STCF conceptual design report (Volume 1): Physics & detector

M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo

Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 14701.

PDF(18750 KB)
Front. Phys. All Journals
PDF(18750 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 14701. DOI: 10.1007/s11467-023-1333-z
REPORT
REPORT

STCF conceptual design report (Volume 1): Physics & detector

Author information +
History +

Abstract

The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.

Graphical abstract

Keywords

electron−positron collider / tau-charm region / high luminosity / STCF detector / conceptual design

Cite this article

Download citation ▾
M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo. STCF conceptual design report (Volume 1): Physics & detector. Front. Phys., 2024, 19(1): 14701 https://doi.org/10.1007/s11467-023-1333-z

1 Introduction

The ability to freely manipulate electromagnetic waves or light waves, an important carrier of energy and information, has always been a hot research topic. However, most optical media and systems exhibit coupled transmission and the reflection performances, and their amplitude and phase of transmission/reflection waves are also interdependent. Tuning one or more parameters of an optical medium or configuration usually leads to simultaneous changes in the power, amplitude and phase of the transmission and reflection waves, which limits the degree of freedom in optical manipulation and the information capacity of light. Recently, to overcome this bottleneck, some composite metasurfaces have been developed, which consist of arrays of artificial microstructures that can manipulate light in both transmission and reflection spaces [14], and even achieve simultaneous control of phase and amplitude [5, 6].However, these metasurfaces are usually composed of large numbers of complex microstructures. To achieve specific functions, it is inevitable to adjust numerous unit cells. Moreover, the characteristics of most metasurfaces are geometrically dependent, which pose a challenge for integration.
On the other hand, epsilon-near-zero media (ENZ) have attracted much interest due to their robust optical characteristics against geometric transformations [710]. In ENZ, the vanishing permittivity leads to a near-zero wavenumber, a wavelength much greater than its scale and the out-of-plane magnetic fields static in space. These features enable the control of the radiating direction [11, 12], phase distribution [13, 14], transmission performance [15, 16], and energy distribution [17] of light. More interestingly, ENZs exhibit extremely stable transmission performance irrespective of their geometric shape for TM polarized waves [15]. The spatially static magnetic fields also enable the photonic doping effect of ENZ such that the optical properties of the whole structure are tunable through one or few macroscopic dopants embedded in any position of the ENZ host [1836]. These unconventional features make doped ENZs useful for engineering applications enabling the design of various doped-ENZ-based devices [37], such as power divider [38], antenna [12, 39], and filter [40]. Recently, increasing researchers are interested in non-Hermitian photonic doping ENZ with tailored loss and/or gain. With the introduction of optical non-Hermiticity in some components, the reconfigurability of doped ENZ is significantly improved [41], which brings more interesting effects, such as the enhancement of optical attenuation or amplification [42], coherent absorption [43, 44], and nonreciprocal transmission [42, 45]. Doping of ENZ provides a more convenient way for optical manipulation. Optical devices based on doped ENZ are convenient for integration and are expected to be applied in more fields, for their relatively simple structures and geometrically insensitive optical properties. However, out-of-plane fields with a constant amplitude in ENZ further intensify the correlation among the power, amplitude and phase of transmission and reflection waves.
Inspired by composite metasurfaces, we propose a novel method to break the correlation between the transmission and reflection waves of non-Hermitian doped ENZ by inserting a narrow dielectric slit. We demonstrate that both the amplitude and phase of both the reflection and transmission waves can be tuned independently through few dopants. Utilizing the amplification effect of loss or gain of dopants induced by resonance [42, 43], the adjustable range increases significantly. Moreover, we show that our method can be exploited to design a highly reconfigurable reflectionless signal distributor and generator based on a three-port doped ENZ waveguide structure.

2 Theories and analyses

We investigate the scattering properties of an arbitrarily shaped ENZ structure connecting two ports, as shown in Fig.1(a). The structure consists of two ENZ regions (region 1 and region 2 with cross areas A1 and A2 respectively) separated by a dielectric slit with width ws, thickness d and relative permittivity εs. The ENZ regions are connected to two ports with the same width wp and relative permittivity εp. Each ENZ region contains a cylindrical dopant j (j=1,2) with radius Rj and relative permittivity εj to control the reflection and transmission performance of the structure. The dopants are nonmagnetic and may exhibit dielectric loss or gain. The structure is bounded by perfect electric conductor (PEC) walls. We assume that a transverse magnetic polarized (TM) plane wave with angular frequency ω normally incident from the input port (the left port). If the time factor eiωτ is omitted, the magnetic field inside the input port, the slit and the output port (the right port) are expressed as
Fig.1 (a) Diagrammatic sketch of the doped ENZ structure with two ports. (b) Diagram of the solutions of m1 on the complex plane for a given reflectance R when the transmission coefficient is fixed as t0. (c) Diagram of the solutions of m1 and corresponding m2 on the complex plane for a given transmittance T when the reflection coefficient is fixed as r0.

Full size|PPT slide

Hi=H0(eikpx+reikpx)ez,
Hs=H0[aeiks(xl1)+beiks(xl1)]ez,
Ho=H0teiko(xl1dl2)ez,
where kp=εpk0 and ks=εsk0 are wavenumbers in the two ports and the slit, respectively; k0=ω/c is the angular wavenumber in vacuum; and c is the velocity of light in vacuum; H0 is the complex amplitude of the incident wave. t and r are the transmission coefficient and the reflection coefficient of the doped ENZ respectively. a and b are the complex amplitudes of the forward and backward waves in the slit normalized by H0. Correspondingly, the electric fields in these regions are derived from iωεE=×H as
Ei=z0zpH0(eikpxreikpx)ey,
Es=z0zsH0[aeiks(xl1)beiks(xl1)]ey,
Eo=z0zpH0teiko(xl1dl2)ey.
zp=1/εp and zs=1/εs are the relative impedances of the two ports and the slit, respectively, and z0 is the impedance in vacuum. We can calculate r, a, b, t from continuous boundary condition and the integral form of Faraday’s law of electromagnetic induction as M(r,a,b,t)T=(1,1,0,0)T where
M=(11101αim1αim100D+D10αD+αD1im2);
α=zsws/zpwp, D±=e±ksd and mj=k0μeffjAj/(zpwp). Here the homogenized effective magnetic permeability μeffj is calculated with μeffj=1πRj2/Aj+2πRjJ1(εdjk0Rj)/[Ajεdjk0J0(εdjk0Rj)] according to the theory of photonic doping [18], which is commonly used to describe the transmission and reflection properties of doped ENZs. However, μeffj alone is not enough to capture the effects of other physical quantities that influence the transmission and reflection properties, such as Aj, wp, zp, and k0. Therefore, we adopt the dimensionless parameter mj that combines μeffj and these quantities in a simple way. This parameter can characterize the ENZ region j more comprehensively and simplify our analysis. It is easy to see that mj dominates both the transmission and reflection performance of the ENZ in region j. In this work, we name mj as the transmission-reflection main control (TRMC) parameter of the ENZ in region j, and use mj as the variable to describe the ENZ in region j. We can obtain expressions for the reflection coefficient r and the transmission coefficient t as a function of m1 and m2, by inverting matrix M. The correlation between r and t depends on their Jacobian determinant calculated by
det[(r,t)(m1,m2)]=4γ2(zpwpzsws)3[m2(ηi)]det3(M),
where det(M)=2iαγ[η(m1+m2+2i)(m1+i)(m2+i)+α2], γ=sin(ksd)/α and η=αcot(ksd). When ksdnπ (n=0,±1,±2,), m2ηi and det(M) is convergent or both |det(M)|3 and |γ2(m2ηi)| are small quantities of the same order, the Jacobian determinant is nonzero, which means r and t are independent. When t is fixed as t0, r can be expressed as a univalent complex function of m1 or m2
r=m1(η+γ1t0+i)m1(ηi)=γt0[m2(ηi)]1.
On the complex plane of m1, there are a zero point at ηγ1t0+i and a pole point at ηi of the reflection coefficient r. This means that the reflection wave disappears when m1=ηγ1t0+i and diverges when m1=ηi. The transmission coefficient t0 determines the location of the reflection zero point, but not the unique value of reflection coefficient r. Fig.1(b) shows the diagram of how r varies with m1. We represent r as the negative ratio of the vector rn and rd, where rn is the vector from the zero point to m1 and rd is the vector from the pole point to m1. Any reflectance R=|r|2 from near zero to near infinity is achievable by tuning m1. Accordingly, to ensure the permanent t0, m2 should also be tuned to meet Eq. (5). On the complex plane of m2, the zero point maps to η+1/γt0i which is also determined by t0. The pole point maps to the point of infinity. Based on the resonance properties of dopants, a wide range of TRMC parameters m1 and m2, including near-infinite values, is available by doping the proper materials with low loss or gain. In this way, without affecting the transmission coefficient t0, the reflectance is broadly tunable from near zero to near infinity by adjusting the parameters of the dopants embedded in both ENZ regions unless the zero point and the pole point coincide or both are at infinity. Both the transmission and reflection waves of the doped ENZ structure can be controlled independently. Fig.1(b) also illustrates that the contour of the amplitude of any reflection coefficient |r| (0 or ) forms an Apollonius circle around the zero point or the pole point of r. The reflection phase φr=θnθd is represented as the angle between vectors rn and rd. When m1 moves along a contour of |r|, φr changes from π to π. We can achieve any reflection phase for any given |r|. The argument principle also supports this interpretation. Thus, the correlation between the amplitude and phase of the reflection wave is broken.
Similarly, for a determined reflection coefficient r=r0, t is a univalent complex function of m1 or m2
t=γ(1+r0)[m1(η+κi)]=1+r0γ[m2(ηi)],
where κ=(1r0)/(1+r0). On the complex plane of m1, the transmission coefficient t vanishes at η+κi and diverges at the point of infinity. While, if t is expressed as a function of m2, it vanishes at the point of infinity and diverges at ηi. The reflection coefficient r0 affect the location of the transmission zero point but it does not determine t uniquely. As illustrated in Fig.1(c), on the plane of m1, the contour of constant amplitude |t| (0 or ) forms a circle with the zero point as the center and a radius proportional to |t|. On the plane of m2, the corresponding contour mapped by Eq. (6) forms another circle with the pole point as the center and a radius inversely proportional to |t|. Based on the resonance effect, it is not difficult to obtain the TRMC parameter m1 or m2 with a value close to infinity by doping. Hence, when the reflection coefficient is fixed, the transmittance T=|t|2 can also be tailored in a wide range from near zero to near infinity in theory. Meanwhile, the argument principle also enables the full angle tunability of the transmission phase φt for any given non-zero and non-divergent |t|. From the perspective of vector geometry in Fig.1(c), φt is related to φv(φv), which is the angle of the vector from the zero (pole) point to the corresponding contour of |t|. They satisfy φv=π+φtArg(1+r0). When r0 and |t| are determined, φt can be tuned in any angle by changing φv. Therefore, the amplitude and the phase of transmission wave are no longer interrelated.
We further discuss the physical mechanism behind the decoupling of transmission and reflection. The incident and reflection waves superpose in ENZ region 1, which means the reflected waves depend on the magnetic field in ENZ region 1. Moreover, the transmitted wave is determined by the magnetic field in ENZ region 2. The magnetic fields in the two ENZ regions interact through the dielectric slit between them. The modes of magnetic fields in the dielectric slit paly a critical role in the correlation between the transmitted and reflected waves. If the single-pass phase shift in the slit satisfies ksd=nπ (n=0,±1,±2,), the magnetic fields in the slit and two ENZ regions are symmetric or antisymmetric with respect to the central axis of the slit, which cannot be changed by any photonic doping. Such symmetry of magnetic modes requires the transmission and reflection coefficients to be rigidly constrained by 1+r=±t. Of course, this covers the case of n=0 in which no slits are introduced in the doped ENZ. Thus, the coupling of transmission and reflection waves of a doped ENZ mainly originates from the symmetry of magnetic fields between the input and output ports. Reasonably, introducing the dielectric slit whose parameters satisfy ksdnπ is an effective way to break this symmetry of magnetic fields. In addition, non-Hermitian dopants embedded in ENZ regions also play an important role in the decoupling of transmission and reflection, because they can overcome the other limitation for transmission and reflection waves brought by the law of energy conservation. Furthermore, these non-Hermitian dopants provide enough degrees of freedom to tune both the amplitude and phase of both transmission and reflection waves. Hence, we achieve the decoupling of transmission and reflection in the ENZ structure by introducing a proper dielectric slit and non-Hermitian dopants. The desired transmission and reflection waves can be obtained simultaneously through in proposed structure as demonstrated in Fig.1(b) and (c).
Nevertheless, there are some noteworthy cases in which the decoupling of transmission and reflection is not valid, other than ksd=nπ. Firstly, when m2=ηi, the zero point and the pole point of the reflection coefficient coincide. In this case, the transmission and reflection coefficients are fixed as 2iγ and −1 respectively regardless of m1. This means that the magnetic field always vanishes in ENZ region 1 and the photonic doping effect in ENZ region 1 is completely invalid. This strange phenomenon is caused by the reflection features of gain-based ENZ in region 2. The reflection wave from ENZ region 2 is amplified to match the amplitude of the corresponding incident wave. Coincidentally, its reflection phase cancels out the round-trip phase shift in the slit and produces an extra phase shift of π. These lead to destructive interference of light in ENZ region 1, irrespective of the properties of ENZ region 1. Secondly, the transmission-reflection decoupling makes sense only when both r and t are convergent. From Eqs. (3), (5), and (6) we can easily prove that divergent r will result in the divergent t0, and divergent t will lead to the divergent r0. In fact, the divergence of r and t corresponds precisely to the laser mode induced by the constructive interference of multiple reflected and amplified waves in non-Hermitian optical media [4650].

3 Results and discussion

3.1 Reconfigurability of reflection wave without transmission

We numerically analyze two specific cases in the section: near-zero transmission and near-zero reflection. First, we investigate how reflection wave of the structure can be reconfigured when the transmittance vanishes. According to Eq. (5), the reflection coefficient r depends on the divergence of TRMC parameters m1 and m2 when t0 tends to zero. If m2 is convergent, m1 must be divergent and r=1. ENZ region 1 acts as a perfect magnetic conductor. If m2 diverges, the reflection zero point η+i and the pole point ηi are symmetrical with respect to the real axis. We assume the following parameters: wp=λ0, ws=2λ0, d=0.1λ0, A1=2.5048λ02, A2=2.4411λ02, R1=R2=0.35λ0, and εs=1. To block the transmission wave, the permittivity of dopant 2 is set to close to a state of resonance reflection. In our calculation, εd2=1.196 gives a large m2=12122. Fig.2(a) and (b) show the calculation results of the reflectance and the transmittance as a function of the real part εd1 and the imaginary part εd1 (the loss factor) of the relative permittivity of dopant 1. The reflectance varies continuously from 6.11×109 to 1.64×108 with εd1 and εd1. In our calculation domain, there is a reflection zero point and a reflection pole point symmetrically distributed on both sides of the real axis. In the most cases, waves are prevented from transmitting through the output port. When εd1 approaches the reflection pole point, the transmittance increases to 12.89. As parameters get close to satisfying the laser mode condition, the resonant dopant 2 cannot block the transmission wave effectively, but the transmittance is still negligible compared with the reflectance. Hence, we obtain a wide range of reflectance from near-zero to near-infinity by adjusting dopant 2 with the near-zero transmittance. Moreover, Fig.2(c) shows the distribution of the reflection phase near some specific reflectance values including 103,102,101,1,101,102 and 103, which demonstrate the reconfigurability of the reflection phase. Any determined reflectance with any reflection phase is achievable by choosing the proper combination of εd1 and εd1. We chose two values of the relative permittivity of dopant 1 close to the zero point εd1=6.485+0.017i and the pole point εd1=6.4850.017i to conduct simulations using COMSOL Mutiphysics, as shown in Fig.3. When the transmission wave is blocked, the zero reflection means that the energy of the incident wave is totally absorbed, as shown by the magnetic field distribution illustrated in Fig.3(a). Fig.3(b) plots the amplitude of the magnetic fields distributed along the gray dashed line in (a). Clearly, in the input port, the incident wave with amplitude H0 is almost unaffected, which means that there are almost no reflection waves in the doped ENZ structure. Meanwhile, in the other port, the amplitude of the transmission wave is less than 0.001H0. When εd1=6.4850.017i, the reflection wave is amplified to about 101H0, which interferes with the incident wave. Because the amplitude of the reflection wave is much greater than that of the incident wave, the interference effect is not significant [Fig.3(c) and (d)]. Although the amplitude of the transmission wave is enhanced to 0.028H0, the impact is still trivial. By changing the permittivity of dopant 1, we achieved perfect absorption and amplified reflection waves with near-zero transmission.
Fig.2 Calculation results of (a) reflectance R and (b) transmittance T versus the real part of the relative permittivity of dopant 1 εd1 and the imaginary part of the relative permittivity of dopant 1 εd1 when εd2=1.196. (c) Calculation results of the reflection phase for R=103±4×105, R=102±2×104, R=101±1×103, R=1±1×102, R=101±1×101, R=102±2 and R=103±4×101.

Full size|PPT slide

Fig.3 (a) Simulation results of the distribution of magnetic fields in the ENZ structure for perfect absorption. (b) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (a). (c) Simulation results of the distribution of magnetic fields in the ENZ structure for amplified reflection with extremely low transmission. (d) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (c).

Full size|PPT slide

3.2 Reconfigurability of transmission wave without reflection

Next, we numerically analyze how the transmission wave can be reconfigured without reflection. To obtain the near-zero reflectance, dopants in both regions should be tuned to satisfy [m1(η+i)][m2(ηi)]=γ2, which is different from the case of near-zero transmission. In Fig.4(a), we calculated the transmittance of the doped ENZ structure as a function of εd1, T(εd1), when the reflectance is close to zero. We use the same parameters as in Fig.2 and Fig.3 except for the permittivity of dopants. In the calculation domain, T(εd1) is tunable in a wide range. The transmission zero point is near εd1=6.485+0.017i, which agrees with the above calculation for the case of εd2=1.196. Due to the resonance effect of dopant 1, the transmission pole point is mapped from the infinity point of m1 to a point on the real axis of εd1 near 6.301. Correspondingly, if we express the reflectionless transmittance as a function of εd2, the transmission zero point is mapped to near εd2=6.301 and the pole point is mapped to near εd1=6.4920.019i, as shown in Fig.4(b). Near the transmission pole point, T(εd2) varies more sharply than T(εd1), which requires a higher accuracy for εd2. In contrast, near the transmission zero point, T(εd2) varies more gently than T(εd1), which means that εd1 must be more accurate. Fig.5(a) and (b) show the simulation results of the amplification of the transmission wave with extremely low reflection. We choose εd1=6.2020.046i to obtain T(εd1)=71.24. Based on T(εd1)=T(εd2) and φt(εd1)=φt(εd2), we find the corresponding dopant 2 with εd2=6.5000.0175i from the calculation results. The simulated amplitude of the transmission wave is approximately 8.45H0, which matches the calculation results. The reflection wave is effectively suppressed. We implement a cascadable signal amplifier that can be useful for signal processing using the doped ENZ structure. As a result, the transmittance and reflectance are decoupled, which allows the transmittance to be tuned in a very broad range by adjusting two dopants while maintaining a negligible reflectance.
Fig.4 Calculation results of the transmittance T versus (a) the real part and imaginary part of the relative permittivity of dopant 1 and (b) that of dopant 2 for reflectance R=0. (c) Distributions of phase as a function of the real part and imaginary part of the relative permittivity of dopant 1 depicted by the red coordinate system and that of dopant 2 depicted by the blue coordinate system when the transmittance T=1±0.01.

Full size|PPT slide

Fig.5 (a) Simulation results of the distribution of magnetic fields in the ENZ structure for the amplified transmission with extremely low reflection. (b) The corresponding distribution of the amplitude of magnetic fields along the gray dashed line in (a). Simulation results of the distribution of magnetic fields in the ENZ structure for the reflectionless total transmission with (c) near-zero phase advance and (d) a π-phase advance.

Full size|PPT slide

In addition, for any given transmittance other than the zero point and the pole point in the calculation domain, all the conforming εd1 and corresponding εd2 are respectively on a curve enclosing the zero or the pole point. On any curve with a constant T, different values of εd1 or εd2 indicate different transmission phases. In Fig.4(c), we show the calculation results of the transmission phase as a function of εd1, φt(εd1), and that of εd2, φt(εd2), when T1 with R0. One can obtain any transmission phase ranging from π to π by simultaneously tuning εd1 and εd2. For example, when we want the transmission wave to be in phase with the incident wave, we find from the calculation results that we need εd1=6.441+0.0099i and εd2=6.4460.0105i. Conversely, if we want the transmission wave to be out of phase with the incident wave, we need εd1=6.568+0.036i and εd2=6.5830.040i. Fig.5(c) and (d) demonstrate the simulation results of magnetic field of the ENZ structure when the transmission wave is in and out of phase with the incident wave respectively. By proper doping, reflectionless total transmission with the expected phase is obtained. These results show that the amplitude and the phase of the transmission wave are also decoupled.
Specifically, in our calculation domain, we notice that there are two time-reversal symmetric reflectionless total transmission modes where both dopants are pure dielectric with εd1=6.444, εd2=6.448 (m1=m2=0.47) or εd1=6.567, εd2=6.582 (m1=m2=5.99). They are two discrete resonance total transmission modes formed by destructive interference of multiple reflection waves [35]. Other reflectionless total transmission modes without time-reversal symmetry, in addition to the interference effect, involves energy exchanges due to the balanced loss and gain of dopants, which requires m1 and m2 to be PT symmetrical [42, 45, 46]. In our calculations, the difference between εd1 and εd2 is compensated by the geometric asymmetry. The total transmission modes induced by resonance can be regarded as some special cases of the PT symmetrical total transmission. In the non-Hermitian system, reflectionless total transmission modes degenerated by their transmission phases are continuous, which can be extended to other reflectionless modes with any fixed transmittance. Due to the periodicity of the resonance states of electromagnetic fields in dopants, these continuous modes will recur outside our calculation domains.

4 Applications in reflectionless signal distributor and generator

One can generalize the principle of transmission-reflection decoupling and the reconfigurability of amplitudes and phases to structures of doped ENZ with multiple ports. Since the number of ports does not affect its physical essence, we expect that the S-parameters of non-Hermitian doped ENZ with multiple ports will be uncorrelated and reconfigurable in their amplitude and phase when several slits are introduced. To demonstrate this, we propose a scheme to realize a highly reconfigurable signal distributor and generator using a structure of non-Hermitian doped ENZ with slits as illustrated in Fig.6(a). The structure is composed of three ENZ regions labeled by j=1,2,3. They are separated by two slits. Each ENZ region contains a dopant and connects to a port. Port 1 connecting to region 1 is the input port. Ports 2 and 3 connecting to regions 2 and 3 are two output ports. S11 denotes the reflection coefficient. S21 and S31 are the transmission coefficients of ports 2 and 3 respectively. According to the universal expression of S-parameters of doped ENZ with multiple ports and slits [36]. We find that when the reflection coefficient S11=0, the two transmission coefficients can be simplified into a very concise form similar to Eq. (6):
Fig.6 Plane (a) and three-dimensional (b) diagrammatic sketch of the highly reconfigurable reflectionless signal distributor and generator. Simulation results of the magnetic field distribution in the signal distributor and generator when (c) the power of the incident wave is equally distributed into two output ports with opposite transmission phases, (d) when the incident wave is totally distributed into one output port with φ21=π/2 and (e) when the incident wave is amplified in one output port and decayed in another output port with the same phase.

Full size|PPT slide

Sj1=1γj[mj(ηji)],j=2,3,
with
m1=ij=23[(mj+i)cos(ksjdj)]+zsjwsjzp1wp1sin(ksjdj),
where mj=k0μeffjAj/(zpjwpj); μeffj and Aj are the effective permeability and the cross-sectional area of ENZ region j, respectively; zpj and wpj are the relative impedance and the width of port j, respectively; zsj, ksj, wsj and dj are the relative impedance, wavenumber, width and thickness of the slit between regions 1 and j, respectively; γj=zpjwpjsin(ksjdj)/(zsjwsj); η=zsjwsjcot(ksjdj)/(zpjwpj). Since these ports and slits are nonmagnetic, their relative permittivites are εpj=zpj2 and εsj=zsj2, respectively. The dopant in region j, dopant j with relative permittivity εdj, exhibits a circular cross section with the radius Rj. As shown in Eq. (7a), the transmission coefficient Sj1 is expressed as a univalent function of mj. One can obtain any designed transmission coefficients S21 and S31 by choosing suitable dopants 2 and 3 respectively, and then find a matched dopant 1 to eliminate the reflection wave according to Eq. (7b). The incident wave can be split, amplified, decayed and phase shifted by any means with near-zero reflection through the signal distributor and generator.
Further, we construct this ENZ-based signal distributor and generator through several interconnected three-dimensional metal waveguides that work at TE10 mode [18, 3234], as shown in Fig.6(b). The top metal wall of the waveguide structure is removed. The effective relative permittivity for TE10 mode is εeff=εf(cπ/ωh)2, where εf is the relative permittivity of the filler and h is the height of the waveguide. We fill the three irregular-shaped regions with air (εf=1) and set the height and frequency to satisfy cπ/(ωh)=1, creating lossless ENZ host media at the cutoff frequency of TE10 mode. We also fill media with relative permittivities εpj+1, εsj+1 and εdj+1 in corresponding regions of ports, slits and dopants, respectively, to achieve the desired effective relative permittivities εpj, εsj and εdj for TE10 mode. To prevent higher order modes from interfering, some thin metal rods are inserted near interfaces between different media.
We numerically simulate three cases with different transmission requirements of the signal distributor and generator constructed by the TE10 waveguide structure using the following parameters: wp1=wp2=wp3=λ0, where λ0 is the working wavelength in vacuum; ws2=ws3=1.2λ0; d1=d2=0.1λ0; h=cπ/ω=0.5λ0; R1=R2=R3=0.4λ0; A1=2.986λ02; A2=A3=1.667λ02; zp1=zp2=zp3=zs2=zs3=1; ks2=ks3=k0. We use PECs to simulate metal sidewalls of the waveguide structure and introduce a total of 104 thin PEC rods with cross section area 7.854×105λ02 near interfaces between different media. In the first case, we split the incident wave into two output ports with equal power and opposite phases. We achieve this by using εd2=4.9910.014i and εd3=5.1400.0507i for dopants 2 and 3, and εd1=4.951+0.0081i for dopant 1 to eliminate reflection. Fig.6(c) shows the simulated magnetic field distribution for this case. The transmission waves in ports 2 and 3 have the same amplitude 2H0 where H0 is the incident wave amplitude. The phase difference between port 1 and port 2 is zero, while the phase difference between port 1 and port 3 is π. Meanwhile, there almost no reflection from port 1. In the second case, we want total transmission through port 2 with a phase shift φ21=π/2, no transmission through port 3 and no reflection through port 1. We achieve this by using εd1=4.9510.0084i, εd2=5.042+0.0251i and εd3=4.824 for dopants 1, 2 and 3. Such function is demonstrated by the simulated magnetic field distribution in Fig.6(d). Interestingly, by choosing proper dopants, the structure can even generate an amplified and a decayed reflectionless transmission signal simultaneously. In the third case, we amplify the incident wave in port 2 and decay it in port 3. By using dopants 1, 2 and 3 with εd1=4.9230.0049i, εd2=5.0150.0183i and εd3=4.9930.0143i, the amplitude of the transmission wave in port 2 is amplified to 1.5H0 and that in port 3 decays to 0.75H0 [Fig.6(e)]. In port 1, the reflection wave is also blocked effectively. The designed signal distributor and generator exhibits ultrahigh reconfigurability and potential applications in transmission and processing of optical signals.

5 Conclusion

We have demonstrated a novel way of manipulating optical waves by exploiting the properties of non-Hermitian doped ENZ structures with slits. We have shown that a dielectric slit in the ENZ structure can break the correlation between the transmission and reflection waves and allows us to control their amplitude and phase independently by adjusting the permittivity of few dopants. We have achieved various optical effects such as perfect absorption, high-gain reflection without transmission, reflectionless high-gain transmission and total transmission with phase modulation, by choosing appropriate values of permittivity with tailored low loss or gain for dopants. We have also extended our approach to doped ENZ structures with multiple slits and ports, and designed a highly reconfigurable and reflectionless signal distributor and generator based on a three-port ENZ waveguide structure. This device can distribute, amplify and phase-shift the incident wave in any desired way, which is useful for various applications such as optical communication and signal processing. Our work overcomes the restrictions of doped ENZ imposed by the correlation between the transmission and reflection waves as well as that between amplitudes and phases for freer optical manipulation, opening up a new avenue for designing novel optical devices based on non-Hermitian doped ENZ structures.

References

[1]
L.H. HoddesonL.BrownM.Riordan M.Dresden (Eds.), The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)
[2]
G. S. Abrams. . The mark-II detector for the SLC. Nucl. Instrum. Meth. A, 1989, 281 : 55
CrossRef ADS Google scholar
[3]
D. Bernstein. . The mark-III spectrometer. Nucl. Instrum. Meth. A, 1984, 226 : 301
CrossRef ADS Google scholar
[4]
J. E. Augustin. . Dm2: A magnetic detector for the Orsay storage ring DCI. Phys. Scripta, 1981, 23 : 623
CrossRef ADS Google scholar
[5]
D.Asner (CLEO), The CLEO-c research program, AIP Conf. Proc. 722, 82 (2004), arXiv: hep-ex/0312034
[6]
J. Z. Bai. . The BES detector. Nucl. Instrum. Meth. A, 1994, 344 : 319
CrossRef ADS Google scholar
[7]
J. Z. Bai. . Measurement of the mass of the tau lepton. Phys. Rev. Lett., 1992, 69 : 3021
CrossRef ADS Google scholar
[8]
M.Ablikim. (BESIII), ., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076
[9]
J.Z. Bai. (BES), ., Measurements of the cross section for e+e → Hadrons at center-of-mass energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
[10]
J. Z. Bai. . Evidence for the leptonic decay Dμνμ. Phys. Lett. B, 1998, 429 : 188
CrossRef ADS Google scholar
[11]
J.Z. Bai. (BES), ., Observation of a near-threshold enhancement in the p p ¯ mass spectrum from radiative J/ψγ pp ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006
[12]
M.Ablikim. (BES), ., Observation of a resonance X(1835) in J/ψγπ+πη', Phys. Rev. Lett. 95, 262001 (2005), arXiv: hep-ex/0508025
[13]
M.Ablikim. (BESIII), ., Spin-parity analysis of pp ¯ mass threshold structure in J/ψ and ψ(3686) radiative decays, Phys. Rev. Lett. 108, 112003 (2012), arXiv: 1112.0942
[14]
M.Ablikim. (BESIII), ., Observation of an anomalous line shape of the η' π+π mass spectrum near the p p ¯ mass threshold in J/ψγη' π+π, Phys. Rev. Lett. 117, 042002 (2016), arXiv: 1603.09653
[15]
M.Ablikim. (BES), ., The sigma pole in J/ψωπ+π, Phys. Lett. B 598, 149 (2004), arXiv: hep-ex/0406038
[16]
M.Ablikim. (BES), ., Observation of charged κ in J/ψK*(892) Ksπ±, K*(892)Ksπ at BESII, Phys. Lett. B 698, 183 (2011), arXiv: 1008.4489
[17]
C.-A.Zhang, in: 32nd International Conference on High Energy Physics (2004), pp 993–997
[18]
M.Ablikim. (BESIII), ., Design and construction of the BESIII detector, Nucl. Instrum. Meth. A 614, 345 (2010), arXiv: 0911.4960
[19]
M.Ablikim. (BESIII), ., Observation of an isoscalar resonance with exotic JPC = 1−+ quantum numbers in J/ψγηη', Phys. Rev. Lett. 129, 192002 (2022), arXiv: 2202.00621 [hep-ex]
[20]
M.Ablikim. (BESIII), ., Partial wave analysis of J/ψγηη', Phys. Rev. D 106, 072012 (2022), arXiv: 2202.00623 [hep-ex]
[21]
D. Horn, J. Mandula. A model of mesons with constituent gluons. Phys. Rev. D, 1978, 17 : 898
CrossRef ADS Google scholar
[22]
M.Ablikim. (BESIII Collaboration), ., Observation of a state X(2600) in the π+πη' system in the process J/ψγπ+πη', Phys. Rev. Lett. 129, 042001 (2022), arXiv: 2201.10796 [hep-ex]
[23]
M.Ablikim. (BESIII), ., First observation of η(1405) decays into f0(980)π0, Phys. Rev. Lett. 108, 182001 (2012), arXiv: 1201.2737
[24]
M.Ablikim. (BESIII), ., Observation of a00(980)-f0(980) mixing, Phys. Rev. Lett. 121, 022001 (2018), arXiv: 1802.00583
[25]
N. N. Achasov, S. A. Devyanin, G. N. Shestakov. s*δ0 mixing as the threshold phenomenon. Phys. Lett. B, 1979, 88 : 367
CrossRef ADS Google scholar
[26]
M.Ablikim. (BESIII), ., Polarization and entanglement in baryon−antibaryon pair production in electron-positron annihilation, Nature Phys. 15, 631 (2019), arXiv: 1808.08917 [hep-ex]
[27]
M.Ablikim. (BESIII), ., Precise measurements of decay parameters and CP asymmetry with entangled Λ−Λ ¯ pairs, Phys. Rev. Lett. 129, 131801 (2022), arXiv: 2204.11058 [hep-ex]
[28]
M.Ablikim. (BESIII), ., Probing CP symmetry and weak phases with entangled double- strange baryons, Nature 606, 64 (2022), arXiv: 2105.11155[hep-ex]
[29]
M.Ablikim. (BESIII), ., Analysis of D+ → K ¯0 e+νe and D+π0e+νe semileptonic decays, Phys. Rev. D 96, 012002 (2017), arXiv: 1703.09084
[30]
M.Ablikim. (BESIII), ., Study of dynamics of D0Ke+νe and D0πe+νe decays, Phys. Rev. D 92, 072012 (2015), arXiv: 1508.07560
[31]
M.Ablikim. (BESIII), ., Determination of the pseudoscalar decay constant fDs+ via Ds+µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890
[32]
M.Ablikim. (BESIII), ., Measurement of the Ds++ν branching fractions and the decay constant fD+, Phys. Rev. D 94, 072004 (2016), arXiv: 1608.06732
[33]
M.Ablikim. (BESIII), ., Measurements of absolute hadronic branching fractions of the Λ+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380
[34]
R. L. Workman, . (Particle Data Group). . Review of Particle Physics. PTEP, 2022, 2022 : 083C01
CrossRef ADS Google scholar
[35]
M.Ablikim. (BESIII), ., Measurement of the DKπ+ strong phase difference in ψ(3770) → D 0 D ¯ 0, Phys. Lett. B 734, 227 (2014), arXiv: 1404.4691
[36]
M.Ablikim. (BESIII), ., Model-independent determination of the relative strong-phase difference between D 0 and D ¯0 → KS,L0π+π and its impact on the measurement of the ckm angle γ/ϕ3, Phys. Rev. D 101, 112002 (2020), arXiv: 2003.00091
[37]
M.Ablikim. (BESIII), ., Improved model-independent determination of the strong-phase difference between D 0 and D ¯0 → KS,L0K+K− decays, Phys. Rev. D 102, 052008 (2020), arXiv: 2007.07959
[38]
M.Ablikim. (BESIII), ., Measurement of the Cross Section for e+e →Hadrons at energies from 2.2324 to 3.6710 GeV, Phys. Rev. Lett. 128, 062004 (2022), arXiv: 2112.11728 [hep-ex]
[39]
M.DavierA. HoeckerB.MalaescuZ.Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g-2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436
[40]
M.Ablikim. (BESIII), ., Measurement of the ππ cross section between 600 and 900 mev using initial state radiation, Phys. Lett. B 753, 629 (2016) [Erratum: Phys. Lett. B 812, 135982 (2021)], arXiv: 1507.08188
[41]
J.Grange. (Muon g-2), ., Muon (g-2) technical design report, FERMILAB-FN-0992-E, FERMILAB-DESIGN-2014–02 (2015–01), arXiv: 1501.06858
[42]
B.Abi. (Muon g-2), ., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281[hep-ex]
[43]
T. Mibe (J-PARC g-2). New g-2 experiment at J-PARC. Chin. Phys. C, 2010, 34 : 745
CrossRef ADS Google scholar
[44]
M.Ablikim. (BESIII), ., Measurement of proton electromagnetic form factors in e+e → pp ¯ in the energy region 2.00–3.08 GeV, Phys. Rev. Lett. 124, 042001 (2020), arXiv: 1905.09001
[45]
M.Ablikim. (BESIII), ., Oscillating features in the electromagnetic structure of the neutron, Nature Phys. 17, 1200 (2021), arXiv: 2103.12486 [hep-ex]
[46]
M.Ablikim. (BESIII), ., Observation of a cross-section enhancement near mass threshold in e+e → ΛΛ ¯, Phys. Rev. D 97, 032013 (2018), arXiv: 1709.10236
[47]
M.Ablikim. (BESIII), ., Complete measurement of the Λ electromagnetic form factors, Phys. Rev. Lett. 123, 122003 (2019), arXiv: 1903.09421
[48]
M.Ablikim. (BESIII), ., Measurements of Σ+ and Σ time-like electromagnetic form factors for center-of-mass energies from 2.3864 to 3.0200 GeV, Phys. Lett. B 814, 136110 (2021), arXiv: 2009.01404
[49]
M.Ablikim. (BESIII), ., Measurement of cross section for e+e → Ξ− Ξ ¯+ near threshold at BESIII, Phys. Rev. D 103, 012005 (2021), arXiv: 2010.08320
[50]
M.Ablikim. (BESIII), ., Observation of a resonant structure in e+eK+ Kπ0π0, Phys. Rev. Lett. 124, 112001 (2020), arXiv: 2001.04131
[51]
M.Ablikim. (BESIII), ., Observation of a structure in e+eϕη' at s from 2.05 to 3.08 GeV, Phys. Rev. D 102, 012008 (2020), arXiv: 2003.13064
[52]
M.Ablikim. (BESIII), ., Measurement of e+eK+K cross section at s = 2.00 ~ −3.08 GeV, Phys. Rev. D 99, 032001 (2019), arXiv: 1811.08742
[53]
M.Ablikim. (BESIII), ., Cross section measurements of e+eK+KK+K and ϕK+K at center-of-mass energies from 2.10 to 3.08 GeV, Phys. Rev. D 100, 032009 (2019), arXiv: 1907.06015
[54]
M.Ablikim. (BESIII), ., Observation of a charged charmoniumlike structure in e+eπ+π J/ψ at s = 4.26 GeV, Phys. Rev. Lett. 110, 252001 (2013), arXiv: 1303.5949
[55]
M.Ablikim. (BESIII), ., Observation of a charged charmoniumlike structure Zc(4020) and search for the Zc(3900) in e+eπ+πhc, Phys. Rev. Lett. 111, 242001 (2013), arXiv: 1309.1896
[56]
M.Ablikim. (BESIII), ., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+eK+(DsD*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855
[57]
M.Ablikim. (BESIII), ., Precise measurement of the e+eπ+π J/ψ cross section at center- of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118, 092001 (2017), arXiv: 1611.01317
[58]
M.Ablikim. (BESIII), ., Observation of e+eγX(3872) at BESIII, Phys. Rev. Lett. 112, 092001 (2014), arXiv: 1310.4101
[59]
W. J. Marciano. The tau decay puzzle. Phys. Rev. D, 1992, 45 : 721
CrossRef ADS Google scholar
[60]
R.Aaij. (LHCb), ., Observation of the doubly charmed baryon Ξ cc ++, Phys. Rev. Lett. 119, 112001 (2017), arXiv: 1707.01621
[61]
H.P. Peng, . Physics Potential of a Super tau-Charm Facility, Snowmass2021-Letter of Interest (2021)
[62]
Q.Luo, in: 8th International Particle Accelerator Conference (2017)
[63]
M.Biagini, Super τ/charm project in Italy (2014)
[64]
I. Adachi, T. E. Browder, P. Križan, S. Tanaka, Y. Ushiroda (Belle-II). Detectors for extreme luminosity: Belle II. Nucl. Instrum. Meth. A, 2018, 907 : 46
CrossRef ADS Google scholar
[65]
A. A. Alves. . The LHCB detector at the LHC. JINST, 2008, 3 : S08005
CrossRef ADS Google scholar
[66]
W.Altmannshofer.(Belle II), ., The Belle II Physics Book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
[67]
R.Aaij. (LHCb), ., Physics case for an LHCB upgrade II − opportunities in flavour physics, and beyond, in the HL-LHC era, LHCB-PUB-2018-009, CERN-LHCC-2018–027 (2018), arXiv: 1808.08865 [hep-ex]
[68]
G.Aad. (ATLAS), ., Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the LHC, Phys. Lett. B 716, 1 (2012), arXiv: 1207.7214
[69]
S.Chatrchyan.(CMS), ., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716, 30 (2012), arXiv: 1207.7235
[70]
D.M. Asner, ., Physics at BES-III, Int. J. Mod. Phys. A 24, S1 (2009), arXiv: 0809.1869 [hep-ex]
[71]
M.Ablikim. (BESIII), ., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983
[72]
Y.GrossmanE. PassemarS.Schacht, On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]
[73]
J.P. Lees. (BaBar), ., Search for CP violation in the decay τπKs0(≥0π0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
[74]
Y. S. Tsai. Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold. Phys. Rev. D, 1995, 51 : 3172
CrossRef ADS Google scholar
[75]
P.AdlarsonA. Kupsc, CP symmetry tests in the cascade−anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]
[76]
E.S. Swanson, The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110
[77]
M.B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]
[78]
H.-X.ChenW. ChenX.LiuS.-L.Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]
[79]
A.HosakaT. IijimaK.MiyabayashiY.SakaiS.Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]
[80]
R.F. LebedR. E. MitchellE.S. Swanson, Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]
[81]
A.EspositoA. PilloniA.D. Polosa, Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]
[82]
F.-K.GuoC. HanhartU.-G.MeißnerQ.WangQ.Zhao B.-S.Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94, 029901 (2022)], arXiv: 1705.00141 [hep-ph]
[83]
A.AliJ. S. LangeS.Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610 [hep-ph]
[84]
S.L. OlsenT. SkwarnickiD.Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012 [hep-ph]
[85]
M.KarlinerJ. L. RosnerT.Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626 [hep-ph]
[86]
C.-Z.Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]
[87]
A.Cerri, ., Report from Working Group 4: Opportunities in flavour physics at the HL-LHC and HE-LHC, CERN Yellow Rep. Monogr. 7, 867 (2019), arXiv: 1812.07638 [hep-ph]
[88]
Y.-R.LiuH.-X. ChenW.ChenX.LiuS.-L.Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]
[89]
N.BrambillaS. EidelmanC.HanhartA.NefedievC.-P.Shen C.E. ThomasA. VairoC.-Z.Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]
[90]
F.-K.GuoX.-H. LiuS.Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030 [hep-ph]
[91]
H.-X.ChenW. ChenX.LiuY.-R.LiuS.-L.Zhu, An updated review of the new hadron states, Rep. Prog. Phys. 86, 026201 (2023), arXiv: 2204.02649 [hep-ph]
[92]
S. Godfrey, N. Isgur. Mesons in a relativized quark model with chromodynamics. Phys. Rev. D, 1985, 32 : 189
CrossRef ADS Google scholar
[93]
M.Ablikim. (BESIII), ., Observation of a near-threshold structure in the K+ recoil-mass spectra in e+e-K+(DsD*0 + Ds*−D0), Phys. Rev. Lett. 126, 102001 (2021), arXiv: 2011.07855 [hep-ex]
[94]
R.Aaij. (LHCb), ., Observation of new resonances decaying to J/ψK+ and J/ψϕ, Phys. Rev. Lett. 127, 082001 (2021), arXiv: 2103.01803 [hep-ex]
[95]
M.ClevenF.-K. GuoC.HanhartQ.WangQ.Zhao, Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]
[96]
Q.WangC. HanhartQ.Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]
[97]
A.PilloniC. Fernandez-RamirezA.Jackura V.MathieuM. MikhasenkoJ.NysA.P. Szczepaniak (JPAC), Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]
[98]
Z.YangX. CaoF.-K.GuoJ.NievesM.P. Valderrama, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]
[99]
A.E. BondarA. GarmashA.I. MilsteinR.MizukM.B. Voloshin, Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]
[100]
Q.-F.CaoH.-R. QiY.-F.WangH.-Q.Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]
[101]
X.-K.DongF.-K. GuoB.-S.Zou, A survey of heavy−antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]
[102]
K.-T.ChaoF.-K. GuoY.-J.Zhang, Production of J/ψpp ¯ in electron−positron collisions (2023) (in preparation)
[103]
Y.-Q.MaY.-J. ZhangK.-T.Chao, QCD Corrections to e+eJ/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]
[104]
C.-W.ShenF.-K. GuoJ.-J.XieB.-S.Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]
[105]
Y.-J.ZhangY.-j. GaoK.-T.Chao, Next-to-leading-order QCD correction to e+eJ/ψ + ηc at s = 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
[106]
Y.-J.ZhangK.-T. Chao, Double-charm production e+eJ/ψ + c c ¯ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086
[107]
K.-T. Chao. The (cc)−(c ¯c) (diquark−anti-diquark) states in e+e annihilation. Z. Phys. C, 1981, 7 : 317
CrossRef ADS Google scholar
[108]
M.KarlinerS. NussinovJ.L. Rosner, QQQQ ¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348 [hep-ph]
[109]
V.R. DebastianiF.AcetiW.-H.Liang E.Oset, Revising the f1(1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]
[110]
G.-J.WangL. MengS.-L.Zhu, Spectrum of the fully-heavy tetraquark state QQQ′ ¯Q′ ¯, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]
[111]
M.N. AnwarJ. FerrettiF.-K.GuoE.SantopintoB.-S.Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]
[112]
R.Aaij. (LHCb), ., Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65, 1983 (2020), arXiv: 2006.16957 [hep-ex]
[113]
L.LiuG. MoirM.PeardonS.M. RyanC.E. ThomasP.VilasecaJ.J. DudekR.G. EdwardsB.JooD.G. Richards (Hadron Spectrum), Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]
[114]
S.-L.Zhu, The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025
[115]
V.Bhardwaj. (Belle), ., Evidence of a new narrow resonance decaying to χc1γ in Bχc1γK, Phys. Rev. Lett. 111, 032001 (2013), arXiv: 1304.3975 [hep-ex]
[116]
M.Ablikim. (BESIII), ., Observation of the ψ(13 D2) state in e+eπ+πγχc1 at BESIII, Phys. Rev. Lett. 115, 011803 (2015), arXiv: 1503.08203 [hep-ex]
[117]
Y.-B.YangY. ChenL.-C.GuiC.LiuY.-B.Liu Z.LiuJ.-P. MaJ.-B.Zhang (CLQCD), Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]
[118]
H.-B.LiX.-R. Lyu, Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]
[119]
A.Bazavov, ., B- and D-meson leptonic decay constants from four-flavor lattice QCD, Phys. Rev. D 98, 074512 (2018), arXiv: 1712.09262 [hep-lat]
[120]
M.Ablikim. (BESIII), ., Precision measurements of B(D+µ+νµ), the pseudoscalar decay constant fD+, and the quark mixing matrix element |Vcd|, Phys. Rev. D 89, 051104 (2014), arXiv: 1312.0374 [hep-ex]
[121]
M.Ablikim. (BESIII), ., Observation of the leptonic decay D+τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
[122]
M.Ablikim. (BESIII Collaboration), ., Measurement of the absolute branching fractions for purely leptonic Ds+ decays, Phys. Rev. D 104, 052009 (2021), arXiv: 2102.11734 [hep-ex]
[123]
Y.S. Amhis. (Heavy Flavor Averaging GroupHFLAV), ., Averages of b-hadron, c-hadron, and τ-lepton properties as of 2021, Phys. Rev. D 107, 052008 (2023), arXiv: 2206.07501 [hep-ex]
[124]
M.Ablikim. (BESIII), ., Measurement of the absolute branching fraction of Ds+τ+ντ via τ+e+νeν ¯τ, Phys. Rev. Lett. 127, 171801 (2021), arXiv: 2106.02218 [hep-ex]
[125]
M.Ablikim. (BESIII), ., Determination of the pseudoscalar decay constant f Ds+ via Ds+ → µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
[126]
J.LiuX. ShiH.LiX.ZhouB.Zheng, Prospects of CKM elements |Vcs| and decay constant f Ds + in D s+ → µ+νµ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]
[127]
H.LiT.Luo X.ShiX. Zhou, Feasibility study of D s+ → τ+ντ decay and test of lepton flavor universality with leptonic Ds+ decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]
[128]
J.CharlesA. HockerH.LackerS.LaplaceF.R. Le DiberderJ.MalclesJ.OcarizM.Pivk L.Roos (CKMfitter Group), CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
[129]
CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)
[130]
M.Bona. (UTfit), ., The 2004 UTfit collaboration report on the status of the unitarity triangle in the standard model, JHEP 07, 028 (2005), arXiv: hep-ph/0501199
[131]
UTfit Collaboration, URL: utfit.org/UTfit/WebHome (2022)
[132]
G. Belanger, C. Q. Geng. T-violating muon polarization in Kμ3 decays. Phys. Rev. D, 1991, 44 : 2789
CrossRef ADS Google scholar
[133]
Y.Grossman, Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229
[134]
W.WangF.-S. YuZ.-X.Zhao, Novel method to reliably determine the photon helicity in BK, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]
[135]
S.FajferI. NisandzicU.Rojec, Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]
[136]
M.Ablikim. (BESIII), ., Measurement of the branching fraction for the semileptonic decay D0(+) → π−(0)µ+νµ and test of lepton flavor universality, Phys. Rev. Lett. 121, 171803 (2018), arXiv: 1802.05492 [hep-ex]
[137]
M.Ablikim. (BESIII), ., Study of the D0Kµ+νµ dynamics and test of lepton flavor universality with D0K+ν decays, Phys. Rev. Lett. 122, 011804 (2019), arXiv: 1810.03127 [hep-ex]
[138]
A.F. FalkY. GrossmanZ.LigetiY.NirA.A. Petrov, D0D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204
[139]
R.T. D’AgnoloG.GrossoM.Pierini A.WulzerM. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]
[140]
HFLAV Collaboration, URL: hflav.web.cern.ch/ (2022)
[141]
B.O’Leary.(SuperB), ., SuperB progress reports−Physics, arXiv: 1008.1541 [hep-ex] (2010)
[142]
Z.-Z. Xing. An overview of D0 anti-D0 mixing and CP violation. Chin. Phys. C, 2008, 32 : 483
CrossRef ADS Google scholar
[143]
Z.-Z.Xing, D 0−D ¯0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422
[144]
Z.-Z.Xing, Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272
[145]
F.-S.YuD. WangH.-N.Li, CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]
[146]
R.Aaij. (LHCb), ., Observation of CP violation in charm decays, Phys. Rev. Lett. 122, 211803 (2019), arXiv: 1903.08726 [hep-ex]
[147]
M.SaurF.-S. Yu, Charm CPV: Observation and prospects, Sci. Bull. 65, 1428 (2020), arXiv: 2002.12088[hep-ex]
[148]
H.-Y.ChengC.-W. Chiang, Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]
[149]
H.-N.LiC.-D. LuF.-S.Yu, Branching ratios and direct CP asymmetries in DPP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]
[150]
D.PirtskhalavaP.Uttayarat, CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]
[151]
M.Gronau, High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]
[152]
F.BuccellaM. LusignoliA.PuglieseP.Santorelli, CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]
[153]
F.BuccellaA. PaulP.Santorelli, SU(3)F breaking through final state interactions and CP asymmetries in DPP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]
[154]
H.-N.LiC.-D. LüF.-S.Yu, Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)
[155]
Y.GrossmanS. Schacht, The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]
[156]
I.I. BigiA. Paul, On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]
[157]
D.E. MorrisseyM.J. Ramsey-Musolf Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]
[158]
A.BondarA. PoluektovV.Vorobiev, Charm mixing in a model-independent analysis of correlated D 0 D ¯ 0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]
[159]
D.AtwoodA. A. Petrov, Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165
[160]
Y.ShiJ. Yang, Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]
[161]
V.A. Kostelecky, Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120
[162]
(LHCb), Simultaneous determination of the CKM angle γ and parameters related to mixing and CP violation in the charm sector, LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-003, CERN-LHCb-CONF-2022-002 (2022)
[163]
M. Gronau, D. London. How to determine all the angles of the unitarity triangle from B d0 → DKs and B s0 → D0. Phys. Lett. B, 1991, 253 : 483
CrossRef ADS Google scholar
[164]
M. Gronau, D. Wyler. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265 : 172
[165]
D.AtwoodI. DunietzA.Soni, Enhanced CP violation with B → K D0(D ¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
[166]
D.AtwoodI. DunietzA.Soni, Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090
[167]
A.GiriY. GrossmanA.SofferJ.Zupan, Determining γ using B±DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
[168]
M.Ablikim. (BESIII), ., Future physics programme of BESIII, Chin. Phys. C 44, 040001 (2020), arXiv: 1912.05983 [hep-ex]
[169]
G.BurdmanI. Shipsey, D 0−D ¯0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076
[170]
E.GolowichJ. HewettS.PakvasaA.A. Petrov, Relating D 0−D ¯0 mixing and D0l+l with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]
[171]
M.Ablikim. (BESIII), ., Search for the rare decays Dh(h('))e+e, Phys. Rev. D 97, 072015 (2018), arXiv: 1802.09752 [hep-ex]
[172]
M.Ablikim. (BESIII), ., Search for the decay D0 → π0νν ¯, Phys. Rev. D 105, L071102 (2022), arXiv: 2112.14236 [hep-ex]
[173]
H.-X.ChenW. ChenX.LiuY.-R.LiuS.-L.Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]
[174]
Y.KatoT. Iijima, Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]
[175]
A.Zupanc. (Belle), ., Measurement of the branching fraction B(Λc+pKπ+), Phys. Rev. Lett. 113, 042002 (2014), arXiv: 1312.7826 [hep-ex]
[176]
M.Ablikim. (BESIII), ., Measurements of absolute hadronic branching fractions of the Λc+ baryon, Phys. Rev. Lett. 116, 052001 (2016), arXiv: 1511.08380 [hep-ex]
[177]
S.B. Yang. (Belle), ., First observation of the doubly Cabibbo-suppressed decay of a charmed baryon: Λc +pK+π, Phys. Rev. Lett. 117, 011801 (2016), arXiv: 1512.07366[hep-ex]
[178]
A.M. Sirunyan.(CMS), ., Measurement of inclusive very forward jet cross sections in proton-lead collisions at sNN = 5.02 TeV, JHEP 05, 043 (2019), arXiv: 1812.01691 [hep-ex]
[179]
M.Ablikim. (BESIII), ., Partial wave analysis of the charmed baryon hadronic decay Λc + → Λπ+π0, JHEP 12, 033 (2022), arXiv: 2209.08464 [hep-ex]
[180]
M.Bishai. (CLEO), ., Measurement of the decay asymmetry parameters in Λc + → Λπ+ and Λc + → Σ+π0, Phys. Lett. B 350, 256 (1995), arXiv: hep-ex/9502004
[181]
H.-Y.ChengB. Tseng, Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286
[182]
K.K. SharmaR. C. Verma, A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302
[183]
P.Zenczykowski, Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265
[184]
A.Datta, Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)
[185]
M.Ablikim. (BESIII), ., Measurements of weak decay asymmetries of Λc +pKs0, Λπ+, Σ+π0, and Σ0π+, Phys. Rev. D 100, 072004 (2019), arXiv: 1905.04707 [hep-ex]
[186]
L.K. Li. (Belle), ., Search for CP violation and measurement of branching fractions and decay asymmetry parameters for Λc + → Λh+ and Λc + → Σ0h+ (h = K, π), Sci. Bull. 68, 583 (2023), arXiv: 2208.08695 [hep-ex]
[187]
Y.B. Li. (Belle), ., First measurements of absolute branching fractions of the Ξc 0 baryon at Belle, Phys. Rev. Lett. 122, 082001 (2019), arXiv: 1811.09738 [hep-ex]
[188]
Y.B. Li. (Belle), ., First measurements of absolute branching fractions of the Ξc + baryon at Belle, Phys. Rev. D 100, 031101 (2019), arXiv: 1904.12093 [hep-ex]
[189]
R.DhirC. S. Kim, Axial-vector emitting weak nonleptonic decays of Ωc0 baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]
[190]
H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, T.-M. Yan, H.-L. Yu. Heavy flavor conserving nonleptonic weak decays of heavy baryons. Phys. Rev. D, 1992, 46 : 5060
[191]
R.Aaij. (LHCb), ., First branching fraction measurement of the suppressed decay Ξc 0 → πΛc +, Phys. Rev. D 102, 071101 (2020), arXiv: 2007.12096 [hep-ex]
[192]
S.S. Tang. (Belle), ., Measurement of the branching fraction of Ξc 0→Λc +π at Belle, Phys. Rev. D 107, 032005 (2023), arXiv: 2206.08527 [hep-ex]
[193]
P.-Y.NiuQ. WangQ.Zhao, Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]
[194]
H.-Y.ChengF. Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]
[195]
H.-Y.ChengC.-W. LiuF.Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]
[196]
R.Perez-MarcialR.HuertaA.Garcia M.Avila-Aoki, Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]
[197]
R. L. Singleton. Semileptonic baryon decays with a heavy quark. Phys. Rev. D, 1991, 43 : 2939
CrossRef ADS Google scholar
[198]
H.-Y.ChengB. Tseng, 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391
[199]
M.PervinW. RobertsS.Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030
[200]
M.A. IvanovV. E. LyubovitskijJ.G. KornerP.Kroll, Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463
[201]
T.GutscheM. A. IvanovJ.G. KörnerV.E. LyubovitskijP. Santorelli, Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]
[202]
R.N. FaustovV.O. Galkin, Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]
[203]
C. W. Luo. Heavy to light baryon weak form-factors in the light cone constituent quark model. Eur. Phys. J. C, 1998, 1 : 235
[204]
R.S. Marques de CarvalhoF.S. NavarraM.Nielsen E.FerreiraH. G. Dosch, Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326
[205]
M.-Q.HuangD.-W. Wang, Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph/0608170 (2006)
[206]
K.AziziY. SaracH.Sundu, Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ' transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]
[207]
S.Meinel, Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]
[208]
S.Meinel, ΛcN form factors from lattice QCD and phenomenology of Λcnℓ+ν and Λc+µ decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]
[209]
M.Ablikim. (BESIII), ., Measurement of the absolute branching fraction for Λc + → Λe+νe, Phys. Rev. Lett. 115, 221805 (2015), arXiv: 1510.02610 [hep-ex]
[210]
H.-Y.Cheng, Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234
[211]
H.-Y.ChengC.-Y. CheungG.-L.LinY.C. LinT.-M.Yan H.-L.Yu, Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262
[212]
N.JiangX.-L. ChenS.-L.Zhu, Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]
[213]
G.-J.WangL. MengS.-L.Zhu, Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]
[214]
J.Yelton. (Belle), ., Study of electromagnetic decays of orbitally excited Ξc baryons, Phys. Rev. D 102, 071103 (2020), arXiv: 2009.03951 [hep-ex]
[215]
Y.Li.(Belle), ., First search for the weak radiative decays Λc+→Σ+γ and Ξc0 →Ξ0γ, Phys. Rev. D 107, 032001 (2023), arXiv: 2206.12517 [hep-ex]
[216]
M.Ablikim. (BESIII), ., Search for the weak radiative decay Λc + → Σ+γ at BESIII, arXiv: 2212.07214 (2022)
[217]
A.BondarA. GrabovskyA.ReznichenkoA.RudenkoV.Vorobyev, Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]
[218]
R.Aaij. (LHCb), ., A measurement of the CP asymmetry difference in Λc +pKK+ and pππ+ decays, JHEP 03, 182 (2018), arXiv: 1712.07051[hep-ex]
[219]
I.I. Bigi, Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)
[220]
X.-D.ShiX.-W. KangI.BigiW.-P.WangH.-P.Peng, Prospects for CP and P violation in Λc + decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]
[221]
B.Aubert. (BaBar), ., Observation of a charmed baryon decaying to D0p at a mass near 2.94 GeV/c2, Phys. Rev. Lett. 98, 012001 (2007), arXiv: hep-ex/0603052
[222]
H.-Y. Cheng. Charmed baryons circa 2015. Front. Phys. (Beijing), 2015, 10 : 101406
CrossRef ADS Google scholar
[223]
R.Aaij. (LHCb), ., Study of the D0p amplitude in Λb0D0pπ decays, JHEP 05, 030 (2017), arXiv: 1701.07873 [hep-ex]
[224]
H.-Y.ChengC.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]
[225]
S.-Q.LuoB. ChenZ.-W.LiuX.Liu, Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]
[226]
R.Aaij. (LHCb), ., Observation of five new narrow Ωc 0 states decaying to Ξc + K, Phys. Rev. Lett. 118, 182001 (2017), arXiv: 1703.04639 [hep-ex]
[227]
J.Yelton. (Belle), ., Observation of excited Ωc charmed baryons in e+e collisions, Phys. Rev. D 97, 051102 (2018), arXiv: 1711.07927 [hep-ex]
[228]
(LHCb), Observation of new Ωc0 states decaying to the Ξc+K final state, arXiv: 2302.04733 (2023)
[229]
W.-D. Li, Y.-J. Mao, Y.-F. Wang. The BES-III detector and offline software. Int. J. Mod. Phys. A, 2009, 24S1 : 9
[230]
D.d’EnterriaH.-S.Shao, Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)
[231]
H.DavoudiaslW.J. Marciano, Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]
[232]
B.Abi. (Muon g-2), ., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
[233]
S.EidelmanM. Passera, Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]
[234]
J.Abdallah. (DELPHI), ., Study of tau-pair production in photon−photon collisions at LEP and limits on the anomalous electromagnetic moments of the tau lepton, Eur. Phys. J. C 35, 159 (2004), arXiv: hep-ex/0406010
[235]
X.ChenY. Wu, Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]
[236]
J.BernabeuG. A. Gonzalez-SprinbergJ.PapavassiliouJ.Vidal, Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]
[237]
S.EidelmanD. EpifanovM.FaelL.MercolliM.Passera, τ dipole moments via radiative leptonic τ decays, JHEP 03, 140 (2016), arXiv: 1601.07987 [hep-ph]
[238]
A.Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]
[239]
Y.Amhis. (HFLAV), ., Averages of B-hadron, C-hadron, and tau-lepton properties as of early 2012, arXiv: 1207.1158 (2012)
[240]
A.B. ArbuzovT.V. Kopylova, Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]
[241]
J.P. Lees. (BaBar), ., Measurement of the branching fractions of the radiative leptonic τ decays τ → νν ¯ and τ → µγνν ¯ at BABAR, Phys. Rev. D 91, 051103 (2015), arXiv: 1502.01784 [hep-ex]
[242]
N.Shimizu. (Belle), ., Measurement of the tau Michel parameters η ¯ and ξκ in the radiative leptonic decay τντν ¯γ, PTEP 2018, 023C01 (2018), arXiv: 1709.08833 [hep-ex]
[243]
A. Flores-TlalpaG. López Castro , P. Roig., Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]
[244]
E. Braaten, S. Narison, A. Pich. QCD analysis of the tau hadronic width. Nucl. Phys. B, 1992, 373 : 581
CrossRef ADS Google scholar
[245]
D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne, S. Peris. Updated determination of αs from τ decays. Phys. Rev. D, 2012, 85 : 093015
CrossRef ADS Google scholar
[246]
M.BenekeD. BoitoM.Jamin, Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]
[247]
I.I. BigiA. I. Sanda, A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
[248]
Y.GrossmanY. Nir, CP violation in τ±π±KS ν and D±π±KS: The importance of KSKL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
[249]
M.Bischofberger.(Belle), ., Search for CP violation in τ → Ks0 πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
[250]
H.SangX. ShiX.ZhouX.KangJ.Liu, Feasibility study of CP violation in τ → KS πντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]
[251]
F.-Z.ChenX.-Q. LiY.-D.Yang, CP asymmetry in the angular distribution of τ → KS πντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]
[252]
W.BernreutherO.Nachtmann, CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]
[253]
S. E. Ralph, F. Capasso, R. J. Malik. New photorefractive effect in graded-gap superlattices. Phys. Rev. Lett., 1990, 64 : 1072
CrossRef ADS Google scholar
[254]
K.Inami. (Belle), ., Search for the electric dipole moment of the tau lepton, Phys. Lett. B 551, 16 (2003), arXiv: hep-ex/0210066
[255]
J.BernabeuG. A. Gonzalez-SprinbergJ.Vidal, CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135
[256]
Y.S. Tsai, Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265
[257]
X.R. Zhou, Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)
[258]
A.V. BobrovA. E. Bondar, Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]
[259]
T.XiangX.-D. ShiD.-Y.WangX.-R.Zhou, Sensitivity study of the charged lepton flavor violating process τ → γµ at STCF, (2023), arXiv: 2305.00483 [hep-ex]
[260]
J. Z. Bai (BES). Measurement of the total cross section for hadronic production by e+e annihilation at energies between 2.6–5 GeV. Phys. Rev. Lett., 2000, 84 : 594
[261]
J.Z. Bai. (BES), ., Measurements of the cross-section for e+e → hadrons at center-of-mass energies from 2-GeV to 5-GeV, Phys. Rev. Lett. 88, 101802 (2002), arXiv: hep-ex/0102003
[262]
V.V. Anashin.(KEDR), ., Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector, Phys. Lett. B 788, 42 (2019), arXiv: 1805.06235 [hep-ex]
[263]
M.BaakR. Kogler, in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]
[264]
B.Abi. (Muon g-2), ., Measurement of the positive muon anomalous magnetic moment to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021), arXiv: 2104.03281 [hep-ex]
[265]
G. Sterman, J. Smith, J. C. Collins, J. Whitmore, R. Brock, J. Huston, J. Pumplin, W.-K. Tung, H. Weerts, C.-P. Yuan, S. Kuhlmann, S. Mishra, J. G. Morfín, F. Olness, J. Owens, J. Qiu, D. E. Soper. Handbook of perturbative QCD. Rev. Mod. Phys., 1995, 67 : 157
[266]
J.C. CollinsD.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]
[267]
D. Pitonyak, M. Schlegel, A. Metz. Polarized hadron pair production from electron−positron annihilation. Phys. Rev. D, 2014, 89 : 054032
CrossRef ADS Google scholar
[268]
J. Collins. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B, 1993, 396 : 161
[269]
R.Seidl. (Belle), ., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975[hep-ex]
[270]
P. Sun, F. Yuan. Energy evolution for the Sivers asymmetries in hard processes. Phys. Rev. D, 2013, 88 : 034016
CrossRef ADS Google scholar
[271]
B.CollaborationJ.Z. BaiY.Ban J.G. Bian, Observation of a near-threshold enhancement in th pp ¯ mass spectrum from radiative J/ψ-γpp ¯ p ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006 [hep-ex]
[272]
B.E. A. Aubert (BABAR), Study of e+e → ΛΛ ¯, ΛΣ ¯0 Σ0 Σ ¯ 0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).
[273]
P. E. A. Pakhlov (Belle). Measurement of the e+eJ/ψc c ¯ cross section at s ≈ 10.6 GeV. Phys. Rev. D, 2009, 79 : 071101
[274]
Y.-Q.MaY.-J. ZhangK.-T.Chao, QCD corrections to e+eJ/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]
[275]
Y.-J. Zhang, Y.-Q. Ma, K. Wang, K.-T. Chao. QCD radiative correction to color-octet J/ψ inclusive production at B factories. Phys. Rev. D, 2010, 81 : 034015
CrossRef ADS Google scholar
[276]
B.GongJ.-X. Wang, Next-to-leading-order QCD corrections to e+eJ/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]
[277]
B. Gong, J.-X. Wang. Next-to-leading-order QCD corrections to e+eJ/ψcc ¯ at the B factories. Phys. Rev. D, 2009, 80 : 054015
[278]
N.Brambilla, ., Heavy quarkonium: progress, puzzles, and opportunities, Euro. Phys. J. C 71, 1534 (2011)
[279]
T.B. CollaborationK.Abe, Observation of double cc ¯ Production in e+e annihilation at s = 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]
[280]
F.FengY. JiaZ.MoW.-L.SangJ.-Y.Zhang, Next-to-next-to-leading-order QCD corrections to e+eJ/ψ + ηc at B factories, arXiv: 1901.08447 (2019)
[281]
Y.-J.ZhangY.-J. GaoK.-T.Chao, Next-to-leading order QCD correction to e+eJ/ψ + ηc at s = 10.6-GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
[282]
Y.-J. Zhang, K.-T. Chao. Double-charm production e+eJ/ψ + cc ¯ at B factories with next-to-leading-order QCD corrections. Phys. Rev. Lett., 2007, 98 : 092003
[283]
N.Brambilla, ., QCD and strongly coupled gauge theories: Challenges and perspectives, Eur. Phys. J. C 74, 2981 (2014), arXiv: 1404.3723 [hep-ph]
[284]
C. A. Meyer, Y. Van Haarlem. Status of exotic-quantum-number mesons. Phys. Rev. C, 2010, 82 : 025208
[285]
V.CredeC. A. Meyer, The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]
[286]
E. Klempt, A. Zaitsev. Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts. Phys. Rep., 2007, 454 : 1
[287]
C. Amsler, N. A. Törnqvist. Mesons beyond the naive quark model. Phys. Rep., 2004, 389 : 61
[288]
S. Godfrey, J. Napolitano. Light-meson spectroscopy. Rev. Mod. Phys., 1999, 71 : 1411
[289]
W.-J.LeeD. Weingarten, Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008
[290]
G.S. BaliK. SchillingA.HulsebosA.C. IrvingC.Michael P.W. Stephenson (UKQCD), A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012
[291]
C.J. MorningstarM.J. Peardon, Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011
[292]
Y.Chen, ., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D 73, 014516 (2006), arXiv: hep-lat/0510074
[293]
P.LacockC. MichaelP.BoyleP.Rowland (UKQCD), Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011
[294]
C.W. Bernard.(MILC), ., Exotic mesons in quenched lattice QCD, Phys. Rev. D 56, 7039 (1997), arXiv: hep-lat/9707008
[295]
J.J. DudekR. G. EdwardsB.JooM.J. PeardonD.G. RichardsC.E. Thomas, Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]
[296]
J.J. DudekR. G. EdwardsP.GuoC.E. Thomas (Hadron Spectrum), Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]
[297]
V.P. DruzhininS.I. EidelmanS.I. SerednyakovE.P. Solodov, Hadron production via e+e collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]
[298]
K. T. Chao, Y. F. Wang. Front matter. International J. Mod. Phys. A, 2009, 24 : supp01
CrossRef ADS Google scholar
[299]
M.Battaglieri, ., Analysis tools for next-generation hadron spectroscopy experiments, Acta Phys. Polon. B 46, 257 (2015), arXiv: 1412.6393 [hep-ph]
[300]
N. Berger, L. Beijiang, W. Jike. Partial wave analysis using graphics processing units. J. Phys.: Conf. Ser., 2010, 219 : 042031
CrossRef ADS Google scholar
[301]
J. Gasser, H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158 : 142
[302]
R. Kaiser, H. Leutwyler. Large Nc in chiral perturbation theory. Euro. Phys. J. C, 2000, 17 : 623
CrossRef ADS Google scholar
[303]
J.WessB. Zumino, Consequences of anomalous ward identities, Phys. Lett. B 37, 95 (1971)
[304]
E. Witten. Global aspects of current algebra. Nucl. Phys. B, 1983, 223 : 422
[305]
J.BijnensA. BramonF.Cornet, English Chiral perturbation theory for anomalous processes, Eur. Phys. J. C 46, 599 (1990)
[306]
J. Sakurai. Theory of strong interactions. Ann. Phys., 1960, 11 : 1
[307]
L. Landsberg. Electromagnetic decays of light mesons. Phys. Rep., 1985, 128 : 301
[308]
Y.NambuG. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)
[309]
Y.NambuG. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)
[310]
T.Aoyama., . The anomalous magnetic moment of the muon in the Standard Model, Phys. Rep. 887, 1 (2020), the anomalous magnetic moment of the muon in the Standard Model
[311]
L.GanB. KubisE.PassemarS.Tulin, Precision tests of fundamental physics with η and η' mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η' mesons
[312]
C. Jarlskog, E. Shabalin. On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions. Phys. Scr., 2002, 2002 : 23
[313]
C. Jarlskog, E. Shabalin. ϵ' and the decay ηππ in a theory with both explicit and spontaneous CP violation. Phys. Rev. D, 1995, 52 : 6327
CrossRef ADS Google scholar
[314]
R.EscribanoE. Royo, A theoretical analysis of the semileptonic decays η(')π0l+l- and η'ηl+l-, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]
[315]
F.NiecknigB. KubisS.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]
[316]
I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, A. P. Szczepa- niak. Dispersive analysis of ω/ϕ → 3π, πγ*. Phys. Rev. D, 2015, 91 : 094029
CrossRef ADS Google scholar
[317]
J.-J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou. Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett., 2012, 108 : 081803
CrossRef ADS Google scholar
[318]
J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett., 1964, 13 : 138
CrossRef ADS Google scholar
[319]
B. E. A. Aubert (BABAR). Observation of CP violation in the B0 meson system. Phys. Rev. Lett., 2001, 87 : 091801
CrossRef ADS Google scholar
[320]
K.Abe. (Belle), ., Observation of large CP violation in the neutral B meson system, Phys. Rev. Lett. 87, 091802 (2001), arXiv: hep-ex/0107061
[321]
J. F. Donoghue, S. Pakvasa. Signals of CP nonconservation in hyperon decay. Phys. Rev. Lett., 1985, 55 : 162
CrossRef ADS Google scholar
[322]
T. Holmstrom. . Search for CP violation in charged-Ξ and Λ hyperon decays. Phys. Rev. Lett., 2004, 93 : 262001
CrossRef ADS Google scholar
[323]
J. Tandean, G. Valencia. CP violation in hyperon nonleptonic decays within the standard model. Phys. Rev. D, 2003, 67 : 056001
CrossRef ADS Google scholar
[324]
C. Materniak (HyperCP). Search for CP violation in Ξ and Λ hyperon decays with the HyperCP spectrometer at Fermilab. Nucl. Phys. B Suppl., 2009, 187 : 208
CrossRef ADS Google scholar
[325]
M.Ablikim. (BESIII), . Study of J/ψ and ψ(3686) decay to ΛΛ ¯ and Σ 0 Σ ¯0 final states, Phys. Rev. D 95, 052003 (2017)
[326]
M.Ablikim, ., Study of J/ψ and ψ (3686) → Σ(1385)0 Σ ¯ (1385)0 and Ξ0 Ξ ¯0, Physics Letters B 770, 217 (2017), arXiv: 1612.08664 [hep-ex]
[327]
M.Ablikim. (BESIII), ., Study of ψ decays to the Ξ− Ξ ¯+ and Σ(1385)∓Σ ¯(1385 )± final states, Phys. Rev. D 93, 072003 (2016)
[328]
G.FäldtA.Kupsc, Hadronic structure functions in the e+e → Λ ¯Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]
[329]
E. Perotti, G. Fäldt, A. Kupsc, S. Leupold, J. J. Song. Polarization observables in e+e annihilation to a baryon−antibaryon pair. Phys. Rev. D, 2019, 99 : 056008
CrossRef ADS Google scholar
[330]
M. Huang, . (HyperCP). . New measurement of Ξ → Λπ decay parameters. Phys. Rev. Lett., 2004, 93 : 011802
CrossRef ADS Google scholar
[331]
B.DuttaY. MimuraR.N. Mohapatra, Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]
[332]
M. Baldo-Ceolin, P. Benetti, T. Bitter, F. Bobisut, E. Calligarich, R. Dolfini, D. Dubbers, P. El-Muzeini, M. Genoni, D. Gibin, A. Berzolari, K. Gobrecht, A. Guglielmi, J. Last, M. Laveder, W. Lippert, F. Mattioli, F. Mauri, M. Mezzetto, L. Visentin. A new experimental limit on neutron−antineutron oscillations. Zeitsch. für Phys. C, 1994, 63 : 409
CrossRef ADS Google scholar
[333]
X.-W. Kang, H.-B. Li, G.-R. Lu. Study of Λ− Λ ¯ oscillation in quantum coherent ΛΛ ¯ by using J/ψ → ΛΛ ¯ decay. Phys. Rev. D, 2010, 81 : 051901
CrossRef ADS Google scholar
[334]
R. H. Dalitz, G. Rajasekharan. The spins and lifetimes of the light hypernuclei. Phys. Lett., 1962, 1 : 58
[335]
B.I. Abelev. (STAR), ., Observation of an antimatter hypernucleus, Science 328, 58 (2010), arXiv: 1003.2030 [nucl-ex]
[336]
C. Rappold. . On the measured lifetime of light hypernuclei Λ 3H and Λ4 H. Phys. Lett. B, 2014, 728 : 543
CrossRef ADS Google scholar
[337]
J.S. Schwinger, The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)
[338]
S.Chekanov. (ZEUS), ., Search for contact interactions, large extra dimensions and finite quark radius in ep collisions at HERA, Phys. Lett. B 591, 23 (2004), arXiv: hep-ex/0401009
[339]
H. A. Bethe. The electromagnetic shift of energy levels. Phys. Rev., 1947, 72 : 339
CrossRef ADS Google scholar
[340]
F. J. Dyson. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 1949, 75 : 486
CrossRef ADS Google scholar
[341]
K. G. Wilson, J. B. Kogut. The renormalization group and the epsilon expansion. Phys. Rep., 1974, 12 : 75
[342]
S. Weinberg, E. Witten. Limits on massless particles. Phys. Lett. B, 1980, 96 : 59
[343]
K.R. Schubert, T violation and CPT tests in neutral-meson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]
[344]
J.S. BellJ. Steinberger, in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222
[345]
B.Aubert. (BaBar), ., Search for T, CP and CPT violation in B0− B ¯0 mixing with inclusive dilepton events, Phys. Rev. Lett. 96, 251802 (2006), arXiv: hep-ex/0603053
[346]
T.Higuchi, ., Search for time-dependent CPT violation in hadronic and semileptonic B decays, Phys. Rev. D 85, 071105 (2012), arXiv: 1203.0930 [hep-ex]
[347]
A. Apostolakis. . A Determination of the CP violation parameter η+− from the decay of strangeness tagged neutral kaons. Phys. Lett. B, 1999, 458 : 545
CrossRef ADS Google scholar
[348]
B. Schwingenheuer. . CPT tests in the neutral kaon system. Phys. Rev. Lett., 1995, 74 : 4376
CrossRef ADS Google scholar
[349]
R.Essig, ., in: Community Summer Study 2013: Snowmass on the Mississippi (2013), arXiv: 1311.0029 [hep-ph]
[350]
O.Adriani. (PAMELA), . An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV, Nature 458, 607 (2009), arXiv: 0810.4995 [astro-ph]
[351]
J. Chang. . An excess of cosmic ray electrons at energies of 300−800 GeV. Nature, 2008, 456 : 362
[352]
A.A. Abdo. (Fermi-LAT), ., Measurement of the cosmic ray e+ plus e spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope, Phys. Rev. Lett. 102, 181101 (2009), arXiv: 0905.0025 [astro-ph.HE]
[353]
M. Aguilar. . First result from the alpha magnetic spectrometer on the international space station: Precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett., 2013, 110 : 141102
CrossRef ADS Google scholar
[354]
N.Arkani-HamedD.P. FinkbeinerT.R. SlatyerN.Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
[355]
M.PospelovA. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
[356]
N.Arkani-HamedN.Weiner, LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]
[357]
C.CheungJ. T. RudermanL.-T.WangI.Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
[358]
S.-h.Zhu, U-boson at BESIII, Phys. Rev. D75, 115004 (2007), arXiv: hep-ph/0701001
[359]
P.Fayet, U-boson production in e+e annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176
[360]
M.ReeceL.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]
[361]
R.EssigP. SchusterN.Toro, Probing dark forces and light hidden sectors at low-energy e+e colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
[362]
P.-F.YinJ. LiuS.-H.Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
[363]
B.Aubert. (BaBar), ., Search for dimuon decays of a light scalar boson in radiative transitions Υ → γA0, Phys. Rev. Lett. 103, 081803 (2009), arXiv: 0905.4539 [hep-ex]
[364]
J.D. BjorkenR.EssigP.Schuster N.Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
[365]
S.Jia. (Belle), ., Search for a light Higgs boson in single-photon decays of Υ(1S) using Υ(2S) → π+πΥ(1S) tagging method, Phys. Rev. Lett. 128, 081804 (2022), arXiv: 2112.11852 [hep-ex]
[366]
B.O’Leary.(SuperB), ., SuperB progress reports − Physics, arXiv: 1008.1541 (2010)
[367]
W.Altmannshofer.(Belle-II), ., The Belle II physics book, PTEP 2019, 123C01 (2019) [Erratum: PTEP 2020, 029201 (2020)], arXiv: 1808.10567 [hep-ex]
[368]
H.-B.LiT. Luo, Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
[369]
M.BaumgartC. CheungJ.T. RudermanL.-T.WangI.Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]
[370]
B.BatellM. PospelovA.Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
[371]
I.Adachi. (Belle-II), ., Search for an invisibly decaying Z' boson at Belle II in e+eµ+µ(e± μ∓) plus missing energy final states, Phys. Rev. Lett. 124, 141801 (2020), arXiv: 1912.11276 [hep-ex]
[372]
F.Abudinén.(Belle-II), ., Search for axionlike particles produced in e+e collisions at Belle II, Phys. Rev. Lett. 125, 161806 (2020), arXiv: 2007.13071 [hep-ex]
[373]
B. Holdom. Two U(1)’s and epsilon charge shifts. Phys. Lett. B, 1986, 166 : 196
CrossRef ADS Google scholar
[374]
B. Holdom. Searching for ϵ charges and a new U(1). Phys. Lett. B, 1986, 178 : 65
CrossRef ADS Google scholar
[375]
R. Foot, X.-G. He. Comment on zz-prime mixing in extended gauge theories. Phys. Lett. B, 1991, 267 : 509
[376]
B.KorsP. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047
[377]
K.CheungT.-C. Yuan, Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107
[378]
D.FeldmanZ. LiuP.Nath, Stueckelberg Z' extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123
[379]
J.JaeckelA. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]
[380]
Z.LiuY. Zhang, Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]
[381]
J.LiangZ. LiuY.MaY.Zhang, Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]
[382]
S. Davidson, B. Campbell, D. C. Bailey. Limits on particles of small electric charge. Phys. Rev. D, 1991, 43 : 2314
CrossRef ADS Google scholar
[383]
A.A. Prinz, ., Search for millicharged particles at SLAC, Phys. Rev. Lett. 81, 1175 (1998), arXiv: hep-ex/9804008
[384]
G.MagillR. PlestidM.PospelovY.-D.Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]
[385]
J.D. BowmanA. E. E. RogersR.A. MonsalveT.J. MozdzenN.Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]
[386]
J.B. MuñozA.Loeb, A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]
[387]
A.BerlinD. HooperG.KrnjaicS.D. McDermott, Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]
[388]
R.BarkanaN. J. OutmezguineD.Redigolo T.Volansky, Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]
[389]
H.Brück Circular particle accelerators, PUF, Paris (1966).
[390]
[391]
M.BattagliaC. Da ViaD.BortolettoR.BrennerM.Campbell P.CollinsG. Dalla BettaM.DemarteauP.DenesH.Graafsma, ., R&d paths of pixel detectors for vertex tracking and radiation imaging, Nucl. Instrum. Methods Phys. Res. A 716, 29 (2013)
[392]
G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman. . The maps based PXL vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
[393]
C.Lacasta, in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15−20 September (2013), page 5
[394]
T.e. a. Abe, Belle II technical design report, (2010)
[395]
A.BallaG. BencivenniS.CerioniP.CiambroneE.De Lucia D.DomeniciJ. DongG.FeliciM.GattaM.Jacewicz, ., in: 2011 IEEE Nuclear Science Symposium Conference Record (IEEE, 2011) pp 1002–1005
[396]
G. Bencivenni, P. Branchini, P. Ciambrone, E. Czerwinski, E. De Lucia, A. Di Cicco, D. Domenici, G. Felici, X. Kang, G. Morello. The cylindrical-gem inner tracker detector of the kloe-2 experiment. Nucl. Instrum. Meth. Phys. Res. A, 2020, 958 : 162366
[397]
A. Amoroso, R. Baldini, M. Bertani, D. Bettoni, F. Bianchi, A. Calcaterra, V. Carassiti, S. Cerioni, J. Chai, G. Cibinetto. . A cylindrical gem detector with analog readout for the be- siii experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 515
[398]
M. P. Lener, G. Bencivenni, R. de Olivera, G. Felici, S. Franchino, M. Gatta, M. Maggi, G. Morello, A. Sharma. The μ-RWELL: A compact, spark protected, single amplification-stage mpgd. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 565
[399]
G. Bencivenni, R. De Oliveira, G. Felici, M. Gatta, G. Morello, A. Ochi, M. P. Lener, E. Tskhadadze. Performance of μ-RWELL detector vs resistivity of the resistive stage. Nucl. Instrum. Meth. Phys. Res. A, 2018, 886 : 36
[400]
G. Bencivenni, L. Benussi, L. Borgonovi, R. De Oliveira, P. De Simone, G. Felici, M. Gatta, P. Giacomelli, G. Morello, A. Ochi. . The μ-RWELL detector. J. Instrum., 2017, 12 : C06027
[401]
S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, D. Mörmann. Charge amplification and transfer processes in the gas electron multiplier. Nucl. Instru. Meth. Phys. Res. A, 1999, 438 : 376
[402]
S. Agostinelli, J. Allison, K. A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand. . GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
[403]
G.BencivenniG.FeliciM.Gatta M.GiovannettiG.MorelloM.P. Lener R.de OliveiraA.OchiE.Tskhadadze, in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003
[404]
H. Wang, Y. Wang, Y.-Z. Yao, J. Hu, J. Yang, W. Hao, Y.-Q. Luo. Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb. J. Funct. Mater., 2013, 44 : 2184
[405]
S. Arezoo, V. Tagarielli, C. Siviour, N. Petrinic. Compressive deformation of rohacell foams: Effects of strain rate and temperature. Inter. J. Impact Eng., 2013, 51 : 50
[406]
G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman. . The maps based pxl vertex detector for the star experiment. J. Instrum., 2015, 10 : C03026
[407]
I. Valin, C. Hu-Guo, J. Baudot, G. Bertolone, A. Besson, C. Colledani, G. Claus, A. Dorokhov, G. Doziere, W. Dulinski. . A reticle size cmos pixel sensor dedicated to the star hft. J. Instrum., 2012, 7 : C01102
[408]
B. Abelev, J. Adam, D. Adamová, M. Aggarwal, G. A. Rinella, M. Agnello, A. Agostinelli, N. Agrawal, Z. Ahammed, N. Ahmad. . Technical design report for the upgrade of the alice inner tracking system. J. Phys. G, 2014, 41 : 087002
[409]
G. A. Rinella. . The alpide pixel sensor chip for the upgrade of the alice inner tracking system. Nucl. Instrum. Meth. Phys. Res. A, 2017, 845 : 583
[410]
L.Chen, ., Characterization of the prototype cmos pixel sensor Jadepix-1 for the CEPC vertex detector, (2019)
[411]
C.S. Group, ., CEPC conceptual design report: Volume 2 − physics & detector, arXiv: 1811.10545 (2018)
[412]
K. Arndt, H. Augustin, P. Baesso, N. Berger, F. Berg, C. Betancourt, D. Bortoletto, A. Bravar, K. Briggl, D. vom Bruch. . Technical design of the phase I MU3E experiment. Nucl. Instrum. Meth. Phys. Res. A, 2021, 1014 : 165679
[413]
M.PrathapanR. SchimassekM.BenoitR.CasanovaF.Ehrler A.MenesesP. PangaudD.SultanE.VilellaA.L. Weber, ., in: Proceedings of Topical Workshop on Electronics for Particle Physics-PoS (TWEPP2019) (Sissa Medialab, 2020)
[414]
S. Spannagel. Silicon technologies for the clic vertex detector. J. Instrum., 2017, 12 : C06006
[415]
A.SchöningJ.AndersH.Augustin M.BenoitN. BergerS.DittmeierF.EhrlerA.Fehr T.GollingS. G. Sevilla, ., Mupix and atlaspix-architectures and results, arXiv: 2002.07253 (2020)
[416]
W. Snoeys. . A process modification for CMOS monolithic active pixel sensors for enhanced depletion, timing performance and radiation tolerance. Nucl. Instrum. Meth. A, 2017, 871 : 90
[417]
G.Gustavino, ., in: 23rd International Workshop on Radiation Imaging Detectors (2022), arXiv: 2209.14676 [physics.ins-det]
[418]
A. Paladino. Beam background evaluation at superkekb and Belle II. J. Instrum., 2020, 15 : C07023
[419]
M. Mager, A. collaboration. . Alpide, the monolithic active pixel sensor for the alice its upgrade. Nucl. Instrum. Meth. A, 2016, 824 : 434
[420]
M.Titov, in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226
[421]
M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen. . Design and construction of the besiii detector. Nucl. Instrum. Meth. A, 2010, 614 : 345
[422]
T.AbeI. AdachiK.AdamczykS.AhnH.Aihara K.AkaiM. AloiL.AndricekK.AokiY.Arai, ., Belle II technical design report, arXiv: 1011.0352 (2010)
[423]
S. Adhikari, C. Akondi, H. Al Ghoul, A. Ali, M. Amaryan, E. Anassontzis, A. Austregesilo, F. Barbosa, J. Barlow, A. Barnes. . The gluex beamline and detector. Nucl. Instrum. Meth. A, 2021, 987 : 164807
[424]
A. Baldini, E. Baracchini, C. Bemporad, F. Berg, M. Biasotti, G. Boca, P. Cattaneo, G. Cavoto, F. Cei, M. Chiappini. . The design of the meg ii experiment. Eur. Phys. J. C, 2018, 78 : 1
[425]
G.TassielliI. Collaboration, ., in: 40th International Conference on High Energy physics (2021), p. 877
[426]
I. B. Smirnov. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A, 2005, 554 : 474
[427]
X.-X. Cao, W.-D. Li, C.-L. Liu, Z.-P. Mao, S.-J. Chen, Z.-Y. Deng, K.-L. He, X.-T. Huang, B. Huang, Y.-P. Huang. . Studies of dE/dx measurements with the besiii. Chin. Phys. C, 2010, 34 : 1852
[428]
S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, D. Mörmann. Charge ampli fication and transfer processes in the gas electron multiplier. Nucl. Instrum. Meth. A, 1999, 438 : 376
[429]
F. Tessarotto. . Long term experience and performance of COMPASS RICH-1. JINST, 2014, 9 :
CrossRef ADS Google scholar
[430]
A. Di Mauro. . Performance of large area CsI RICH prototypes for ALICE at LHC. Nucl. Instrum. Meth. A, 1999, 433 : 190
[431]
D.BoutignyC. GoyY.KaryotakisJ.LeesS.L. RosierA.PalanoG.ChenY.Wang O.WenY. Lan, ., Babar technical design report, Stanford Linear Accelerator Center, Stanford, CA94309 (1995)
[432]
B. Singh, W. Erni, B. Krusche, M. Steinacher, N. Walford, B. Liu, H. Liu, Z. Liu, X. Shen, C. Wang. . Technical design report for the barrel dirc detector. J. Phys. G, 2019, 46 : 045001
[433]
G. Kalicy, L. Allison, T. Cao, R. Dzhygadlo, T. Hartlove, T. Horn, C. Hyde, Y. Ilieva, P. Nadel-Turonski, K. Park. . High-performance dirc detector for the future electron ion collider experiment. J. Instrum., 2018, 13 : C04018
[434]
M.J. CharlesR.Forty (LHCb), TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]
[435]
B. Wu, Y. Wang, Q. Cao, Z. Li, X. Li, X. Zhou, Y. Hu, Z. Wang, M. Shao, J. Liu. . Design of time-to-digital converters for time-over-threshold measurement in picosecond timing detectors. IEEE Trans. Nucl. Sci., 2021, 68 : 470
[436]
Y. Hu, Y. Wang, J. Kuang, B. Wu. A clock distribution and synchronization scheme over optical links for large-scale physics experiments. IEEE Trans. Nucl. Sci., 2021, 68 : 1351
[437]
M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen. . Design and construction of the besiii detector. Nucl. Instrum. Meth. Phys. Res. A, 2010, 614 : 345
[438]
K. Miyabayashi. Belle electromagnetic calorimeter. Nucl. Instrum. Meth. Phys. Res. A, 2002, 494 : 298
[439]
A. Yamamoto, H. Kichimi, N. Kimura, H. Inoue, H. Yamaoka, T. Haruyama, T. Mito, O. Araoka, M. Tadano, S. Suzuki. . Performance of the topaz thin superconducting solenoid wound with internal winding method. Japan. J. Appl. Phys., 1986, 25 : L440
[440]
A.M. Sirunyan.(CMS), ., Reconstruction of signal amplitudes in the CMS electromagnetic calorimeter in the presence of overlapping proton−proton interactions, JINST 15, P10002 (2020), arXiv: 2006.14359 [physics.ins-det]
[441]
G.S. Huang, The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)
[442]
J.B. Liu, Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)
[443]
T.AbeI. AdachiK.AdamczykS.AhnH.Aihara K.AkaiM. AloiL.AndricekK.AokiY.Arai, ., Belle II technical design report, arXiv: 1011.0352 (2010)
[444]
K.AbeY. HoshiT.NagamineK.NeichiK.Onodera T.TakahashiA. YamaguchiH.Yuta, in: 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (IEEE, 2002), pp 171–175
[445]
Y. Hoshi, N. Kikuchi, T. Nagamine, K. Neichi, A. Yamaguchi. Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator. Nucl. Phys. B, 2006, 158 : 190
[446]
K. Kanazawa, Y. Ohnishi, Y. Nakayama, C. Kiesling, S. Koblitz. . Beam background simulation for superKEKB/Belle-II. Proceed. IPAC, 2011, 1109094 : 3700
[447]
M.GouzevitchF.LagardeI.Laktineh V.BuridonX. ChenC.CombaretA.EynardL.Germani G.GrenierH. Mathez, ., High rate, fast timing glass rpc for the high ηcms muon detectors, arXiv: 1606.00993 (2016)
[448]
A.Collaboration, ., Atlas muon spectrometer: Technical design report (1997)
[449]
B. Aubert, A. Bazan, A. Boucham, D. Boutigny, I. De Bonis, J. Favier, J.-M. Gaillard, A. Jeremie, Y. Karyotakis, T. Le Flour. . The babar detector. Nucl. Instrum. Meth. Phys. Res. A, 2002, 479 : 1
[450]
Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)
[451]
K. Ackermann, N. Adams, C. Adler, Z. Ahammed, S. Ahmad, C. Allgower, J. Amonett, J. Amsbaugh, B. Anderson, M. Anderson. . Star detector overview. Nucl. Instrum. Meth. Phys. Res. A, 2003, 499 : 624
[452]
Y. Xie. . Performance study of rpc prototypes for the BESIII muon detector. Chin. Phys. C, 2007, 31 :
[453]
F. An, J. Bai, A. Balantekin, H. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. Brown, I. Butorov. . The detector system of the daya bay reactor neutrino experiment. Nucl. Instrum. Meth. Phys. Res. A, 2016, 811 : 133
[454]
T. Aushev, D. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov. . A scintillator based endcap KL and muon detector for the Belle II experiment. Nucl. Instrum. Meth. Phys. Res. A, 2015, 789 : 134
[455]
S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand. . GEANT4 — a simulation toolkit. Nucl. Instrum. Meth. Phys. Res. A, 2003, 506 : 250
[456]
Z. Fang, Y. Liu, H. Shi, J. Liu, M. Shao. A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility. J. Instrum., 2021, 16 : P09022
[457]
M. M. Hamada, P. R. Rela, F. E. da Costa, C. H. de Mesquita. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Meth. Phys. Res. A, 1999, 422 : 148
[458]
V. Vasil’Chenko, V. Lapshin, A. Peresypkin, A. Konstantinchenko, A. Pyshchev, V. Shershukov, B. Semenov, A. Solov’ev. New results on radiation damage studies of plastic scintillators. Nucl. Instrum. Meth. A, 1996, 369 : 55
[459]
A. Yamamoto, T. Mito, N. Kimura, T. Haruyama, H. Yamaoka, O. Araoka, M. Tadano, S. Suzuki, Y. Kondo, M. Kawai. . Quench characteristics and operational stability of the topaz thin superconducting solenoid. Japan. J. Appl. Phys., 1986, 25 : L443
[460]
G.AcquistapaceC.Collaboration, ., Cms, the magnet project: Technical design report, Technical Design Report CMS (1997)
[461]
X.Ma, ., Determination of event start time at BESIII, Chin. Phys. C 32, 744 (2008)
[462]
J. H. Zou, X. T. Huang, W. D. Li, T. Lin, T. Li, K. Zhang, Z. Y. Deng, G. F. Cao. SNiPER: An offline software framework for non-collider physics experiments. J. Phys. Conf. Ser., 2015, 664 : 072053
CrossRef ADS Google scholar
[463]
T.LiX.Xia X.HuangJ. ZouW.LiT.linK.Zhang Z.Deng, Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100
[464]
F. Gaede, B. Hegner, G. A. Stewart. PODIO: recent developments in the Plain Old Data EDM toolkit. EPJ Web Conf., 2020, 245 : 05024
CrossRef ADS Google scholar
[465]
H. Li, W. Huang, D. Liu, Y. Song, M. Shao, X. Huang. Detector geometry management system designed for super tau charm facility offline software. J. Instrum., 2021, 16 : T04004
CrossRef ADS Google scholar
[466]
M. Frank, F. Gaede, C. Grefe, P. Mato. DD4hep: A detector description toolkit for high energy physics experiments. J. Phys. Conf. Ser., 2014, 513 : 022010
CrossRef ADS Google scholar
[467]
Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)
[468]
S. Agostinelli. . GEANT4 – a simulation toolkit. Nucl. Instrum. Meth. A, 2003, 506 : 250
[469]
H. Li, W. H. Huang, D. Liu, Y. Song, M. Shao, X. T. Huang. Detector geometry management system designed for Super Tau Charm Facility offline software. JINST, 2021, 16 : T04004
CrossRef ADS Google scholar
[470]
M.Ablikim. (BESIII), ., Measurement of azimuthal asymmetries in inclusive charged dip- ion production in e+e annihilations at s = 3.65 GeV, Phys. Rev. Lett. 116, 042001 (2016), arXiv: 1507.06824 [hep-ex]
[471]
B. L. Wang, X. R. Lü, Y. H. Zheng. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
CrossRef ADS Google scholar
[472]
M.Ablikim. (BESIII), ., Observation of the leptonic decay D+τ+ντ, Phys. Rev. Lett. 123, 211802 (2019), arXiv: 1908.08877 [hep-ex]
[473]
M.Ablikim. (BESIII), ., Determination of the pseudoscalar decay constant f Ds+ via Ds+µ+νµ, Phys. Rev. Lett. 122, 071802 (2019), arXiv: 1811.10890 [hep-ex]
[474]
H.-Y.ChengX.-R. LyuZ.-Z.Xing, in: 2022 Snowmass Summer Study (2022), arXiv: 2203.03211 [hep-ph]
[475]
M.Ablikim. (BESIII), ., Precision measurement of the mass of the τ lepton, Phys. Rev. D 90, 012001 (2014), arXiv: 1405.1076 [hep-ex]
[476]
A.Airapetian.(HERMES), ., Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target, Phys. Rev. Lett. 94, 012002 (2005), arXiv: hep-ex/0408013
[477]
A.Airapetian.(HERMES), ., Effects of transversity in deep-inelastic scattering by polarized protons, Phys. Lett. B 693, 11 (2010), arXiv: 1006.4221[hep-ex]
[478]
C.Adolph. (COMPASS), ., Experimental investigation of transverse spin asymmetries in muon-p SIDIS processes: Collins asymmetries, Phys. Lett. B 717, 376 (2012), arXiv: 1205.5121 [hep-ex]
[479]
X.Qian. (Jefferson Lab Hall A), ., Single spin asymmetries in charged pion production from semi-inclusive deep inelastic scattering on a transversely polarized 3He target, Phys. Rev. Lett. 107, 072003 (2011), arXiv: 1106.0363 [nucl-ex]
[480]
K.Abe. (Belle), ., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e annihilation at Belle, Phys. Rev. Lett. 96, 232002 (2006), arXiv: hep-ex/0507063
[481]
R.Seidl. (Belle), ., Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e+e annihilation at s = 10.58-GeV, Phys. Rev. D 78, 032011 (2008) [Erratum: Phys. Rev. D 86, 039905 (2012)], arXiv: 0805.2975 [hep-ex]
[482]
J.P. Lees. (BaBar), ., Measurement of Collins asymmetries in inclusive production of charged pion pairs in e+e annihilation at BABAR, Phys. Rev. D 90, 052003 (2014), arXiv: 1309.5278 [hep-ex]
[483]
B. L. Wang, X.-R. Lyu, Y. H. Zheng. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
CrossRef ADS Google scholar
[484]
I.I. BigiA. I. Sanda, A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
[485]
Y.GrossmanY. Nir, CP violation in τ±π±KSν and D±π±KS: The importance of KSKL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
[486]
J.P. Lees. (BaBar), ., Search for CP violation in the decay τπ KS0 (≥ 0)ντ, Phys. Rev. D 85, 031102 (2012) [Erratum: Phys. Rev. D 85, 099904 (2012)], arXiv: 1109.1527 [hep-ex]
[487]
G.Bonvicini. (CLEO), ., Search for CP violation in τKπντ decays, Phys. Rev. Lett. 88, 111803 (2002), arXiv: hep-ex/0111095
[488]
M.Bischofberger.(Belle), ., Search for CP violation in τ → KS0πντ decays at Belle, Phys. Rev. Lett. 107, 131801 (2011), arXiv: 1101.0349 [hep-ex]
[489]
J.H. KuhnE. Mirkes, Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]
[490]
S.JadachB. F. L. WardZ.Was, The precision Monte Carlo event generator KK for two fermion final states in e+e collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214
[491]
J. F. Donoghue, X.-G. He, S. Pakvasa. Hyperon decays and CP nonconservation. Phys. Rev. D, 1986, 34 : 833
CrossRef ADS Google scholar
[492]
N.SaloneP. AdlarsonV.BatozskayaA.KupscS.Leupold J.Tandean, Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]
[493]
D.Cronin-Hennessy.(CLEO), ., Measurement of Charm Production Cross Sections in e+e Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80, 072001 (2009), arXiv: 0801.3418 [hep-ex]
[494]
K.S. BabuC. Kolda, Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310
[495]
J.R. EllisJ. HisanoM.RaidalY.Shimizu, A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110
[496]
F. Borzumati, A. Masiero. Large muon and electron number violations in supergravity the-ories. Phys. Rev. Lett., 1986, 57 : 961
CrossRef ADS Google scholar
[497]
E.Ma, Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177
[498]
C.-X.YueY.-M. ZhangL.-J.Liu, Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291
[499]
J. E. Kim, P. Ko, D.-G. Lee. More on r-parity- and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays. Phys. Rev. D, 1997, 56 : 100
CrossRef ADS Google scholar
[500]
B.Aubert. (BaBar), ., Searches for lepton flavor violation in the decays τ±e±γ and τ±μ±γ, Phys. Rev. Lett. 104, 021802 (2010), arXiv: 0908.2381 [hep-ex]
[501]
K.Hayasaka. (Belle), ., New search for τμγ and τ decays at Belle, Phys. Lett. B 666, 16 (2008), arXiv: 0705.0650 [hep-ex]
[502]
G.BalossiniC. M. Carloni CalameG.Montagna O.NicrosiniF. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181
[503]
G.BalossiniC. BignaminiC.M. C. CalameG.MontagnaO.NicrosiniF.Piccinini, Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]
[504]
G.RodrigoH. CzyzJ.H. KuhnM.Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184
[505]
S.Actis. (Working Group on Radiative CorrectionsMonteCarlo generators for low energies), ., Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data, Eur. Phys. J. C 66, 585 (2010), arXiv: 0912.0749 [hep-ph]
[506]
C.Sturm, Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]
[507]
F.Jegerlehner, The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We would like to thank Sergey Barsuk (IN2P3-CNRS & Université Paris 11, France), Alexander Bonder (Novosibirsk State University & Budker Institute of Nuclear Physics, Russia), Oliver Callot (IN2P3/CNRS & Université Paris 11, France), Wolfgang Kühn (Justus-Liebig-Universitaet Giessen, II. Physikalisches Institut, Germany), Cheng Li (University of Science and Technology of China, China), Jin Li (Institute of High Energy Physics, China), Weiguo Li (Institute of High Energy Physics, China), Alexey Petrov (University of South Carolina, USA), Yuri Tikhonov (Budker Institute of Nuclear Physics, Russia), and Changzheng Yuan (Institute of High Energy Physics, China; University of Chinese Academy of Sciences, China) for their reviewing of this report. We would like to thank Andrzej Kupsc (National Centre for Nuclear Research, Poland; Uppsala University, Sweden) for his contribution to this report. We thank the University of Science and Technology of China, the Hefei Comprehensive National Science Center, State Key Laboratory of Particle Detection and Electronics, and National Synchrotron Radiation Laboratory for their strong support. The research work leading to this report was supported by the National Key R&D Program of China under Contract No. 2022YFA1602200, the International Partnership Program of the Chineses Academy of Sciences under Grant No. 211134KYSB20200057 and the STCF Key Technology Research and Development Project.

RIGHTS & PERMISSIONS

2023 The Authors
AI Summary AI Mindmap
PDF(18750 KB)

Accesses

Citations

Detail

Sections
Recommended

/