. Front. Phys., 2023, 18(5): 53601
CrossRef ADS Google scholar
[4]
S. Ke , L. Jiang , Y. Zhao , Y. Xiao , B. Jiang , G. Cheng , F. Wu , G. Cao , Z. Peng , M. Zhu , C. Ye . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef ADS Google scholar
[5]
J. J. Hopfield . Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA, 1982, 79(8): 2554
CrossRef ADS Google scholar
[6]
P. J. Werbos . Backpropagation through time: What it does and how to do it. Proc. IEEE, 1990, 78(10): 1550
CrossRef ADS Google scholar
[7]
M. Lukoševičius , H. Jaeger . Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev., 2009, 3(3): 127
CrossRef ADS Google scholar
[8]
H.Jaeger, The “echo state” approach to analysing and training recurrent neural networks – with an Erratum note
[9]
P. Antonik , F. Duport , M. Hermans , A. Smerieri , M. Haelterman , S. Massar . Online training of an opto-electronic reservoir computer applied to real-time channel equalization. IEEE Trans. Neural Netw. Learn. Syst., 2017, 28(11): 2686
CrossRef ADS Google scholar
[10]
J. Lao , M. Yan , B. Tian , C. Jiang , C. Luo , Z. Xie , Q. Zhu , Z. Bao , N. Zhong , X. Tang , L. Sun , G. Wu , J. Wang , H. Peng , J. Chu , C. Duan . Ultralow‐power machine vision with self‐powered sensor reservoir. Adv. Sci. (Weinh.), 2022, 9(15): 2106092
CrossRef ADS Google scholar
[11]
M. Zhang , Z. Liang , Z. R. Huang . Hardware optimization for photonic time-delay reservoir computer dynamics. Neuromorph. Comput. Eng., 2023, 3(1): 014008
CrossRef ADS Google scholar
[12]
R. Nakane , G. Tanaka , A. Hirose . Reservoir computing with spin waves excited in a garnet film. IEEE Access, 2018, 6: 4462
CrossRef ADS Google scholar
[13]
A. Papp , G. Csaba , W. Porod . Characterization of nonlinear spin-wave interference by reservoir-computing metrics. Appl. Phys. Lett., 2021, 119(11): 112403
CrossRef ADS Google scholar
[14]
J. Moon , W. Ma , J. H. Shin , F. Cai , C. Du , S. H. Lee , W. D. Lu . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480
CrossRef ADS Google scholar
[15]
H. Coy , R. Cabrera , N. Sepúlveda , F. E. Fernández . Optoelectronic and all-optical multiple memory states in vanadium dioxide. J. Appl. Phys., 2010, 108(11): 113115
CrossRef ADS Google scholar
[16]
K. Liu , C. Cheng , J. Suh , R. Tang-Kong , D. Fu , S. Lee , J. Zhou , L. O. Chua , J. Wu . Powerful, multifunctional torsional micromuscles activated by phase transition. Adv. Mater., 2014, 26(11): 1746
CrossRef ADS Google scholar
[17]
W. Yi , K. K. Tsang , S. K. Lam , X. Bai , J. A. Crowell , E. A. Flores . Biological plausibility and stochasticity in scalable VO2 active memristor neurons. Nat. Commun., 2018, 9(1): 4661
CrossRef ADS Google scholar
[18]
M. Ismail , H. Abbas , C. Choi , S. Kim . Controllable analog resistive switching and synaptic characteristics in ZrO2/ZTO bilayer memristive device for neuromorphic systems. Appl. Surf. Sci., 2020, 529: 147107
CrossRef ADS Google scholar
[19]
M. Ismail , H. Abbas , C. Choi , S. Kim . Stabilized and RESET-voltage controlled multi-level switching characteristics in ZrO2-based memristors by inserting a-ZTO interface layer. J. Alloys Compd., 2020, 835: 155256
CrossRef ADS Google scholar
[20]
S. G. Hu , Y. Liu , T. P. Chen , Z. Liu , Q. Yu , L. J. Deng , Y. Yin , S. Hosaka . Emulating the Ebbinghaus forgetting curve of the human brain with a NiO-based memristor. Appl. Phys. Lett., 2013, 103(13): 133701
CrossRef ADS Google scholar
[21]
Y. Li , J. Chu , W. Duan , G. Cai , X. Fan , X. Wang , G. Wang , Y. Pei . Analog and digital bipolar resistive switching in solution-combustion-processed NiO memristor. ACS Appl. Mater. Interfaces, 2018, 10(29): 24598
CrossRef ADS Google scholar
[22]
V. Q. Le , T. H. Do , J. R. D. Retamal , P. W. Shao , Y. H. Lai , W. W. Wu , J. H. He , Y. L. Chueh , Y. H. Chu . Van der Waals heteroepitaxial AZO/NiO/AZO/muscovite (ANA/muscovite) transparent flexible memristor. Nano Energy, 2019, 56: 322
CrossRef ADS Google scholar
[23]
L. Zhang , Z. Tang , J. Fang , X. Jiang , Y. P. Jiang , Q. J. Sun , J. M. Fan , X. G. Tang , G. Zhong . Synaptic and resistive switching behaviors in NiO/Cu2O heterojunction memristor for bioinspired neuromorphic computing. Appl. Surf. Sci., 2022, 606: 154718
CrossRef ADS Google scholar
[24]
T. Chang , S. H. Jo , K. H. Kim , P. Sheridan , S. Gaba , W. Lu . Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A, 2011, 102(4): 857
CrossRef ADS Google scholar
[25]
J. Moon , W. Ma , J. H. Shin , F. Cai , C. Du , S. H. Lee , W. D. Lu . Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron., 2019, 2(10): 480
CrossRef ADS Google scholar
[26]
J. Shin , M. Kang , S. Kim . Gradual conductance modulation of Ti/WOx/Pt memristor with self-rectification for a neuromorphic system. Appl. Phys. Lett., 2021, 119(1): 012102
CrossRef ADS Google scholar
[27]
Y. Tao , Z. Wang , H. Xu , W. Ding , X. Zhao , Y. Lin , Y. Liu . Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states. Nano Energy, 2020, 71: 104628
CrossRef ADS Google scholar
[28]
L. Zhang , Z. Tang , D. Yao , Z. Fan , S. Hu , Q. J. Sun , X. G. Tang , Y. P. Jiang , X. Guo , M. Huang , G. Zhong , J. Gao . Synaptic behaviors in flexible Au/WOx/Pt/mica memristor for neuromorphic computing system. Mater. Today Phys., 2022, 23: 100650
CrossRef ADS Google scholar
[29]
C. H. Huang , J. S. Huang , S. M. Lin , W. Y. Chang , J. H. He , Y. L. Chueh . ZnO1–x nanorod arrays/ZnO thin film bilayer structure: from homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano, 2012, 6(9): 8407
CrossRef ADS Google scholar
[30]
J.ParkS.LeeJ.LeeK.Yong, A light incident angle switchable ZnO nanorod memristor: Reversible switching behavior between two non-volatile memory devices, Adv. Mater. 25(44), 6423 (2013)
[31]
A. Kumar , M. Das , V. Garg , B. S. Sengar , M. T. Htay , S. Kumar , A. Kranti , S. Mukherjee . Forming-free high-endurance Al/ZnO/Al memristor fabricated by dual ion beam sputtering. Appl. Phys. Lett., 2017, 110(25): 253509
CrossRef ADS Google scholar
[32]
S. Dirkmann , J. Kaiser , C. Wenger , T. Mussenbrock . Filament growth and resistive switching in hafnium oxide memristive devices. ACS Appl. Mater. Interfaces, 2018, 10(17): 14857
CrossRef ADS Google scholar
[33]
B. Ku , Y. Abbas , S. Kim , A. S. Sokolov , Y. R. Jeon , C. Choi . Improved resistive switching and synaptic characteristics using Ar plasma irradiation on the Ti/HfO2 interface. J. Alloys Compd., 2019, 797: 277
CrossRef ADS Google scholar
[34]
G. S. Kim , H. Song , Y. K. Lee , J. H. Kim , W. Kim , T. H. Park , H. J. Kim , K. Min Kim , C. S. Hwang . Defect-engineered electroforming-free analog HfOx memristor and its application to the neural network. ACS Appl. Mater. Interfaces, 2019, 11(50): 47063
CrossRef ADS Google scholar
[35]
M.J. LeeC.B. LeeD.LeeS.R. LeeM.ChangJ.H. HurY.B. KimC.J. KimD.H. SeoS.SeoU.I. ChungI.K. YooK.Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10(8), 625 (2011)
[36]
J. Joshua Yang , M. X. Zhang , M. D. Pickett , F. Miao , J. Paul Strachan , W. D. Li , W. Yi , D. A. A. Ohlberg , B. Joon Choi , W. Wu , J. H. Nickel , G. Medeiros-Ribeiro , R. S. Williams . Engineering nonlinearity into memristors for passive crossbar applications. Appl. Phys. Lett., 2012, 100(11): 113501
CrossRef ADS Google scholar
[37]
F. Miao , W. Yi , I. Goldfarb , J. J. Yang , M. X. Zhang , M. D. Pickett , J. P. Strachan , G. Medeiros-Ribeiro , R. S. Williams . Continuous electrical tuning of the chemical composition of TaOx-based memristors. ACS Nano, 2012, 6(3): 2312
CrossRef ADS Google scholar
[38]
Z. Wang , M. Yin , T. Zhang , Y. Cai , Y. Wang , Y. Yang , R. Huang . Engineering incremental resistive switching in TaOx based memristors for brain-inspired computing. Nanoscale, 2016, 8(29): 14015
CrossRef ADS Google scholar
[39]
L. H. Li , K. H. Xue , L. Q. Zou , J. H. Yuan , H. Sun , X. Miao . Multilevel switching in Mg-doped HfOx memristor through the mutual-ion effect. Appl. Phys. Lett., 2021, 119(15): 153505
CrossRef ADS Google scholar
[40]
J. H. Ryu , C. Mahata , S. Kim . Long-term and short-term plasticity of Ta2O5/HfO2 memristor for hardware neuromorphic application. J. Alloys Compd., 2021, 850: 156675
CrossRef ADS Google scholar
[41]
A. Saleem , F. M. Simanjuntak , S. Chandrasekaran , S. Rajasekaran , T. Y. Tseng , T. Prodromakis . Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications. Appl. Phys. Lett., 2021, 118(11): 112103
CrossRef ADS Google scholar
[42]
L. Du , Z. Wang , G. Zhao . Novel intelligent devices: Two-dimensional materials based memristors. Front. Phys., 2022, 17(2): 23602
CrossRef ADS Google scholar
[43]
Z. Zhou , F. Yang , S. Wang , L. Wang , X. Wang , C. Wang , Y. Xie , Q. Liu . Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
CrossRef ADS Google scholar
[44]
Y. T. Chan , Y. Fu , L. Yu , F. Y. Wu , H. W. Wang , T. H. Lin , S. H. Chan , M. C. Wu , J. C. Wang . Compacted self-assembly graphene with hydrogen plasma surface modification for robust artificial electronic synapses of gadolinium oxide memristors. Adv. Mater. Interfaces, 2020, 7(20): 2000860
CrossRef ADS Google scholar
[45]
X. Zhao , J. Ma , X. Xiao , Q. Liu , L. Shao , D. Chen , S. Liu , J. Niu , X. Zhang , Y. Wang , R. Cao , W. Wang , Z. Di , H. Lv , S. Long , M. Liu . Breaking the current-retention dilemma in cation-based resistive switching devices utilizing graphene with controlled defects. Adv. Mater., 2018, 30(14): 1705193
CrossRef ADS Google scholar
[46]
J. Lee , C. Du , K. Sun , E. Kioupakis , W. D. Lu . Tuning ionic transport in memristive devices by graphene with engineered nanopores. ACS Nano, 2016, 10(3): 3571
CrossRef ADS Google scholar
[47]
M. Naqi . . Multilevel artificial electronic synaptic device of direct grown robust MoS2 based memristor array for in-memory deep neural network. npj 2D Mater. Appl., 2022, 6: 53
CrossRef ADS Google scholar
[48]
X. Yan , Q. Zhao , A. P. Chen , J. Zhao , Z. Zhou , J. Wang , H. Wang , L. Zhang , X. Li , Z. Xiao , K. Wang , C. Qin , G. Wang , Y. Pei , H. Li , D. Ren , J. Chen , Q. Liu . Vacancy‐induced synaptic behavior in 2D WS2 nanosheet-based memristor for low‐power neuromorphic computing. Small, 2019, 15(24): 1901423
CrossRef ADS Google scholar
[49]
Z. Xie , Y. Duo , Z. Lin , T. Fan , C. Xing , L. Yu , R. Wang , M. Qiu , Y. Zhang , Y. Zhao , X. Yan , H. Zhang . The rise of 2D photothermal materials beyond graphene for clean water production. Adv. Sci. (Weinh.), 2020, 7(5): 1902236
CrossRef ADS Google scholar
[50]
S.ManzeliD.OvchinnikovD.PasquierO.V. YazyevA.Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
[51]
Y. Shi , X. Liang , B. Yuan , V. Chen , H. Li , F. Hui , Z. Yu , F. Yuan , E. Pop , H. S. P. Wong , M. Lanza . Electronic synapses made of layered two-dimensional materials. Nat. Electron., 2018, 1(8): 458
CrossRef ADS Google scholar
[52]
C. Moreno , C. Munuera , S. Valencia , F. Kronast , X. Obradors , C. Ocal . Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. Nano Lett., 2010, 10(10): 3828
CrossRef ADS Google scholar
[53]
D. Liu , N. Wang , G. Wang , Z. Shao , X. Zhu , C. Zhang , H. Cheng . Nonvolatile bipolar resistive switching in amorphous Sr-doped LaMnO3 thin films deposited by radio frequency magnetron sputtering. Appl. Phys. Lett., 2013, 102(13): 134105
CrossRef ADS Google scholar
[54]
D. Liu , H. Cheng , X. Zhu , G. Wang , N. Wang . Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl. Mater. Interfaces, 2013, 5(21): 11258
CrossRef ADS Google scholar
[55]
N. Lee , Y. Lansac , H. Hwang , Y. H. Jang . Switching mechanism of Al/La1−xSrxMnO3 resistance random access memory. I. Oxygen vacancy formation in perovskites. RSC Adv., 2015, 5(124): 102772
CrossRef ADS Google scholar
[56]
K. Szot , W. Speier , G. Bihlmayer , R. Waser . Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater., 2006, 5(4): 312
CrossRef ADS Google scholar
[57]
Z. Hu , Q. Li , M. Li , Q. Wang , Y. Zhu , X. Liu , X. Zhao , Y. Liu , S. Dong . Ferroelectric memristor based on Pt/BiFeO3/Nb-doped SrTiO3 heterostructure. Appl. Phys. Lett., 2013, 102(10): 102901
CrossRef ADS Google scholar
[58]
F. Messerschmitt , M. Kubicek , S. Schweiger , J. L. M. Rupp . Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3−δ bits: The memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater., 2014, 24(47): 7448
CrossRef ADS Google scholar
[59]
Z. H. Shen , W. H. Li , X. G. Tang , J. Hu , K. Y. Wang , Y. P. Jiang , X. B. Guo , An artificial synapse based on Sr(Ti . Co)O3 films. Mater. Today Commun., 2022, 33: 104754
CrossRef ADS Google scholar
[60]
X. Yan , X. Han , Z. Fang , Z. Zhao , Z. Zhang , J. Sun , Y. Shao , Y. Zhang , L. Wang , S. Sun , Z. Guo , X. Jia , Y. Zhang , Z. Guan , T. Shi . Reconfigurable memristor based on SrTiO3 thin-film for neuromorphic computing. Front. Phys., 2023, 18(6): 63301
CrossRef ADS Google scholar
[61]
J. Q. Yang , R. Wang , Z. P. Wang , Q. Y. Ma , J. Y. Mao , Y. Ren , X. Yang , Y. Zhou , S. T. Han . Leaky integrate-and-fire neurons based on perovskite memristor for spiking neural networks. Nano Energy, 2020, 74: 104828
CrossRef ADS Google scholar
[62]
L. Wang , J. Sun , Y. Zhang , J. Niu , Z. Zhao , Z. Guo , Z. Zhang , Y. Shao , S. Sun , X. Jia , X. Han , X. Yan . Ferroelectric memristor based on Li-doped BiFeO3 for information processing. Appl. Phys. Lett., 2022, 121(24): 241901
CrossRef ADS Google scholar
[63]
F.LuoW.M. ZhongX.G. TangJ.Y. ChenY.P. JiangQ.X. Liu, Application of artificial synapse based on all-inorganic perovskite memristor in neuromorphic computing, Nano Mater. Sci., S258996512300003X (2023)
[64]
W.M. ZhongX.G. TangL.L. BaiJ.Y. ChenH.F. DongQ.J. SunY.P. JiangQ.X. Liu A halide perovskite thin film diode with modulated depletion layers for artificial synapse, J. Alloys Compd. 960, 170773 (2023)
[65]
F. Ye , X. G. Tang , J. Y. Chen , W. M. Zhong , L. Zhang , Y. P. Jiang , Q. X. Liu . Neurosynaptic-like behavior of Ce-doped BaTiO3 ferroelectric thin film diodes for visual recognition applications. Appl. Phys. Lett., 2022, 121(17): 171901
CrossRef ADS Google scholar
[66]
W. M. Zhong , X. G. Tang , Q. X. Liu , Y. P. Jiang . Artificial optoelectronic synaptic characteristics of Bi2FeMnO6 ferroelectric memristor for neuromorphic computing. Mater. Des., 2022, 222: 111046
CrossRef ADS Google scholar
[67]
R. Su , R. Xiao , C. Shen , D. Song , J. Chen , B. Zhou , W. Cheng , Y. Li , X. Wang , X. Miao . Oxygen ion migration induced polarity switchable SrFeOx memristor for high-precision handwriting recognition. Appl. Surf. Sci., 2023, 617: 156620
CrossRef ADS Google scholar
[68]
D. A. Lapkin , A. V. Emelyanov , V. A. Demin , V. V. Erokhin , L. A. Feigin , P. K. Kashkarov , M. V. Kovalchuk . Polyaniline-based memristive microdevice with high switching rate and endurance. Appl. Phys. Lett., 2018, 112(4): 043302
CrossRef ADS Google scholar
[69]
D.A. LapkinA.V. EmelyanovV.A. DeminT.S. BerzinaV.V. Erokhin, Spike-timing-dependent plasticity of polyaniline-based memristive element, Microelectron. Eng. 185–186, 43 (2018)
[70]
Y. Gerasimov , E. Zykov , N. Prudnikov , M. Talanov , A. Toschev , V. Erokhin . On the organic memristive device resistive switching efficacy. Chaos Solitons Fractals, 2021, 143: 110549
CrossRef ADS Google scholar
[71]
S. Li , F. Zeng , C. Chen , H. Liu , G. Tang , S. Gao , C. Song , Y. Lin , F. Pan , D. Guo . Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system. J. Mater. Chem. C, 2013, 1(34): 5292
CrossRef ADS Google scholar
[72]
S. Ali , J. Bae , K. H. Choi , C. H. Lee , Y. H. Doh , S. Shin , N. P. Kobayashi . Organic non-volatile memory cell based on resistive elements through electro-hydrodynamic technique. Org. Electron., 2015, 17: 121
CrossRef ADS Google scholar
[73]
V. C. Nguyen , P. S. Lee . Coexistence of write once read many memory and memristor in blend of Poly(3, 4-ethylenedioxythiophene): Polystyrene sulfonate and polyvinyl alcohol. Sci. Rep., 2016, 6(1): 38816
CrossRef ADS Google scholar
[74]
L. P. Ma , J. Liu , Y. Yang . Organic electrical bistable devices and rewritable memory cells. Appl. Phys. Lett., 2002, 80(16): 2997
CrossRef ADS Google scholar
[75]
M. Kano , S. Orito , Y. Tsuruoka , N. Ueno . Nonvolatile memory effect of an Al/2-Amino-4, 5-dicyanoimidazole/Al structure. Synth. Met., 2005, 153(1−3): 265
CrossRef ADS Google scholar
[76]
M. Terai , K. Fujita , T. Tsutsui . Electrical bistability of organic thin-film device using Ag electrode. Jpn. J. Appl. Phys., 2006, 45(4B): 3754
CrossRef ADS Google scholar
[77]
Y. Zhao , W. J. Sun , J. Wang , J. H. He , H. Li , Q. F. Xu , N. J. Li , D. Y. Chen , J. M. Lu . All‐inorganic ionic polymer‐based memristor for high‐performance and flexible artificial synapse. Adv. Funct. Mater., 2020, 30(39): 2004245
CrossRef ADS Google scholar
[78]
J. Li , Y. Qian , W. Li , Y. H. Lin , H. Qian , T. Zhang , K. Sun , J. Wang , J. Zhou , Y. Chen , J. Zhu , G. Zhang , M. Yi , W. Huang . Humidity‐enabled organic artificial synaptic devices with ultrahigh moisture resistivity. Adv. Electron. Mater., 2022, 8(10): 2200320
CrossRef ADS Google scholar
[79]
Y. Park , J. S. Lee . Artificial synapses with short- and long-term memory for spiking neural networks based on renewable materials. ACS Nano, 2017, 11(9): 8962
CrossRef ADS Google scholar
[80]
W. M. Zhong , C. L. Luo , X. G. Tang , X. B. Lu , J. Y. Dai . Dynamic FET-based memristor with relaxor antiferroelectric HfO2 gate dielectric for fast reservoir computing. Mater. Today Nano, 2023, 23: 100357
CrossRef ADS Google scholar
[81]
E. Choi , A. Schuetz , W. F. Stewart , J. Sun . Using recurrent neural network models for early detection of heart failure onset. J. Am. Med. Inform. Assoc., 2017, 24(2): 361
CrossRef ADS Google scholar
[82]
W. Maass , T. Natschläger , H. Markram . Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput., 2002, 14(11): 2531
CrossRef ADS Google scholar
[83]
G. Zhang , Z. Y. Xiong , Y. Gong , Z. Zhu , Z. Lv , Y. Wang , J. Q. Yang , X. Xing , Z. P. Wang , J. Qin , Y. Zhou , S. T. Han . Polyoxometalate accelerated cationic migration for reservoir computing. Adv. Funct. Mater., 2022, 32(45): 2204721
CrossRef ADS Google scholar
[84]
C. Du , F. Cai , M. A. Zidan , W. Ma , S. H. Lee , W. D. Lu . Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun., 2017, 8(1): 2204
CrossRef ADS Google scholar
[85]
G. Milano , G. Pedretti , K. Montano , S. Ricci , S. Hashemkhani , L. Boarino , D. Ielmini , C. Ricciardi . In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater., 2022, 21(2): 195
CrossRef ADS Google scholar
[86]
A. N. Matsukatova , N. V. Prudnikov , V. A. Kulagin , S. Battistoni , A. A. Minnekhanov , A. D. Trofimov , A. A. Nesmelov , S. A. Zavyalov , Y. N. Malakhova , M. Parmeggiani , A. Ballesio , S. L. Marasso , S. N. Chvalun , V. A. Demin , A. V. Emelyanov , V. Erokhin . Combination of organic‐based reservoir computing and spiking neuromorphic systems for a robust and efficient pattern classification. Adv. Intell. Syst., 2023, 5(6): 2200407
CrossRef ADS Google scholar
[87]
N.V. PrudnikovV.A. KulaginS.BattistoniV.A. DeminV.V. ErokhinA.V. Emelyanov, Polyaniline‐based memristive devices as key elements of robust reservoir computing for image classification, Phys. Status Solidi A 220(11), 2200700 (2023)
[88]
A.A. KorolevaD.S. KuzmichevM.G. KozodaevI.V. ZabrosaevE.V. KorostylevA.M. Markeev, CMOS-compatible self-aligned 3D memristive elements for reservoir computing systems, Appl. Phys. Lett. 122(2), 022905 (2023)
[89]
L. Appeltant , M. C. Soriano , G. Van der Sande , J. Danckaert , S. Massar , J. Dambre , B. Schrauwen , C. R. Mirasso , I. Fischer . Information processing using a single dynamical node as complex system. Nat. Commun., 2011, 2(1): 468
CrossRef ADS Google scholar
[90]
L. Appeltant , G. Van der Sande , J. Danckaert , I. Fischer . Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep., 2014, 4(1): 3629
CrossRef ADS Google scholar
[91]
Y. Zhong , J. Tang , X. Li , B. Gao , H. Qian , H. Wu . Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun., 2021, 12(1): 408
CrossRef ADS Google scholar
[92]
Y.ZhongJ.TangX.LiX.LiangZ.LiuY.LiY.XiP.YaoZ.HaoB.GaoH.QianH.Wu, A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing, Nat. Electron. 5(10), 672 (2022)
[93]
X. Zhu , Q. Wang , W. D. Lu . Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
CrossRef ADS Google scholar
[94]
Y. Yang , H. Cui , S. Ke , M. Pei , K. Shi , C. Wan , Q. Wan . Reservoir computing based on electric-double-layer coupled InGaZnO artificial synapse. Appl. Phys. Lett., 2023, 122(4): 043508
CrossRef ADS Google scholar
[95]
L. Jaurigue , K. Lüdge . Connecting reservoir computing with statistical forecasting and deep neural networks. Nat. Commun., 2022, 13(1): 227
CrossRef ADS Google scholar
[96]
E. Bollt . On explaining the surprising success of reservoir computing forecaster of chaos? The universal machine learning dynamical system with contrast to VAR and DMD,. Chaos, 2021, 31(1): 013108
CrossRef ADS Google scholar
[97]
L. Gonon , J. P. Ortega . Reservoir computing universality with stochastic inputs. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(1): 100
CrossRef ADS Google scholar
[98]
A. G. Hart , J. L. Hook , J. H. P. Dawes . Echo State Networks trained by Tikhonov least squares are L2(μ) approximators of ergodic dynamical systems. Physica D, 2021, 421: 132882
CrossRef ADS Google scholar
[99]
D. J. Gauthier , E. Bollt , A. Griffith , W. A. S. Barbosa . Next generation reservoir computing. Nat. Commun., 2021, 12(1): 5564
CrossRef ADS Google scholar
[100]
K. Ren , W. Y. Zhang , F. Wang , Z. Y. Guo , D. S. Shang . Next-generation reservoir computing based on memristor array. Acta Physica Sinica, 2022, 71(14): 140701
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11574057 and 12172093) and the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515012607).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(12663 KB)

Accesses

Citations

Detail

Sections
Recommended

/