STCF conceptual design report (Volume 1): Physics & detector
M. Achasov, X. C. Ai, L. P. An, R. Aliberti, Q. An, X. Z. Bai, Y. Bai, O. Bakina, A. Barnyakov, V. Blinov, V. Bobrovnikov, D. Bodrov, A. Bogomyagkov, A. Bondar, I. Boyko, Z. H. Bu, F. M. Cai, H. Cai, J. J. Cao, Q. H. Cao, X. Cao, Z. Cao, Q. Chang, K. T. Chao, D. Y. Chen, H. Chen, H. X. Chen, J. F. Chen, K. Chen, L. L. Chen, P. Chen, S. L. Chen, S. M. Chen, S. Chen, S. P. Chen, W. Chen, X. Chen, X. F. Chen, X. R. Chen, Y. Chen, Y. Q. Chen, H. Y. Cheng, J. Cheng, S. Cheng, T. G. Cheng, J. P. Dai, L. Y. Dai, X. C. Dai, D. Dedovich, A. Denig, I. Denisenko, J. M. Dias, D. Z. Ding, L. Y. Dong, W. H. Dong, V. Druzhinin, D. S. Du, Y. J. Du, Z. G. Du, L. M. Duan, D. Epifanov, Y. L. Fan, S. S. Fang, Z. J. Fang, G. Fedotovich, C. Q. Feng, X. Feng, Y. T. Feng, J. L. Fu, J. Gao, Y. N. Gao, P. S. Ge, C. Q. Geng, L. S. Geng, A. Gilman, L. Gong, T. Gong, B. Gou, W. Gradl, J. L. Gu, A. Guevara, L. C. Gui, A. Q. Guo, F. K. Guo, J. C. Guo, J. Guo, Y. P. Guo, Z. H. Guo, A. Guskov, K. L. Han, L. Han, M. Han, X. Q. Hao, J. B. He, S. Q. He, X. G. He, Y. L. He, Z. B. He, Z. X. Heng, B. L. Hou, T. J. Hou, Y. R. Hou, C. Y. Hu, H. M. Hu, K. Hu, R. J. Hu, W. H. Hu, X. H. Hu, Y. C. Hu, J. Hua, G. S. Huang, J. S. Huang, M. Huang, Q. Y. Huang, W. Q. Huang, X. T. Huang, X. J. Huang, Y. B. Huang, Y. S. Huang, N. Hüsken, V. Ivanov, Q. P. Ji, J. J. Jia, S. Jia, Z. K. Jia, H. B. Jiang, J. Jiang, S. Z. Jiang, J. B. Jiao, Z. Jiao, H. J. Jing, X. L. Kang, X. S. Kang, B. C. Ke, M. Kenzie, A. Khoukaz, I. Koop, E. Kravchenko, A. Kuzmin, Y. Lei, E. Levichev, C. H. Li, C. Li, D. Y. Li, F. Li, G. Li, G. Li, H. B. Li, H. Li, H. N. Li, H. J. Li, H. L. Li, J. M. Li, J. Li, L. Li, L. Li, L. Y. Li, N. Li, P. R. Li, R. H. Li, S. Li, T. Li, W. J. Li, X. Li, X. H. Li, X. Q. Li, X. H. Li, Y. Li, Y. Y. Li, Z. J. Li, H. Liang, J. H. Liang, Y. T. Liang, G. R. Liao, L. Z. Liao, Y. Liao, C. X. Lin, D. X. Lin, X. S. Lin, B. J. Liu, C. W. Liu, D. Liu, F. Liu, G. M. Liu, H. B. Liu, J. Liu, J. J. Liu, J. B. Liu, K. Liu, K. Y. Liu, K. Liu, L. Liu, Q. Liu, S. B. Liu, T. Liu, X. Liu, Y. W. Liu, Y. Liu, Y. L. Liu, Z. Q. Liu, Z. Y. Liu, Z. W. Liu, I. Logashenko, Y. Long, C. G. Lu, J. X. Lu, N. Lu, Q. F. Lü, Y. Lu, Y. Lu, Z. Lu, P. Lukin, F. J. Luo, T. Luo, X. F. Luo, Y. H. Luo, H. J. Lyu, X. R. Lyu, J. P. Ma, P. Ma, Y. Ma, Y. M. Ma, F. Maas, S. Malde, D. Matvienko, Z. X. Meng, R. Mitchell, A. Nefediev, Y. Nefedov, S. L. Olsen, Q. Ouyang, P. Pakhlov, G. Pakhlova, X. Pan, Y. Pan, E. Passemar, Y. P. Pei, H. P. Peng, L. Peng, X. Y. Peng, X. J. Peng, K. Peters, S. Pivovarov, E. Pyata, B. B. Qi, Y. Q. Qi, W. B. Qian, Y. Qian, C. F. Qiao, J. J. Qin, J. J. Qin, L. Q. Qin, X. S. Qin, T. L. Qiu, J. Rademacker, C. F. Redmer, H. Y. Sang, M. Saur, W. Shan, X. Y. Shan, L. L. Shang, M. Shao, L. Shekhtman, C. P. Shen, J. M. Shen, Z. T. Shen, H. C. Shi, X. D. Shi, B. Shwartz, A. Sokolov, J. J. Song, W. M. Song, Y. Song, Y. X. Song, A. Sukharev, J. F. Sun, L. Sun, X. M. Sun, Y. J. Sun, Z. P. Sun, J. Tang, S. S. Tang, Z. B. Tang, C. H. Tian, J. S. Tian, Y. Tian, Y. Tikhonov, K. Todyshev, T. Uglov, V. Vorobyev, B. D. Wan, B. L. Wang, B. Wang, D. Y. Wang, G. Y. Wang, G. L. Wang, H. L. Wang, J. Wang, J. H. Wang, J. C. Wang, M. L. Wang, R. Wang, R. Wang, S. B. Wang, W. Wang, W. P. Wang, X. C. Wang, X. D. Wang, X. L. Wang, X. L. Wang, X. P. Wang, X. F. Wang, Y. D. Wang, Y. P. Wang, Y. Q. Wang, Y. L. Wang, Y. G. Wang, Z. Y. Wang, Z. Y. Wang, Z. L. Wang, Z. G. Wang, D. H. Wei, X. L. Wei, X. M. Wei, Q. G. Wen, X. J. Wen, G. Wilkinson, B. Wu, J. J. Wu, L. Wu, P. Wu, T. W. Wu, Y. S. Wu, L. Xia, T. Xiang, C. W. Xiao, D. Xiao, M. Xiao, K. P. Xie, Y. H. Xie, Y. Xing, Z. Z. Xing, X. N. Xiong, F. R. Xu, J. Xu, L. L. Xu, Q. N. Xu, X. C. Xu, X. P. Xu, Y. C. Xu, Y. P. Xu, Y. Xu, Z. Z. Xu, D. W. Xuan, F. F. Xue, L. Yan, M. J. Yan, W. B. Yan, W. C. Yan, X. S. Yan, B. F. Yang, C. Yang, H. J. Yang, H. R. Yang, H. T. Yang, J. F. Yang, S. L. Yang, Y. D. Yang, Y. H. Yang, Y. S. Yang, Y. L. Yang, Z. W. Yang, Z. Y. Yang, D. L. Yao, H. Yin, X. H. Yin, N. Yokozaki, S. Y. You, Z. Y. You, C. X. Yu, F. S. Yu, G. L. Yu, H. L. Yu, J. S. Yu, J. Q. Yu, L. Yuan, X. B. Yuan, Z. Y. Yuan, Y. F. Yue, M. Zeng, S. Zeng, A. L. Zhang, B. W. Zhang, G. Y. Zhang, G. Q. Zhang, H. J. Zhang, H. B. Zhang, J. Y. Zhang, J. L. Zhang, J. Zhang, L. Zhang, L. M. Zhang, Q. A. Zhang, R. Zhang, S. L. Zhang, T. Zhang, X. Zhang, Y. Zhang, Y. J. Zhang, Y. X. Zhang, Y. T. Zhang, Y. F. Zhang, Y. C. Zhang, Y. Zhang, Y. Zhang, Y. M. Zhang, Y. L. Zhang, Z. H. Zhang, Z. Y. Zhang, Z. Y. Zhang, H. Y. Zhao, J. Zhao, L. Zhao, M. G. Zhao, Q. Zhao, R. G. Zhao, R. P. Zhao, Y. X. Zhao, Z. G. Zhao, Z. X. Zhao, A. Zhemchugov, B. Zheng, L. Zheng, Q. B. Zheng, R. Zheng, Y. H. Zheng, X. H. Zhong, H. J. Zhou, H. Q. Zhou, H. Zhou, S. H. Zhou, X. Zhou, X. K. Zhou, X. P. Zhou, X. R. Zhou, Y. L. Zhou, Y. Zhou, Y. X. Zhou, Z. Y. Zhou, J. Y. Zhu, K. Zhu, R. D. Zhu, R. L. Zhu, S. H. Zhu, Y. C. Zhu, Z. A. Zhu, V. Zhukova, V. Zhulanov, B. S. Zou, Y. B. Zuo
STCF conceptual design report (Volume 1): Physics & detector
The super τ-charm facility (STCF) is an electron−positron collider proposed by the Chinese particle physics community. It is designed to operate in a center-of-mass energy range from 2 to 7 GeV with a peak luminosity of 0.5 × 1035 cm−2·s−1 or higher. The STCF will produce a data sample about a factor of 100 larger than that of the present τ-charm factory — the BEPCII, providing a unique platform for exploring the asymmetry of matter-antimatter (charge-parity violation), in-depth studies of the internal structure of hadrons and the nature of non-perturbative strong interactions, as well as searching for exotic hadrons and physics beyond the Standard Model. The STCF project in China is under development with an extensive R&D program. This document presents the physics opportunities at the STCF, describes conceptual designs of the STCF detector system, and discusses future plans for detector R&D and physics case studies.
electron−positron collider / tau-charm region / high luminosity / STCF detector / conceptual design
[1] |
L.H. HoddesonL.BrownM.Riordan M.Dresden (Eds.), The Rise of the standard model: Particle physics in the 1960s and 1970s, Proceedings, Conference, Stanford, USA, June 24–27, 1992 (1997)
|
[2] |
G. S. Abrams.
CrossRef
ADS
Google scholar
|
[3] |
D. Bernstein.
CrossRef
ADS
Google scholar
|
[4] |
J. E. Augustin.
CrossRef
ADS
Google scholar
|
[5] |
D.Asner (CLEO), The CLEO-c research program, AIP Conf. Proc. 722, 82 (2004), arXiv: hep-ex/0312034
|
[6] |
J. Z. Bai.
CrossRef
ADS
Google scholar
|
[7] |
J. Z. Bai.
CrossRef
ADS
Google scholar
|
[8] |
M.Ablikim. (BESIII),
|
[9] |
J.Z. Bai. (BES),
|
[10] |
J. Z. Bai.
CrossRef
ADS
Google scholar
|
[11] |
J.Z. Bai. (BES),
|
[12] |
M.Ablikim. (BES),
|
[13] |
M.Ablikim. (BESIII),
|
[14] |
M.Ablikim. (BESIII),
|
[15] |
M.Ablikim. (BES),
|
[16] |
M.Ablikim. (BES),
|
[17] |
C.-A.Zhang, in: 32nd International Conference on High Energy Physics (2004), pp 993–997
|
[18] |
M.Ablikim. (BESIII),
|
[19] |
M.Ablikim. (BESIII),
|
[20] |
M.Ablikim. (BESIII),
|
[21] |
D. Horn, J. Mandula. A model of mesons with constituent gluons. Phys. Rev. D, 1978, 17 : 898
CrossRef
ADS
Google scholar
|
[22] |
M.Ablikim. (BESIII Collaboration),
|
[23] |
M.Ablikim. (BESIII),
|
[24] |
M.Ablikim. (BESIII),
|
[25] |
N. N. Achasov, S. A. Devyanin, G. N. Shestakov. s*−δ0 mixing as the threshold phenomenon. Phys. Lett. B, 1979, 88 : 367
CrossRef
ADS
Google scholar
|
[26] |
M.Ablikim. (BESIII),
|
[27] |
M.Ablikim. (BESIII),
|
[28] |
M.Ablikim. (BESIII),
|
[29] |
M.Ablikim. (BESIII),
|
[30] |
M.Ablikim. (BESIII),
|
[31] |
M.Ablikim. (BESIII),
|
[32] |
M.Ablikim. (BESIII),
|
[33] |
M.Ablikim. (BESIII),
|
[34] |
R. L. Workman, . (Particle Data Group).
CrossRef
ADS
Google scholar
|
[35] |
M.Ablikim. (BESIII),
|
[36] |
M.Ablikim. (BESIII),
|
[37] |
M.Ablikim. (BESIII),
|
[38] |
M.Ablikim. (BESIII),
|
[39] |
M.DavierA. HoeckerB.MalaescuZ.Zhang, Reevaluation of the hadronic vacuum polarisation contributions to the standard model predictions of the muon g-2 and α(mz2) using newest hadronic cross-section data, Eur. Phys. J. C 77, 827 (2017), arXiv: 1706.09436
|
[40] |
M.Ablikim. (BESIII),
|
[41] |
J.Grange. (Muon g-2),
|
[42] |
B.Abi. (Muon g-2),
|
[43] |
T. Mibe (J-PARC g-2). New g-2 experiment at J-PARC. Chin. Phys. C, 2010, 34 : 745
CrossRef
ADS
Google scholar
|
[44] |
M.Ablikim. (BESIII),
|
[45] |
M.Ablikim. (BESIII),
|
[46] |
M.Ablikim. (BESIII),
|
[47] |
M.Ablikim. (BESIII),
|
[48] |
M.Ablikim. (BESIII),
|
[49] |
M.Ablikim. (BESIII),
|
[50] |
M.Ablikim. (BESIII),
|
[51] |
M.Ablikim. (BESIII),
|
[52] |
M.Ablikim. (BESIII),
|
[53] |
M.Ablikim. (BESIII),
|
[54] |
M.Ablikim. (BESIII),
|
[55] |
M.Ablikim. (BESIII),
|
[56] |
M.Ablikim. (BESIII),
|
[57] |
M.Ablikim. (BESIII),
|
[58] |
M.Ablikim. (BESIII),
|
[59] |
W. J. Marciano. The tau decay puzzle. Phys. Rev. D, 1992, 45 : 721
CrossRef
ADS
Google scholar
|
[60] |
R.Aaij. (LHCb),
|
[61] |
H.P. Peng,
|
[62] |
Q.Luo, in: 8th International Particle Accelerator Conference (2017)
|
[63] |
M.Biagini, Super τ/charm project in Italy (2014)
|
[64] |
I. Adachi, T. E. Browder, P. Križan, S. Tanaka, Y. Ushiroda (Belle-II). Detectors for extreme luminosity: Belle II. Nucl. Instrum. Meth. A, 2018, 907 : 46
CrossRef
ADS
Google scholar
|
[65] |
A. A. Alves.
CrossRef
ADS
Google scholar
|
[66] |
W.Altmannshofer.(Belle II),
|
[67] |
R.Aaij. (LHCb),
|
[68] |
G.Aad. (ATLAS),
|
[69] |
S.Chatrchyan.(CMS),
|
[70] |
D.M. Asner,
|
[71] |
M.Ablikim. (BESIII),
|
[72] |
Y.GrossmanE. PassemarS.Schacht, On the statistical treatment of the Cabibbo angle anomaly, JHEP 07, 068 (2020), arXiv: 1911.07821 [hep-ph]
|
[73] |
J.P. Lees. (BaBar),
|
[74] |
Y. S. Tsai. Production of polarized τ pairs and tests of CP violation using polarized e± colliders near threshold. Phys. Rev. D, 1995, 51 : 3172
CrossRef
ADS
Google scholar
|
[75] |
P.AdlarsonA. Kupsc, CP symmetry tests in the cascade−anticascade decay of charmonium, Phys. Rev. D 100, 114005 (2019), arXiv: 1908.03102 [hep-ph]
|
[76] |
E.S. Swanson, The new heavy mesons: A status report, Phys. Rept. 429, 243 (2006), arXiv: hep-ph/0601110
|
[77] |
M.B. Voloshin, Charmonium, Prog. Part. Nucl. Phys. 61, 455 (2008), arXiv: 0711.4556 [hep-ph]
|
[78] |
H.-X.ChenW. ChenX.LiuS.-L.Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rep. 639, 1 (2016), arXiv: 1601.02092 [hep-ph]
|
[79] |
A.HosakaT. IijimaK.MiyabayashiY.SakaiS.Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, 062C01 (2016), arXiv: 1603.09229 [hep-ph]
|
[80] |
R.F. LebedR. E. MitchellE.S. Swanson, Heavy-quark QCD exotica, Prog. Part. Nucl. Phys. 93, 143 (2017), arXiv: 1610.04528 [hep-ph]
|
[81] |
A.EspositoA. PilloniA.D. Polosa, Multiquark Resonances, Phys. Rep. 668, 1 (2017), arXiv: 1611.07920 [hep-ph]
|
[82] |
F.-K.GuoC. HanhartU.-G.MeißnerQ.WangQ.Zhao B.-S.Zou, Hadronic molecules, Rev. Mod. Phys. 90, 015004 (2018) [Erratum: Rev. Mod. Phys. 94, 029901 (2022)], arXiv: 1705.00141 [hep-ph]
|
[83] |
A.AliJ. S. LangeS.Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97, 123 (2017), arXiv: 1706.00610 [hep-ph]
|
[84] |
S.L. OlsenT. SkwarnickiD.Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, 015003 (2018), arXiv: 1708.04012 [hep-ph]
|
[85] |
M.KarlinerJ. L. RosnerT.Skwarnicki, Multiquark states, Ann. Rev. Nucl. Part. Sci. 68, 17 (2018), arXiv: 1711.10626 [hep-ph]
|
[86] |
C.-Z.Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33, 1830018 (2018), arXiv: 1808.01570 [hep-ex]
|
[87] |
A.Cerri,
|
[88] |
Y.-R.LiuH.-X. ChenW.ChenX.LiuS.-L.Zhu, Pentaquark and tetraquark states, Prog. Part. Nucl. Phys. 107, 237 (2019), arXiv: 1903.11976 [hep-ph]
|
[89] |
N.BrambillaS. EidelmanC.HanhartA.NefedievC.-P.Shen C.E. ThomasA. VairoC.-Z.Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1 (2020), arXiv: 1907.07583 [hep-ex]
|
[90] |
F.-K.GuoX.-H. LiuS.Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020), arXiv: 1912.07030 [hep-ph]
|
[91] |
H.-X.ChenW. ChenX.LiuY.-R.LiuS.-L.Zhu, An updated review of the new hadron states, Rep. Prog. Phys. 86, 026201 (2023), arXiv: 2204.02649 [hep-ph]
|
[92] |
S. Godfrey, N. Isgur. Mesons in a relativized quark model with chromodynamics. Phys. Rev. D, 1985, 32 : 189
CrossRef
ADS
Google scholar
|
[93] |
M.Ablikim. (BESIII),
|
[94] |
R.Aaij. (LHCb),
|
[95] |
M.ClevenF.-K. GuoC.HanhartQ.WangQ.Zhao, Employing spin symmetry to disentangle different models for the XYZ states, Phys. Rev. D 92, 014005 (2015), arXiv: 1505.01771 [hep-ph]
|
[96] |
Q.WangC. HanhartQ.Zhao, Decoding the riddle of Y(4260) and Zc(3900), Phys. Rev. Lett. 111, 132003 (2013), arXiv: 1303.6355 [hep-ph]
|
[97] |
A.PilloniC. Fernandez-RamirezA.Jackura V.MathieuM. MikhasenkoJ.NysA.P. Szczepaniak (JPAC), Amplitude analysis and the nature of the Zc(3900), Phys. Lett. B 772, 200 (2017), arXiv: 1612.06490 [hep-ph]
|
[98] |
Z.YangX. CaoF.-K.GuoJ.NievesM.P. Valderrama, Strange molecular partners of the Zc(3900) and Zc(4020), Phys. Rev. D 103, 074029 (2021), arXiv: 2011.08725 [hep-ph]
|
[99] |
A.E. BondarA. GarmashA.I. MilsteinR.MizukM.B. Voloshin, Heavy quark spin structure in Zb resonances, Phys. Rev. D 84, 054010 (2011), arXiv: 1105.4473 [hep-ph]
|
[100] |
Q.-F.CaoH.-R. QiY.-F.WangH.-Q.Zheng, Discussions on the line-shape of the X(4660) resonance, Phys. Rev. D 100, 054040 (2019), arXiv: 1906.00356 [hep-ph]
|
[101] |
X.-K.DongF.-K. GuoB.-S.Zou, A survey of heavy−antiheavy hadronic molecules, Prog. Phys. 41, 65 (2021), arXiv: 2101.01021 [hep-ph]
|
[102] |
K.-T.ChaoF.-K. GuoY.-J.Zhang, Production of J/ψpp ¯ in electron−positron collisions (2023) (in preparation)
|
[103] |
Y.-Q.MaY.-J. ZhangK.-T.Chao, QCD Corrections to e+e− → J/ψ + gg at B factories, Phys. Rev. Lett. 102, 162002 (2009), arXiv: 0812.5106 [hep-ph]
|
[104] |
C.-W.ShenF.-K. GuoJ.-J.XieB.-S.Zou, Disentangling the hadronic molecule nature of the Pc(4380) pentaquark-like structure, Nucl. Phys. A 954, 393 (2016), arXiv: 1603.04672 [hep-ph]
|
[105] |
Y.-J.ZhangY.-j. GaoK.-T.Chao, Next-to-leading-order QCD correction to e+e− → J/ψ + ηc at s = 10.6 GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
|
[106] |
Y.-J.ZhangK.-T. Chao, Double-charm production e+e− → J/ψ + c c ¯ at B factories with next-to-leading-order QCD corrections, Phys. Rev. Lett. 98, 092003 (2007), arXiv: hep-ph/0611086
|
[107] |
K.-T. Chao. The (cc)−(c ¯c) (diquark−anti-diquark) states in e+e− annihilation. Z. Phys. C, 1981, 7 : 317
CrossRef
ADS
Google scholar
|
[108] |
M.KarlinerS. NussinovJ.L. Rosner, QQQQ ¯ states: Masses, production, and decays, Phys. Rev. D 95, 034011 (2017), arXiv: 1611.00348 [hep-ph]
|
[109] |
V.R. DebastianiF.AcetiW.-H.Liang E.Oset, Revising the f1(1420) resonance, Phys. Rev. D 95, 034015 (2017), arXiv: 1611.05383 [hep-ph]
|
[110] |
G.-J.WangL. MengS.-L.Zhu, Spectrum of the fully-heavy tetraquark state QQQ′ ¯Q′ ¯, Phys. Rev. D 100, 096013 (2019), arXiv: 1907.05177 [hep-ph]
|
[111] |
M.N. AnwarJ. FerrettiF.-K.GuoE.SantopintoB.-S.Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, 647 (2018), arXiv: 1710.02540 [hep-ph]
|
[112] |
R.Aaij. (LHCb),
|
[113] |
L.LiuG. MoirM.PeardonS.M. RyanC.E. ThomasP.VilasecaJ.J. DudekR.G. EdwardsB.JooD.G. Richards (Hadron Spectrum), Excited and exotic charmonium spectroscopy from lattice QCD, JHEP 07, 126 (2012), arXiv: 1204.5425 [hep-ph]
|
[114] |
S.-L.Zhu, The Possible interpretations of Y(4260), Phys. Lett. B 625, 212 (2005), arXiv: hep-ph/0507025
|
[115] |
V.Bhardwaj. (Belle),
|
[116] |
M.Ablikim. (BESIII),
|
[117] |
Y.-B.YangY. ChenL.-C.GuiC.LiuY.-B.Liu Z.LiuJ.-P. MaJ.-B.Zhang (CLQCD), Lattice study on ηc2 and X(3872), Phys. Rev. D 87, 014501 (2013), arXiv: 1206.2086 [hep-lat]
|
[118] |
H.-B.LiX.-R. Lyu, Study of the standard model with weak decays of charmed hadrons at BESIII, Natl. Sci. Rev. 8, nwab181 (2021), arXiv: 2103.00908 [hep-ex]
|
[119] |
A.Bazavov,
|
[120] |
M.Ablikim. (BESIII),
|
[121] |
M.Ablikim. (BESIII),
|
[122] |
M.Ablikim. (BESIII Collaboration),
|
[123] |
Y.S. Amhis. (Heavy Flavor Averaging GroupHFLAV)
|
[124] |
M.Ablikim. (BESIII),
|
[125] |
M.Ablikim. (BESIII),
|
[126] |
J.LiuX. ShiH.LiX.ZhouB.Zheng, Prospects of CKM elements |Vcs| and decay constant f Ds + in D s+ → µ+νµ decay at STCF, Eur. Phys. J. C 82, 337 (2022), arXiv: 2109.14969 [hep-ex]
|
[127] |
H.LiT.Luo X.ShiX. Zhou, Feasibility study of D s+ → τ+ντ decay and test of lepton flavor universality with leptonic Ds+ decays at STCF, Eur. Phys. J. C 82, 310 (2022), arXiv: 2110.08864 [hep-ex]
|
[128] |
J.CharlesA. HockerH.LackerS.LaplaceF.R. Le DiberderJ.MalclesJ.OcarizM.Pivk L.Roos (CKMfitter Group), CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41, 1 (2005), arXiv: hep-ph/0406184
|
[129] |
CKMfitter Group, URL: ckmfitter.in2p3.fr/ (2022)
|
[130] |
M.Bona. (UTfit),
|
[131] |
UTfit Collaboration, URL: utfit.org/UTfit/WebHome (2022)
|
[132] |
G. Belanger, C. Q. Geng. T-violating muon polarization in Kμ3 decays. Phys. Rev. D, 1991, 44 : 2789
CrossRef
ADS
Google scholar
|
[133] |
Y.Grossman, Beyond the standard model with B and K physics, Int. J. Mod. Phys. A 19, 907 (2004), arXiv: hep-ph/0310229
|
[134] |
W.WangF.-S. YuZ.-X.Zhao, Novel method to reliably determine the photon helicity in B → K1γ, Phys. Rev. Lett. 125, 051802 (2020), arXiv: 1909.13083 [hep-ph]
|
[135] |
S.FajferI. NisandzicU.Rojec, Discerning new physics in charm meson leptonic and semileptonic decays, Phys. Rev. D 91, 094009 (2015), arXiv: 1502.07488 [hep-ph]
|
[136] |
M.Ablikim. (BESIII),
|
[137] |
M.Ablikim. (BESIII),
|
[138] |
A.F. FalkY. GrossmanZ.LigetiY.NirA.A. Petrov, D0−D0 mass difference from a dispersion relation, Phys. Rev. D 69, 114021 (2004), arXiv: hep-ph/0402204
|
[139] |
R.T. D’AgnoloG.GrossoM.Pierini A.WulzerM. Zanetti, Learning multivariate new physics, Eur. Phys. J. C 81, 89 (2021), arXiv: 1912.12155 [hep-ph]
|
[140] |
HFLAV Collaboration, URL: hflav.web.cern.ch/ (2022)
|
[141] |
B.O’Leary.(SuperB),
|
[142] |
Z.-Z. Xing. An overview of D0 anti-D0 mixing and CP violation. Chin. Phys. C, 2008, 32 : 483
CrossRef
ADS
Google scholar
|
[143] |
Z.-Z.Xing, D 0−D ¯0 mixing and CP violation in neutral D-meson decays, Phys. Rev. D 55, 196 (1997), arXiv: hep-ph/9606422
|
[144] |
Z.-Z.Xing, Effect of K0−anti-K0 mixing on CP asymmetries in weak decays of D and B mesons, Phys. Lett. B 353, 313 (1995), [Erratum: Phys. Lett. B 363, 266 (1995)], arXiv: hep-ph/9505272
|
[145] |
F.-S.YuD. WangH.-N.Li, CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119, 181802 (2017), arXiv: 1707.09297 [hep-ph]
|
[146] |
R.Aaij. (LHCb),
|
[147] |
M.SaurF.-S. Yu, Charm CPV: Observation and prospects, Sci. Bull. 65, 1428 (2020), arXiv: 2002.12088[hep-ex]
|
[148] |
H.-Y.ChengC.-W. Chiang, Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012) [Erratum: Phys. Rev. D 85, 079903 (2012)], arXiv: 1201.0785 [hep-ph]
|
[149] |
H.-N.LiC.-D. LuF.-S.Yu, Branching ratios and direct CP asymmetries in D → PP decays, Phys. Rev. D 86, 036012 (2012), arXiv: 1203.3120 [hep-ph]
|
[150] |
D.PirtskhalavaP.Uttayarat, CP violation and flavor SU(3) breaking in D-meson decays, Phys. Lett. B 712, 81 (2012), arXiv: 1112.5451 [hep-ph]
|
[151] |
M.Gronau, High order U-spin breaking: A precise amplitude relation in D0 decays, Phys. Lett. B 730, 221 (2014) [Addendum: Phys. Lett. B 735, 282 (2014)], arXiv: 1311.1434 [hep-ph]
|
[152] |
F.BuccellaM. LusignoliA.PuglieseP.Santorelli, CP violation in D meson decays: Would it be a sign of new physics? Phys. Rev. D 88, 074011 (2013), arXiv: 1305.7343[hep-ph]
|
[153] |
F.BuccellaA. PaulP.Santorelli, SU(3)F breaking through final state interactions and CP asymmetries in D → PP decays, Phys. Rev. D 99, 113001 (2019), arXiv: 1902.05564 [hep-ph]
|
[154] |
H.-N.LiC.-D. LüF.-S.Yu, Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 (2019)
|
[155] |
Y.GrossmanS. Schacht, The emergence of the ΔU = 0 rule in charm physics, JHEP 07, 020 (2019), arXiv: 1903.10952 [hep-ph]
|
[156] |
I.I. BigiA. Paul, On CP asymmetries in two-, three- and four-body D decays, JHEP 03, 021 (2012), arXiv: 1110.2862 [hep-ph]
|
[157] |
D.E. MorrisseyM.J. Ramsey-Musolf Electroweak baryogenesis, New J. Phys. 14, 125003 (2012), arXiv: 1206.2942 [hep-ph]
|
[158] |
A.BondarA. PoluektovV.Vorobiev, Charm mixing in a model-independent analysis of correlated D 0 D ¯ 0 decays, Phys. Rev. D 82, 034033 (2010), arXiv: 1004.2350 [hep-ph]
|
[159] |
D.AtwoodA. A. Petrov, Lifetime differences in heavy mesons with time independent measurements, Phys. Rev. D 71, 054032 (2005), arXiv: hep-ph/0207165
|
[160] |
Y.ShiJ. Yang, Time reversal symmetry violation in entangled pseudoscalar neutral charmed mesons, Phys. Rev. D 98, 075019 (2018), arXiv: 1612.07628 [hep-ph]
|
[161] |
V.A. Kostelecky, Formalism for CPT, T, and Lorentz violation in neutral meson oscillations, Phys. Rev. D 64, 076001 (2001), arXiv: hep-ph/0104120
|
[162] |
(LHCb)
|
[163] |
M. Gronau, D. London. How to determine all the angles of the unitarity triangle from B d0 → DKs and B s0 → D0. Phys. Lett. B, 1991, 253 : 483
CrossRef
ADS
Google scholar
|
[164] |
M. Gronau, D. Wyler. On determining a weak phase from CP asymmetries in charged B decays. Phys. Lett. B, 1991, 265 : 172
|
[165] |
D.AtwoodI. DunietzA.Soni, Enhanced CP violation with B → K D0(D ¯0) modes and extraction of the Cabibbo−Kobayashi−Maskawa angle γ, Phys. Rev. Lett. 78, 3257 (1997), arXiv: hep-ph/9612433
|
[166] |
D.AtwoodI. DunietzA.Soni, Improved methods for observing CP violation in B±→ KD and measuring the CKM phase γ, Phys. Rev. D 63, 036005 (2001), arXiv: hep-ph/0008090
|
[167] |
A.GiriY. GrossmanA.SofferJ.Zupan, Determining γ using B±→ DK± with multibody D decays, Phys. Rev. D 68, 054018 (2003), arXiv: hep-ph/0303187
|
[168] |
M.Ablikim. (BESIII),
|
[169] |
G.BurdmanI. Shipsey, D 0−D ¯0 mixing and rare charm decays, Ann. Rev. Nucl. Part. Sci. 53, 431 (2003), arXiv: hep-ph/0310076
|
[170] |
E.GolowichJ. HewettS.PakvasaA.A. Petrov, Relating D 0−D ¯0 mixing and D0 → l+l− with new physics, Phys. Rev. D 79, 114030 (2009), arXiv: 0903.2830 [hep-ph]
|
[171] |
M.Ablikim. (BESIII),
|
[172] |
M.Ablikim. (BESIII),
|
[173] |
H.-X.ChenW. ChenX.LiuY.-R.LiuS.-L.Zhu, A review of the open charm and open bottom systems, Rep. Prog. Phys. 80, 076201 (2017), arXiv: 1609.08928 [hep-ph]
|
[174] |
Y.KatoT. Iijima, Open charm hadron spectroscopy at B-factories, Prog. Part. Nucl. Phys. 105, 61 (2019), arXiv: 1810.03748 [hep-ex]
|
[175] |
A.Zupanc. (Belle),
|
[176] |
M.Ablikim. (BESIII),
|
[177] |
S.B. Yang. (Belle),
|
[178] |
A.M. Sirunyan.(CMS),
|
[179] |
M.Ablikim. (BESIII),
|
[180] |
M.Bishai. (CLEO),
|
[181] |
H.-Y.ChengB. Tseng, Cabibbo allowed nonleptonic weak decays of charmed baryons, Phys. Rev. D 48, 4188 (1993), arXiv: hep-ph/9304286
|
[182] |
K.K. SharmaR. C. Verma, A study of weak mesonic decays of Λc and Ξc baryons on the basis of HQET results, Eur. Phys. J. C 7, 217 (1999), arXiv: hep-ph/9803302
|
[183] |
P.Zenczykowski, Quark and pole models of nonleptonic decays of charmed baryons, Phys. Rev. D 50, 402 (1994), arXiv: hep-ph/9309265
|
[184] |
A.Datta, Nonleptonic two-body decays of charmed and Lambda(b) baryons, arXiv: hep-ph/9504428 (1995)
|
[185] |
M.Ablikim. (BESIII),
|
[186] |
L.K. Li. (Belle),
|
[187] |
Y.B. Li. (Belle),
|
[188] |
Y.B. Li. (Belle),
|
[189] |
R.DhirC. S. Kim, Axial-vector emitting weak nonleptonic decays of Ωc0 baryon, Phys. Rev. D 91, 114008 (2015), arXiv: 1501.04259 [hep-ph]
|
[190] |
H.-Y. Cheng, C.-Y. Cheung, G.-L. Lin, Y. C. Lin, T.-M. Yan, H.-L. Yu. Heavy flavor conserving nonleptonic weak decays of heavy baryons. Phys. Rev. D, 1992, 46 : 5060
|
[191] |
R.Aaij. (LHCb),
|
[192] |
S.S. Tang. (Belle),
|
[193] |
P.-Y.NiuQ. WangQ.Zhao, Study of heavy quark conserving weak decays in the quark model, Phys. Lett. B 826, 136916 (2022), arXiv: 2111.14111 [hep-ph]
|
[194] |
H.-Y.ChengF. Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons, Phys. Rev. D 105, 094011 (2022), arXiv: 2204.03149 [hep-ph]
|
[195] |
H.-Y.ChengC.-W. LiuF.Xu, Heavy-flavor-conserving hadronic weak decays of charmed and bottom baryons: An update, Phys. Rev. D 106, 093005 (2022), arXiv: 2209.00257 [hep-ph]
|
[196] |
R.Perez-MarcialR.HuertaA.Garcia M.Avila-Aoki, Predictions for semileptonic decays of charm baryons. 2. Nonrelativistic and MIT bag quark models, Phys. Rev. D 40, 2955 (1989) [Erratum: Phys. Rev. D 44, 2203 (1991)]
|
[197] |
R. L. Singleton. Semileptonic baryon decays with a heavy quark. Phys. Rev. D, 1991, 43 : 2939
CrossRef
ADS
Google scholar
|
[198] |
H.-Y.ChengB. Tseng, 1/M corrections to baryonic form-factors in the quark model, Phys. Rev. D 53, 1457 (1996) [Erratum: Phys. Rev. D 55, 1697 (1997)], arXiv: hep-ph/9502391
|
[199] |
M.PervinW. RobertsS.Capstick, Semileptonic decays of heavy lambda baryons in a quark model, Phys. Rev. C 72, 035201 (2005), arXiv: nucl-th/0503030
|
[200] |
M.A. IvanovV. E. LyubovitskijJ.G. KornerP.Kroll, Heavy baryon transitions in a relativistic three quark model, Phys. Rev. D 56, 348 (1997), arXiv: hep-ph/9612463
|
[201] |
T.GutscheM. A. IvanovJ.G. KörnerV.E. LyubovitskijP. Santorelli, Heavy-to-light semileptonic decays of Λb and Λc baryons in the covariant confined quark model, Phys. Rev. D 90, 114033 (2014) [Erratum: Phys. Rev. D 94, 059902 (2016)], arXiv: 1410.6043 [hep-ph]
|
[202] |
R.N. FaustovV.O. Galkin, Semileptonic decays of Λc baryons in the relativistic quark model, Eur. Phys. J. C 76, 628 (2016), arXiv: 1610.00957 [hep-ph]
|
[203] |
C. W. Luo. Heavy to light baryon weak form-factors in the light cone constituent quark model. Eur. Phys. J. C, 1998, 1 : 235
|
[204] |
R.S. Marques de CarvalhoF.S. NavarraM.Nielsen E.FerreiraH. G. Dosch, Form-factors and decay rates for heavy lambda semileptonic decays from QCD sum rules, Phys. Rev. D 60, 034009 (1999), arXiv: hep-ph/9903326
|
[205] |
M.-Q.HuangD.-W. Wang, Semileptonic decay Λc → Λl+ν from QCD light-cone sum rules, arXiv: hep-ph/0608170 (2006)
|
[206] |
K.AziziY. SaracH.Sundu, Light cone QCD sum rules study of the semileptonic heavy ΞQ and ΞQ' transitions to Ξ and Σ baryons, Eur. Phys. J. A 48, 2 (2012), arXiv: 1107.5925 [hep-ph]
|
[207] |
S.Meinel, Λc → Λl+νl form factors and decay rates from lattice QCD with physical quark masses, Phys. Rev. Lett. 118, 082001 (2017), arXiv: 1611.09696 [hep-lat]
|
[208] |
S.Meinel, Λc → N form factors from lattice QCD and phenomenology of Λc → nℓ+νℓ and Λc → pµ+µ− decays, Phys. Rev. D 97, 034511 (2018), arXiv: 1712.05783 [hep-lat]
|
[209] |
M.Ablikim. (BESIII),
|
[210] |
H.-Y.Cheng, Remarks on the strong coupling constants in heavy hadron chiral Lagrangians, Phys. Lett. B 399, 281 (1997), arXiv: hep-ph/9701234
|
[211] |
H.-Y.ChengC.-Y. CheungG.-L.LinY.C. LinT.-M.Yan H.-L.Yu, Chiral Lagrangians for radiative decays of heavy hadrons, Phys. Rev. D 47, 1030 (1993), arXiv: hep-ph/9209262
|
[212] |
N.JiangX.-L. ChenS.-L.Zhu, Electromagnetic decays of the charmed and bottom baryons in chiral perturbation theory, Phys. Rev. D 92, 054017 (2015), arXiv: 1505.02999 [hep-ph]
|
[213] |
G.-J.WangL. MengS.-L.Zhu, Radiative decays of the singly heavy baryons in chiral perturbation theory, Phys. Rev. D 99, 034021 (2019), arXiv: 1811.06208 [hep-ph]
|
[214] |
J.Yelton. (Belle),
|
[215] |
Y.Li.(Belle),
|
[216] |
M.Ablikim. (BESIII),
|
[217] |
A.BondarA. GrabovskyA.ReznichenkoA.RudenkoV.Vorobyev, Measurement of the weak mixing angle at a super charm-tau factory with data-driven monitoring of the average electron beam polarization, JHEP 03, 076 (2020), arXiv: 1912.09760 [hep-ph]
|
[218] |
R.Aaij. (LHCb),
|
[219] |
I.I. Bigi, Probing CP asymmetries in charm baryons decays, arXiv: 1206.4554 (2012)
|
[220] |
X.-D.ShiX.-W. KangI.BigiW.-P.WangH.-P.Peng, Prospects for CP and P violation in Λc + decays at super tau charm facility, Phys. Rev. D 100, 113002 (2019), arXiv: 1904.12415 [hep-ph]
|
[221] |
B.Aubert. (BaBar),
|
[222] |
H.-Y. Cheng. Charmed baryons circa 2015. Front. Phys. (Beijing), 2015, 10 : 101406
CrossRef
ADS
Google scholar
|
[223] |
R.Aaij. (LHCb),
|
[224] |
H.-Y.ChengC.-W. Chiang, Quantum numbers of Ωc states and other charmed baryons, Phys. Rev. D 95, 094018 (2017), arXiv: 1704.00396 [hep-ph]
|
[225] |
S.-Q.LuoB. ChenZ.-W.LiuX.Liu, Resolving the low mass puzzle of Λc(2940)+, Eur. Phys. J. C 80, 301 (2020), arXiv: 1910.14545[hep-ph]
|
[226] |
R.Aaij. (LHCb),
|
[227] |
J.Yelton. (Belle),
|
[228] |
(LHCb)
|
[229] |
W.-D. Li, Y.-J. Mao, Y.-F. Wang. The BES-III detector and offline software. Int. J. Mod. Phys. A, 2009, 24S1 : 9
|
[230] |
D.d’EnterriaH.-S.Shao, Prospects for ditauonium discovery at colliders, arXiv: 2302.07365 [hep-ph] (2023)
|
[231] |
H.DavoudiaslW.J. Marciano, Tale of two anomalies, Phys. Rev. D 98, 075011 (2018), arXiv: 1806.10252 [hep-ph]
|
[232] |
B.Abi. (Muon g-2),
|
[233] |
S.EidelmanM. Passera, Theory of the tau lepton anomalous magnetic moment, Mod. Phys. Lett. A22, 159 (2007), arXiv: hep-ph/0701260 [hep-ph]
|
[234] |
J.Abdallah. (DELPHI),
|
[235] |
X.ChenY. Wu, Search for the electric dipole moment and anomalous magnetic moment of the tau lepton at tau factories, JHEP 10, 089 (2019), arXiv: 1803.00501 [hep-ph]
|
[236] |
J.BernabeuG. A. Gonzalez-SprinbergJ.PapavassiliouJ.Vidal, Tau anomalous magnetic moment form-factor at super B/flavor factories, Nucl. Phys. B 790, 160 (2008), arXiv: 0707.2496[hep-ph]
|
[237] |
S.EidelmanD. EpifanovM.FaelL.MercolliM.Passera, τ dipole moments via radiative leptonic τ decays, JHEP 03, 140 (2016), arXiv: 1601.07987 [hep-ph]
|
[238] |
A.Pich, Precision Tau Physics, Prog. Part. Nucl. Phys. 75, 41 (2014), arXiv: 1310.7922 [hep-ph]
|
[239] |
Y.Amhis. (HFLAV),
|
[240] |
A.B. ArbuzovT.V. Kopylova, Michel parameters in radiative muon decay, JHEP 09, 109 (2016), arXiv: 1605.06612 [hep-ph]
|
[241] |
J.P. Lees. (BaBar),
|
[242] |
N.Shimizu. (Belle),
|
[243] |
A. Flores-TlalpaG. López Castro , P. Roig., Five-body leptonic decays of muon and tau leptons, JHEP 04, 185 (2016), arXiv: 1508.01822 [hep-ph]
|
[244] |
E. Braaten, S. Narison, A. Pich. QCD analysis of the tau hadronic width. Nucl. Phys. B, 1992, 373 : 581
CrossRef
ADS
Google scholar
|
[245] |
D. Boito, M. Golterman, M. Jamin, A. Mahdavi, K. Maltman, J. Osborne, S. Peris. Updated determination of αs from τ decays. Phys. Rev. D, 2012, 85 : 093015
CrossRef
ADS
Google scholar
|
[246] |
M.BenekeD. BoitoM.Jamin, Perturbative expansion of τ hadronic spectral function moments and αs extractions, JHEP 01, 125 (2013), arXiv: 1210.8038 [hep-ph]
|
[247] |
I.I. BigiA. I. Sanda, A “Known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
|
[248] |
Y.GrossmanY. Nir, CP violation in τ±→ π±KS ν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
|
[249] |
M.Bischofberger.(Belle),
|
[250] |
H.SangX. ShiX.ZhouX.KangJ.Liu, Feasibility study of CP violation in τ → KS πντ decays at the Super Tau Charm Facility, Chin. Phys. C 45, 053003 (2021), arXiv: 2012.06241 [hep-ex]
|
[251] |
F.-Z.ChenX.-Q. LiY.-D.Yang, CP asymmetry in the angular distribution of τ → KS πντ decays, JHEP 05, 151 (2020), arXiv: 2003.05735 [hep-ph]
|
[252] |
W.BernreutherO.Nachtmann, CP violating correlations in electron positron annihilation into τ leptons, Phys. Rev. Lett. 63, 2787 (1989) [Erratum: Phys. Rev. Lett. 64, 1072 (1990)]
|
[253] |
S. E. Ralph, F. Capasso, R. J. Malik. New photorefractive effect in graded-gap superlattices. Phys. Rev. Lett., 1990, 64 : 1072
CrossRef
ADS
Google scholar
|
[254] |
K.Inami. (Belle),
|
[255] |
J.BernabeuG. A. Gonzalez-SprinbergJ.Vidal, CP violation and electric-dipole-moment at low energy tau production with polarized electrons, Nucl. Phys. B 763, 283 (2007), arXiv: hep-ph/0610135
|
[256] |
Y.S. Tsai, Production of polarized tau pairs and tests of CP violation using polarized e+− colliders near threshold, Phys. Rev. D 51, 3172 (1995), arXiv: hep-ph/9410265
|
[257] |
X.R. Zhou, Tau LFV decays: Super Tau Charm Factory, URL: indico.fnal.gov/event/44457/ (2020)
|
[258] |
A.V. BobrovA. E. Bondar, Search for τ → µ + γ decay at Super c−τ factory, Nucl. Phys. B Proc. Suppl. 225–227, 195 (2012), arXiv: 1206.1909 [hep-ex]
|
[259] |
T.XiangX.-D. ShiD.-Y.WangX.-R.Zhou, Sensitivity study of the charged lepton flavor violating process τ → γµ at STCF, (2023), arXiv: 2305.00483 [hep-ex]
|
[260] |
J. Z. Bai (BES). Measurement of the total cross section for hadronic production by e+e− annihilation at energies between 2.6–5 GeV. Phys. Rev. Lett., 2000, 84 : 594
|
[261] |
J.Z. Bai. (BES),
|
[262] |
V.V. Anashin.(KEDR),
|
[263] |
M.BaakR. Kogler, in: 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories (2013), pp 349–358, arXiv: 1306.0571 [hep-ph]
|
[264] |
B.Abi. (Muon g-2),
|
[265] |
G. Sterman, J. Smith, J. C. Collins, J. Whitmore, R. Brock, J. Huston, J. Pumplin, W.-K. Tung, H. Weerts, C.-P. Yuan, S. Kuhlmann, S. Mishra, J. G. Morfín, F. Olness, J. Owens, J. Qiu, D. E. Soper. Handbook of perturbative QCD. Rev. Mod. Phys., 1995, 67 : 157
|
[266] |
J.C. CollinsD.E. Soper, Back-to-back jets in QCD, Nucl. Phys. B 193, 381 (1981) [Erratum: Nucl. Phys. B 213, 545 (1983)]
|
[267] |
D. Pitonyak, M. Schlegel, A. Metz. Polarized hadron pair production from electron−positron annihilation. Phys. Rev. D, 2014, 89 : 054032
CrossRef
ADS
Google scholar
|
[268] |
J. Collins. Fragmentation of transversely polarized quarks probed in transverse momentum distributions. Nucl. Phys. B, 1993, 396 : 161
|
[269] |
R.Seidl. (Belle),
|
[270] |
P. Sun, F. Yuan. Energy evolution for the Sivers asymmetries in hard processes. Phys. Rev. D, 2013, 88 : 034016
CrossRef
ADS
Google scholar
|
[271] |
B.CollaborationJ.Z. BaiY.Ban J.G. Bian, Observation of a near-threshold enhancement in th pp ¯ mass spectrum from radiative J/ψ-γpp ¯ p ¯ decays, Phys. Rev. Lett. 91, 022001 (2003), arXiv: hep-ex/0303006 [hep-ex]
|
[272] |
B.E. A. Aubert (BABAR), Study of e+e− → ΛΛ ¯, ΛΣ ¯0 Σ0 Σ ¯ 0 using initial state radiation with BABAR, Phys. Rev. D 76, 092006 (2007).
|
[273] |
P. E. A. Pakhlov (Belle). Measurement of the e+e− → J/ψc c ¯ cross section at s ≈ 10.6 GeV. Phys. Rev. D, 2009, 79 : 071101
|
[274] |
Y.-Q.MaY.-J. ZhangK.-T.Chao, QCD corrections to e+e− → J/ψgg at B factories, Phys. Rev. Lett. 102, 162002 (2008), arXiv: 0812.5106 [hep-ph]
|
[275] |
Y.-J. Zhang, Y.-Q. Ma, K. Wang, K.-T. Chao. QCD radiative correction to color-octet J/ψ inclusive production at B factories. Phys. Rev. D, 2010, 81 : 034015
CrossRef
ADS
Google scholar
|
[276] |
B.GongJ.-X. Wang, Next-to-leading-order QCD corrections to e+e− → J/ψ gg at the B factories, Phys. Rev. Lett. 102, 162003 (2009), arXiv: 0901.0117 [hep-ph]
|
[277] |
B. Gong, J.-X. Wang. Next-to-leading-order QCD corrections to e+e− → J/ψcc ¯ at the B factories. Phys. Rev. D, 2009, 80 : 054015
|
[278] |
N.Brambilla,
|
[279] |
T.B. CollaborationK.Abe, Observation of double cc ¯ Production in e+e− annihilation at s = 10.6 GeV, Phys. Rev. Lett. 89, 142001 (2002), arXiv: hep-ex/0205104 [hep-ex]
|
[280] |
F.FengY. JiaZ.MoW.-L.SangJ.-Y.Zhang, Next-to-next-to-leading-order QCD corrections to e+e− → J/ψ + ηc at B factories, arXiv: 1901.08447 (2019)
|
[281] |
Y.-J.ZhangY.-J. GaoK.-T.Chao, Next-to-leading order QCD correction to e+e− → J/ψ + ηc at s = 10.6-GeV, Phys. Rev. Lett. 96, 092001 (2006), arXiv: hep-ph/0506076
|
[282] |
Y.-J. Zhang, K.-T. Chao. Double-charm production e+e− → J/ψ + cc ¯ at B factories with next-to-leading-order QCD corrections. Phys. Rev. Lett., 2007, 98 : 092003
|
[283] |
N.Brambilla,
|
[284] |
C. A. Meyer, Y. Van Haarlem. Status of exotic-quantum-number mesons. Phys. Rev. C, 2010, 82 : 025208
|
[285] |
V.CredeC. A. Meyer, The Experimental Status of Glueballs, Prog. Part. Nucl. Phys. 63, 74 (2008), arXiv: 0812.0600 [hep-ex]
|
[286] |
E. Klempt, A. Zaitsev. Glueballs, hybrids, multiquarks: Experimental facts versus QCD inspired concepts. Phys. Rep., 2007, 454 : 1
|
[287] |
C. Amsler, N. A. Törnqvist. Mesons beyond the naive quark model. Phys. Rep., 2004, 389 : 61
|
[288] |
S. Godfrey, J. Napolitano. Light-meson spectroscopy. Rev. Mod. Phys., 1999, 71 : 1411
|
[289] |
W.-J.LeeD. Weingarten, Scalar quarkonium masses and mixing with the lightest scalar glueball, Phys. Rev. D 61, 014015 (2000), arXiv: hep-lat/9910008
|
[290] |
G.S. BaliK. SchillingA.HulsebosA.C. IrvingC.Michael P.W. Stephenson (UKQCD), A comprehensive lattice study of SU(3) glueballs, Phys. Lett. B 309, 378 (1993), arXiv: hep-lat/9304012
|
[291] |
C.J. MorningstarM.J. Peardon, Efficient glueball simulations on anisotropic lattices, Phys. Rev. D 56, 4043 (1997), arXiv: hep-lat/9704011
|
[292] |
Y.Chen,
|
[293] |
P.LacockC. MichaelP.BoyleP.Rowland (UKQCD), Hybrid mesons from quenched QCD, Phys. Lett. B 401, 308 (1997), arXiv: hep-lat/9611011
|
[294] |
C.W. Bernard.(MILC),
|
[295] |
J.J. DudekR. G. EdwardsB.JooM.J. PeardonD.G. RichardsC.E. Thomas, Isoscalar meson spectroscopy from lattice QCD, Phys. Rev. D 83, 111502 (2011), arXiv: 1102.4299 [hep-lat]
|
[296] |
J.J. DudekR. G. EdwardsP.GuoC.E. Thomas (Hadron Spectrum), Toward the excited isoscalar meson spectrum from lattice QCD, Phys. Rev. D 88, 094505 (2013), arXiv: 1309.2608[hep-lat]
|
[297] |
V.P. DruzhininS.I. EidelmanS.I. SerednyakovE.P. Solodov, Hadron production via e+e− collisions with initial state radiation, Rev. Mod. Phys. 83, 1545 (2011), arXiv: 1105.4975 [hep-ex]
|
[298] |
K. T. Chao, Y. F. Wang. Front matter. International J. Mod. Phys. A, 2009, 24 : supp01
CrossRef
ADS
Google scholar
|
[299] |
M.Battaglieri,
|
[300] |
N. Berger, L. Beijiang, W. Jike. Partial wave analysis using graphics processing units. J. Phys.: Conf. Ser., 2010, 219 : 042031
CrossRef
ADS
Google scholar
|
[301] |
J. Gasser, H. Leutwyler. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158 : 142
|
[302] |
R. Kaiser, H. Leutwyler. Large Nc in chiral perturbation theory. Euro. Phys. J. C, 2000, 17 : 623
CrossRef
ADS
Google scholar
|
[303] |
J.WessB. Zumino, Consequences of anomalous ward identities, Phys. Lett. B 37, 95 (1971)
|
[304] |
E. Witten. Global aspects of current algebra. Nucl. Phys. B, 1983, 223 : 422
|
[305] |
J.BijnensA. BramonF.Cornet, English Chiral perturbation theory for anomalous processes, Eur. Phys. J. C 46, 599 (1990)
|
[306] |
J. Sakurai. Theory of strong interactions. Ann. Phys., 1960, 11 : 1
|
[307] |
L. Landsberg. Electromagnetic decays of light mesons. Phys. Rep., 1985, 128 : 301
|
[308] |
Y.NambuG. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (1), Phys. Rev. 122, 345 (1961)
|
[309] |
Y.NambuG. Jona-Lasinio, Dynamical model of elementary particles based on an analogy with superconductivity (II), Phys. Rev. 124, 246 (1961)
|
[310] |
T.Aoyama.,
|
[311] |
L.GanB. KubisE.PassemarS.Tulin, Precision tests of fundamental physics with η and η' mesons, Phys. Rep. 945, 1 (2022), precision tests of fundamental physics with η and η' mesons
|
[312] |
C. Jarlskog, E. Shabalin. On searches for CP, T, CPT and C violation in flavour-changing and flavour-conserving interactions. Phys. Scr., 2002, 2002 : 23
|
[313] |
C. Jarlskog, E. Shabalin. ϵ' and the decay η→ππ in a theory with both explicit and spontaneous CP violation. Phys. Rev. D, 1995, 52 : 6327
CrossRef
ADS
Google scholar
|
[314] |
R.EscribanoE. Royo, A theoretical analysis of the semileptonic decays η(') → π0l+l- and η' → ηl+l-, Eur. Phys. J. C 80, 1190 (2020), arXiv: 2007.12467 [hep-ph]
|
[315] |
F.NiecknigB. KubisS.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays, Eur. Phys. J. C 72, 2014 (2012), arXiv: 1203.2501 [hep-ph]
|
[316] |
I. V. Danilkin, C. Fernández-Ramírez, P. Guo, V. Mathieu, D. Schott, M. Shi, A. P. Szczepa- niak. Dispersive analysis of ω/ϕ → 3π, πγ*. Phys. Rev. D, 2015, 91 : 094029
CrossRef
ADS
Google scholar
|
[317] |
J.-J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou. Puzzle of anomalously large isospin violations in η(1405/1475) → 3π. Phys. Rev. Lett., 2012, 108 : 081803
CrossRef
ADS
Google scholar
|
[318] |
J. H. Christenson, J. W. Cronin, V. L. Fitch, R. Turlay. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett., 1964, 13 : 138
CrossRef
ADS
Google scholar
|
[319] |
B. E. A. Aubert (BABAR). Observation of CP violation in the B0 meson system. Phys. Rev. Lett., 2001, 87 : 091801
CrossRef
ADS
Google scholar
|
[320] |
K.Abe. (Belle),
|
[321] |
J. F. Donoghue, S. Pakvasa. Signals of CP nonconservation in hyperon decay. Phys. Rev. Lett., 1985, 55 : 162
CrossRef
ADS
Google scholar
|
[322] |
T. Holmstrom.
CrossRef
ADS
Google scholar
|
[323] |
J. Tandean, G. Valencia. CP violation in hyperon nonleptonic decays within the standard model. Phys. Rev. D, 2003, 67 : 056001
CrossRef
ADS
Google scholar
|
[324] |
C. Materniak (HyperCP). Search for CP violation in Ξ and Λ hyperon decays with the HyperCP spectrometer at Fermilab. Nucl. Phys. B Suppl., 2009, 187 : 208
CrossRef
ADS
Google scholar
|
[325] |
M.Ablikim. (BESIII),
|
[326] |
M.Ablikim,
|
[327] |
M.Ablikim. (BESIII),
|
[328] |
G.FäldtA.Kupsc, Hadronic structure functions in the e+e− → Λ ¯Λ reaction, Phys. Lett. B 772, 16 (2017), arXiv: 1702.07288 [hep-ph]
|
[329] |
E. Perotti, G. Fäldt, A. Kupsc, S. Leupold, J. J. Song. Polarization observables in e+e− annihilation to a baryon−antibaryon pair. Phys. Rev. D, 2019, 99 : 056008
CrossRef
ADS
Google scholar
|
[330] |
M. Huang, . (HyperCP).
CrossRef
ADS
Google scholar
|
[331] |
B.DuttaY. MimuraR.N. Mohapatra, Observable neutron antineutron oscillation in high scale seesaw models, Phys. Rev. Lett. 96, 061801 (2005), arXiv: hep-ph/0510291 [hep-ph]
|
[332] |
M. Baldo-Ceolin, P. Benetti, T. Bitter, F. Bobisut, E. Calligarich, R. Dolfini, D. Dubbers, P. El-Muzeini, M. Genoni, D. Gibin, A. Berzolari, K. Gobrecht, A. Guglielmi, J. Last, M. Laveder, W. Lippert, F. Mattioli, F. Mauri, M. Mezzetto, L. Visentin. A new experimental limit on neutron−antineutron oscillations. Zeitsch. für Phys. C, 1994, 63 : 409
CrossRef
ADS
Google scholar
|
[333] |
X.-W. Kang, H.-B. Li, G.-R. Lu. Study of Λ− Λ ¯ oscillation in quantum coherent ΛΛ ¯ by using J/ψ → ΛΛ ¯ decay. Phys. Rev. D, 2010, 81 : 051901
CrossRef
ADS
Google scholar
|
[334] |
R. H. Dalitz, G. Rajasekharan. The spins and lifetimes of the light hypernuclei. Phys. Lett., 1962, 1 : 58
|
[335] |
B.I. Abelev. (STAR),
|
[336] |
C. Rappold.
CrossRef
ADS
Google scholar
|
[337] |
J.S. Schwinger, The Theory of quantized fields (1), Phys. Rev. 82, 914 (1951)
|
[338] |
S.Chekanov. (ZEUS),
|
[339] |
H. A. Bethe. The electromagnetic shift of energy levels. Phys. Rev., 1947, 72 : 339
CrossRef
ADS
Google scholar
|
[340] |
F. J. Dyson. The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev., 1949, 75 : 486
CrossRef
ADS
Google scholar
|
[341] |
K. G. Wilson, J. B. Kogut. The renormalization group and the epsilon expansion. Phys. Rep., 1974, 12 : 75
|
[342] |
S. Weinberg, E. Witten. Limits on massless particles. Phys. Lett. B, 1980, 96 : 59
|
[343] |
K.R. Schubert, T violation and CPT tests in neutral-meson systems, Prog. Part. Nucl. Phys. 81, 1 (2015), arXiv: 1409.5998 [hep-ex]
|
[344] |
J.S. BellJ. Steinberger, in: Proceedings of the Oxford Int. Conf. on Elementary Particles (1965), pp 195–222
|
[345] |
B.Aubert. (BaBar),
|
[346] |
T.Higuchi,
|
[347] |
A. Apostolakis.
CrossRef
ADS
Google scholar
|
[348] |
B. Schwingenheuer.
CrossRef
ADS
Google scholar
|
[349] |
R.Essig,
|
[350] |
O.Adriani. (PAMELA),
|
[351] |
J. Chang.
|
[352] |
A.A. Abdo. (Fermi-LAT),
|
[353] |
M. Aguilar.
CrossRef
ADS
Google scholar
|
[354] |
N.Arkani-HamedD.P. FinkbeinerT.R. SlatyerN.Weiner, A theory of dark matter, Phys. Rev. D 79, 015014 (2009), arXiv: 0810.0713 [hep-ph]
|
[355] |
M.PospelovA. Ritz, Astrophysical signatures of secluded dark matter, Phys. Lett. B 671, 391 (2009), arXiv: 0810.1502 [hep-ph]
|
[356] |
N.Arkani-HamedN.Weiner, LHC signals for a superunified theory of dark matter, JHEP 12, 104 (2008), arXiv: 0810.0714 [hep-ph]
|
[357] |
C.CheungJ. T. RudermanL.-T.WangI.Yavin, Kinetic mixing as the origin of light dark scales, Phys. Rev. D 80, 035008 (2009), arXiv: 0902.3246 [hep-ph]
|
[358] |
S.-h.Zhu, U-boson at BESIII, Phys. Rev. D75, 115004 (2007), arXiv: hep-ph/0701001
|
[359] |
P.Fayet, U-boson production in e+e− annihilations, ψ and Υ decays, and light dark matter, Phys. Rev. D 75, 115017 (2007), arXiv: hep-ph/0702176
|
[360] |
M.ReeceL.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07, 051 (2009), arXiv: 0904.1743 [hep-ph]
|
[361] |
R.EssigP. SchusterN.Toro, Probing dark forces and light hidden sectors at low-energy e+e− colliders, Phys. Rev. D 80, 015003 (2009), arXiv: 0903.3941 [hep-ph]
|
[362] |
P.-F.YinJ. LiuS.-H.Zhu, Detecting light leptophilic gauge boson at BESIII detector, Phys. Lett. B 679, 362 (2009), arXiv: 0904.4644 [hep-ph]
|
[363] |
B.Aubert. (BaBar),
|
[364] |
J.D. BjorkenR.EssigP.Schuster N.Toro, New fixed-target experiments to search for dark gauge forces, Phys. Rev. D 80, 075018 (2009), arXiv: 0906.0580 [hep-ph]
|
[365] |
S.Jia. (Belle),
|
[366] |
B.O’Leary.(SuperB),
|
[367] |
W.Altmannshofer.(Belle-II),
|
[368] |
H.-B.LiT. Luo, Probing dark force at BES-III/BEPCII, Phys. Lett. B 686, 249 (2010), arXiv: 0911.2067 [hep-ph]
|
[369] |
M.BaumgartC. CheungJ.T. RudermanL.-T.WangI.Yavin, Non-Abelian dark sectors and their collider signatures, JHEP 04, 014 (2009), arXiv: 0901.0283 [hep-ph]
|
[370] |
B.BatellM. PospelovA.Ritz, Probing a secluded U(1) at B-factories, Phys. Rev. D 79, 115008 (2009), arXiv: 0903.0363 [hep-ph]
|
[371] |
I.Adachi. (Belle-II),
|
[372] |
F.Abudinén.(Belle-II),
|
[373] |
B. Holdom. Two U(1)’s and epsilon charge shifts. Phys. Lett. B, 1986, 166 : 196
CrossRef
ADS
Google scholar
|
[374] |
B. Holdom. Searching for ϵ charges and a new U(1). Phys. Lett. B, 1986, 178 : 65
CrossRef
ADS
Google scholar
|
[375] |
R. Foot, X.-G. He. Comment on zz-prime mixing in extended gauge theories. Phys. Lett. B, 1991, 267 : 509
|
[376] |
B.KorsP. Nath, A Stueckelberg extension of the standard model, Phys. Lett. B 586, 366 (2004), arXiv: hep-ph/0402047
|
[377] |
K.CheungT.-C. Yuan, Hidden fermion as milli-charged dark matter in Stueckelberg Z-prime model, JHEP 03, 120 (2007), arXiv: hep-ph/0701107
|
[378] |
D.FeldmanZ. LiuP.Nath, Stueckelberg Z' extension with kinetic mixing and millicharged dark matter from the hidden sector, Phys. Rev. D 75, 115001 (2007), arXiv: hep-ph/0702123
|
[379] |
J.JaeckelA. Ringwald, The low-energy frontier of particle physics, Ann. Rev. Nucl. Part. Sci. 60, 405 (2010), arXiv: 1002.0329[hep-ph]
|
[380] |
Z.LiuY. Zhang, Probing millicharge at BESIII via monophoton searches, Phys. Rev. D 99, 015004 (2019), arXiv: 1808.00983 [hep-ph]
|
[381] |
J.LiangZ. LiuY.MaY.Zhang, Millicharged particles at electron colliders, Phys. Rev. D 102, 015002 (2020), arXiv: 1909.06847 [hep-ph]
|
[382] |
S. Davidson, B. Campbell, D. C. Bailey. Limits on particles of small electric charge. Phys. Rev. D, 1991, 43 : 2314
CrossRef
ADS
Google scholar
|
[383] |
A.A. Prinz,
|
[384] |
G.MagillR. PlestidM.PospelovY.-D.Tsai, Millicharged particles in neutrino experiments, Phys. Rev. Lett. 122, 071801 (2019), arXiv: 1806.03310[hep-ph]
|
[385] |
J.D. BowmanA. E. E. RogersR.A. MonsalveT.J. MozdzenN.Mahesh, An absorption profile centred at 78 megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912 [astro-ph.CO]
|
[386] |
J.B. MuñozA.Loeb, A small amount of mini-charged dark matter could cool the baryons in the early universe, Nature 557, 684 (2018), arXiv: 1802.10094 [astro-ph.CO]
|
[387] |
A.BerlinD. HooperG.KrnjaicS.D. McDermott, Severely constraining dark matter interpretations of the 21-cm anomaly, Phys. Rev. Lett. 121, 011102 (2018), arXiv: 1803.02804 [hep-ph]
|
[388] |
R.BarkanaN. J. OutmezguineD.Redigolo T.Volansky, Strong constraints on light dark matter interpretation of the EDGES signal, Phys. Rev. D 98, 103005 (2018), arXiv: 1803.03091 [hep-ph]
|
[389] |
H.Brück
|
[390] |
|
[391] |
M.BattagliaC. Da ViaD.BortolettoR.BrennerM.Campbell P.CollinsG. Dalla BettaM.DemarteauP.DenesH.Graafsma,
|
[392] |
G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman.
|
[393] |
C.Lacasta, in: Proceedings of the 22nd International Workshop on Vertex Detectors (Vertex2013), 15−20 September (2013), page 5
|
[394] |
T.e. a. Abe, Belle II technical design report, (2010)
|
[395] |
A.BallaG. BencivenniS.CerioniP.CiambroneE.De Lucia D.DomeniciJ. DongG.FeliciM.GattaM.Jacewicz,
|
[396] |
G. Bencivenni, P. Branchini, P. Ciambrone, E. Czerwinski, E. De Lucia, A. Di Cicco, D. Domenici, G. Felici, X. Kang, G. Morello. The cylindrical-gem inner tracker detector of the kloe-2 experiment. Nucl. Instrum. Meth. Phys. Res. A, 2020, 958 : 162366
|
[397] |
A. Amoroso, R. Baldini, M. Bertani, D. Bettoni, F. Bianchi, A. Calcaterra, V. Carassiti, S. Cerioni, J. Chai, G. Cibinetto.
|
[398] |
M. P. Lener, G. Bencivenni, R. de Olivera, G. Felici, S. Franchino, M. Gatta, M. Maggi, G. Morello, A. Sharma. The μ-RWELL: A compact, spark protected, single amplification-stage mpgd. Nucl. Instrum. Meth. Phys. Res. A, 2016, 824 : 565
|
[399] |
G. Bencivenni, R. De Oliveira, G. Felici, M. Gatta, G. Morello, A. Ochi, M. P. Lener, E. Tskhadadze. Performance of μ-RWELL detector vs resistivity of the resistive stage. Nucl. Instrum. Meth. Phys. Res. A, 2018, 886 : 36
|
[400] |
G. Bencivenni, L. Benussi, L. Borgonovi, R. De Oliveira, P. De Simone, G. Felici, M. Gatta, P. Giacomelli, G. Morello, A. Ochi.
|
[401] |
S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, D. Mörmann. Charge amplification and transfer processes in the gas electron multiplier. Nucl. Instru. Meth. Phys. Res. A, 1999, 438 : 376
|
[402] |
S. Agostinelli, J. Allison, K. A. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand.
|
[403] |
G.BencivenniG.FeliciM.Gatta M.GiovannettiG.MorelloM.P. Lener R.de OliveiraA.OchiE.Tskhadadze, in: Journal of Physics: Conference Series, Vol. 1498 (IOP Publishing, 2020), page 012003
|
[404] |
H. Wang, Y. Wang, Y.-Z. Yao, J. Hu, J. Yang, W. Hao, Y.-Q. Luo. Aramid paper’s structure and performance and their effect on the mechanical properties of aramid paper honey-comb. J. Funct. Mater., 2013, 44 : 2184
|
[405] |
S. Arezoo, V. Tagarielli, C. Siviour, N. Petrinic. Compressive deformation of rohacell foams: Effects of strain rate and temperature. Inter. J. Impact Eng., 2013, 51 : 50
|
[406] |
G. Contin, E. Anderssen, L. Greiner, J. Schambach, J. Silber, T. Stezelberger, X. Sun, M. Szelezniak, C. Vu, H. Wieman.
|
[407] |
I. Valin, C. Hu-Guo, J. Baudot, G. Bertolone, A. Besson, C. Colledani, G. Claus, A. Dorokhov, G. Doziere, W. Dulinski.
|
[408] |
B. Abelev, J. Adam, D. Adamová, M. Aggarwal, G. A. Rinella, M. Agnello, A. Agostinelli, N. Agrawal, Z. Ahammed, N. Ahmad.
|
[409] |
G. A. Rinella.
|
[410] |
L.Chen,
|
[411] |
C.S. Group,
|
[412] |
K. Arndt, H. Augustin, P. Baesso, N. Berger, F. Berg, C. Betancourt, D. Bortoletto, A. Bravar, K. Briggl, D. vom Bruch.
|
[413] |
M.PrathapanR. SchimassekM.BenoitR.CasanovaF.Ehrler A.MenesesP. PangaudD.SultanE.VilellaA.L. Weber,
|
[414] |
S. Spannagel. Silicon technologies for the clic vertex detector. J. Instrum., 2017, 12 : C06006
|
[415] |
A.SchöningJ.AndersH.Augustin M.BenoitN. BergerS.DittmeierF.EhrlerA.Fehr T.GollingS. G. Sevilla,
|
[416] |
W. Snoeys.
|
[417] |
G.Gustavino,
|
[418] |
A. Paladino. Beam background evaluation at superkekb and Belle II. J. Instrum., 2020, 15 : C07023
|
[419] |
M. Mager, A. collaboration.
|
[420] |
M.Titov, in: Innovative Detectors for Supercolliders, World Scientific, 2004, pp 199–226
|
[421] |
M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen.
|
[422] |
T.AbeI. AdachiK.AdamczykS.AhnH.Aihara K.AkaiM. AloiL.AndricekK.AokiY.Arai,
|
[423] |
S. Adhikari, C. Akondi, H. Al Ghoul, A. Ali, M. Amaryan, E. Anassontzis, A. Austregesilo, F. Barbosa, J. Barlow, A. Barnes.
|
[424] |
A. Baldini, E. Baracchini, C. Bemporad, F. Berg, M. Biasotti, G. Boca, P. Cattaneo, G. Cavoto, F. Cei, M. Chiappini.
|
[425] |
G.TassielliI. Collaboration,
|
[426] |
I. B. Smirnov. Modeling of ionization produced by fast charged particles in gases. Nucl. Instrum. Meth. A, 2005, 554 : 474
|
[427] |
X.-X. Cao, W.-D. Li, C.-L. Liu, Z.-P. Mao, S.-J. Chen, Z.-Y. Deng, K.-L. He, X.-T. Huang, B. Huang, Y.-P. Huang.
|
[428] |
S. Bachmann, A. Bressan, L. Ropelewski, F. Sauli, A. Sharma, D. Mörmann. Charge ampli fication and transfer processes in the gas electron multiplier. Nucl. Instrum. Meth. A, 1999, 438 : 376
|
[429] |
F. Tessarotto.
CrossRef
ADS
Google scholar
|
[430] |
A. Di Mauro.
|
[431] |
D.BoutignyC. GoyY.KaryotakisJ.LeesS.L. RosierA.PalanoG.ChenY.Wang O.WenY. Lan,
|
[432] |
B. Singh, W. Erni, B. Krusche, M. Steinacher, N. Walford, B. Liu, H. Liu, Z. Liu, X. Shen, C. Wang.
|
[433] |
G. Kalicy, L. Allison, T. Cao, R. Dzhygadlo, T. Hartlove, T. Horn, C. Hyde, Y. Ilieva, P. Nadel-Turonski, K. Park.
|
[434] |
M.J. CharlesR.Forty (LHCb), TORCH: Time of flight identification with Cherenkov radiation, Nucl. Instrum. Meth. A 639, 173 (2011), arXiv: 1009.3793 [physics.ins-det]
|
[435] |
B. Wu, Y. Wang, Q. Cao, Z. Li, X. Li, X. Zhou, Y. Hu, Z. Wang, M. Shao, J. Liu.
|
[436] |
Y. Hu, Y. Wang, J. Kuang, B. Wu. A clock distribution and synchronization scheme over optical links for large-scale physics experiments. IEEE Trans. Nucl. Sci., 2021, 68 : 1351
|
[437] |
M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen.
|
[438] |
K. Miyabayashi. Belle electromagnetic calorimeter. Nucl. Instrum. Meth. Phys. Res. A, 2002, 494 : 298
|
[439] |
A. Yamamoto, H. Kichimi, N. Kimura, H. Inoue, H. Yamaoka, T. Haruyama, T. Mito, O. Araoka, M. Tadano, S. Suzuki.
|
[440] |
A.M. Sirunyan.(CMS),
|
[441] |
G.S. Huang, The 15th International Workshop on Tau Lepton Physics, talk on “The Super Tau Charm Factory Plan in China” (2018)
|
[442] |
J.B. Liu, Joint Workshop on Future Tau-Charm Factories, talk on “Detector Concepts for the Super Tau-Charm Facility in China” (2018)
|
[443] |
T.AbeI. AdachiK.AdamczykS.AhnH.Aihara K.AkaiM. AloiL.AndricekK.AokiY.Arai,
|
[444] |
K.AbeY. HoshiT.NagamineK.NeichiK.Onodera T.TakahashiA. YamaguchiH.Yuta, in: 2002 IEEE Nuclear Science Symposium Conference Record, Vol. 1 (IEEE, 2002), pp 171–175
|
[445] |
Y. Hoshi, N. Kikuchi, T. Nagamine, K. Neichi, A. Yamaguchi. Performance of the endcap RPC in the Belle detector under high luminosity operation of the KEKB accelerator. Nucl. Phys. B, 2006, 158 : 190
|
[446] |
K. Kanazawa, Y. Ohnishi, Y. Nakayama, C. Kiesling, S. Koblitz.
|
[447] |
M.GouzevitchF.LagardeI.Laktineh V.BuridonX. ChenC.CombaretA.EynardL.Germani G.GrenierH. Mathez,
|
[448] |
A.Collaboration,
|
[449] |
B. Aubert, A. Bazan, A. Boucham, D. Boutigny, I. De Bonis, J. Favier, J.-M. Gaillard, A. Jeremie, Y. Karyotakis, T. Le Flour.
|
[450] |
Belle-BaBar Workshop, talk on “RPC and Muon Detection at BELLE” (2002)
|
[451] |
K. Ackermann, N. Adams, C. Adler, Z. Ahammed, S. Ahmad, C. Allgower, J. Amonett, J. Amsbaugh, B. Anderson, M. Anderson.
|
[452] |
Y. Xie.
|
[453] |
F. An, J. Bai, A. Balantekin, H. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, R. Brown, I. Butorov.
|
[454] |
T. Aushev, D. Besson, K. Chilikin, R. Chistov, M. Danilov, P. Katrenko, R. Mizuk, G. Pakhlova, P. Pakhlov, V. Rusinov.
|
[455] |
S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand.
|
[456] |
Z. Fang, Y. Liu, H. Shi, J. Liu, M. Shao. A hybrid muon detector design with rpc and plastic scintillator for the experiment at the super tau-charm facility. J. Instrum., 2021, 16 : P09022
|
[457] |
M. M. Hamada, P. R. Rela, F. E. da Costa, C. H. de Mesquita. Radiation damage studies on the optical and mechanical properties of plastic scintillators. Nucl. Instrum. Meth. Phys. Res. A, 1999, 422 : 148
|
[458] |
V. Vasil’Chenko, V. Lapshin, A. Peresypkin, A. Konstantinchenko, A. Pyshchev, V. Shershukov, B. Semenov, A. Solov’ev. New results on radiation damage studies of plastic scintillators. Nucl. Instrum. Meth. A, 1996, 369 : 55
|
[459] |
A. Yamamoto, T. Mito, N. Kimura, T. Haruyama, H. Yamaoka, O. Araoka, M. Tadano, S. Suzuki, Y. Kondo, M. Kawai.
|
[460] |
G.AcquistapaceC.Collaboration,
|
[461] |
X.Ma,
|
[462] |
J. H. Zou, X. T. Huang, W. D. Li, T. Lin, T. Li, K. Zhang, Z. Y. Deng, G. F. Cao. SNiPER: An offline software framework for non-collider physics experiments. J. Phys. Conf. Ser., 2015, 664 : 072053
CrossRef
ADS
Google scholar
|
[463] |
T.LiX.Xia X.HuangJ. ZouW.LiT.linK.Zhang Z.Deng, Design and Development of JUNO Event Data Model, Chin. Phys. C 41, 066201 (2017), arXiv: 1702.04100
|
[464] |
F. Gaede, B. Hegner, G. A. Stewart. PODIO: recent developments in the Plain Old Data EDM toolkit. EPJ Web Conf., 2020, 245 : 05024
CrossRef
ADS
Google scholar
|
[465] |
H. Li, W. Huang, D. Liu, Y. Song, M. Shao, X. Huang. Detector geometry management system designed for super tau charm facility offline software. J. Instrum., 2021, 16 : T04004
CrossRef
ADS
Google scholar
|
[466] |
M. Frank, F. Gaede, C. Grefe, P. Mato. DD4hep: A detector description toolkit for high energy physics experiments. J. Phys. Conf. Ser., 2014, 513 : 022010
CrossRef
ADS
Google scholar
|
[467] |
Extensible Markup Language (XML) web page, URL: www.w3.org/XML/ (2022)
|
[468] |
S. Agostinelli.
|
[469] |
H. Li, W. H. Huang, D. Liu, Y. Song, M. Shao, X. T. Huang. Detector geometry management system designed for Super Tau Charm Facility offline software. JINST, 2021, 16 : T04004
CrossRef
ADS
Google scholar
|
[470] |
M.Ablikim. (BESIII),
|
[471] |
B. L. Wang, X. R. Lü, Y. H. Zheng. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
CrossRef
ADS
Google scholar
|
[472] |
M.Ablikim. (BESIII),
|
[473] |
M.Ablikim. (BESIII),
|
[474] |
H.-Y.ChengX.-R. LyuZ.-Z.Xing, in: 2022 Snowmass Summer Study (2022), arXiv: 2203.03211 [hep-ph]
|
[475] |
M.Ablikim. (BESIII),
|
[476] |
A.Airapetian.(HERMES),
|
[477] |
A.Airapetian.(HERMES),
|
[478] |
C.Adolph. (COMPASS),
|
[479] |
X.Qian. (Jefferson Lab Hall A),
|
[480] |
K.Abe. (Belle),
|
[481] |
R.Seidl. (Belle),
|
[482] |
J.P. Lees. (BaBar),
|
[483] |
B. L. Wang, X.-R. Lyu, Y. H. Zheng. Collins effect at super tau-charm facility. J. Univ. Chin. Acad. Sci., 2021, 38 : 433
CrossRef
ADS
Google scholar
|
[484] |
I.I. BigiA. I. Sanda, A “known” CP asymmetry in tau decays, Phys. Lett. B 625, 47 (2005), arXiv: hep-ph/0506037
|
[485] |
Y.GrossmanY. Nir, CP violation in τ±→ π±KSν and D±→ π±KS: The importance of KS−KL interference, JHEP 04, 002 (2012), arXiv: 1110.3790 [hep-ph]
|
[486] |
J.P. Lees. (BaBar),
|
[487] |
G.Bonvicini. (CLEO),
|
[488] |
M.Bischofberger.(Belle),
|
[489] |
J.H. KuhnE. Mirkes, Structure functions in tau decays, Z. Phys. C 56, 661 (1992) [Erratum: Z. Phys. C 67, 364 (1995)]
|
[490] |
S.JadachB. F. L. WardZ.Was, The precision Monte Carlo event generator KK for two fermion final states in e+e− collisions, Comput. Phys. Commun. 130, 260 (2000), arXiv: hep-ph/9912214
|
[491] |
J. F. Donoghue, X.-G. He, S. Pakvasa. Hyperon decays and CP nonconservation. Phys. Rev. D, 1986, 34 : 833
CrossRef
ADS
Google scholar
|
[492] |
N.SaloneP. AdlarsonV.BatozskayaA.KupscS.Leupold J.Tandean, Study of CP violation in hyperon decays at super-charm-τ factories with a polarized electron beam, Phys. Rev. D 105, 116022 (2022), arXiv: 2203.03035 [hep-ph]
|
[493] |
D.Cronin-Hennessy.(CLEO),
|
[494] |
K.S. BabuC. Kolda, Higgs mediated τ → 3μ in the supersymmetric seesaw model, Phys. Rev. Lett. 89, 241802 (2002), arXiv: hep-ph/0206310
|
[495] |
J.R. EllisJ. HisanoM.RaidalY.Shimizu, A New parametrization of the seesaw mechanism and applications in supersymmetric models, Phys. Rev. D 66, 115013 (2002), arXiv: hep-ph/0206110
|
[496] |
F. Borzumati, A. Masiero. Large muon and electron number violations in supergravity the-ories. Phys. Rev. Lett., 1986, 57 : 961
CrossRef
ADS
Google scholar
|
[497] |
E.Ma, Neutrino, lepton, and quark masses in supersymmetry, Phys. Rev. D 64, 097302 (2001), arXiv: hep-ph/0107177
|
[498] |
C.-X.YueY.-M. ZhangL.-J.Liu, Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays, Phys. Lett. B 547, 252 (2002), arXiv: hep-ph/0209291
|
[499] |
J. E. Kim, P. Ko, D.-G. Lee. More on r-parity- and lepton-family-number-violating couplings from muon(ium) conversion, and τ and π0 decays. Phys. Rev. D, 1997, 56 : 100
CrossRef
ADS
Google scholar
|
[500] |
B.Aubert. (BaBar),
|
[501] |
K.Hayasaka. (Belle),
|
[502] |
G.BalossiniC. M. Carloni CalameG.Montagna O.NicrosiniF. Piccinini, Matching perturbative and parton shower corrections to Bhabha process at flavour factories, Nucl. Phys. B 758, 227 (2006), arXiv: hep-ph/0607181
|
[503] |
G.BalossiniC. BignaminiC.M. C. CalameG.MontagnaO.NicrosiniF.Piccinini, Photon pair production at flavour factories with per mille accuracy, Phys. Lett. B 663, 209 (2008), arXiv: 0801.3360 [hep-ph]
|
[504] |
G.RodrigoH. CzyzJ.H. KuhnM.Szopa, Radiative return at NLO and the measurement of the hadronic cross-section in electron positron annihilation, Eur. Phys. J. C 24, 71 (2002), arXiv: hep-ph/0112184
|
[505] |
S.Actis. (Working Group on Radiative CorrectionsMonteCarlo generators for low energies),
|
[506] |
C.Sturm, Leptonic contributions to the effective electromagnetic coupling at four-loop order in QED, Nucl. Phys. B 874, 698 (2013), arXiv: 1305.0581 [hep-ph]
|
[507] |
F.Jegerlehner, The Running fine structure constant alpha(E) via the Adler function, Nucl. Phys. B Suppl. 181–182, 135 (2008), arXiv: 0807.4206 [hep-ph]
|
/
〈 | 〉 |