Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields

Xiao-Feng Shi

PDF(6849 KB)
PDF(6849 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (2) : 22203. DOI: 10.1007/s11467-023-1332-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields

Author information +
History +

Abstract

We present a novel class of Rydberg-mediated nuclear-spin entanglement in divalent atoms with global laser pulses. First, we show a fast nuclear-spin controlled phase gate of an arbitrary phase realizable either with two laser pulses when assisted by Stark shifts, or with three pulses. Second, we propose to create an electrons−nuclei-entangled state, which is named a super bell state (SBS) for it mimics a large Bell state incorporating three small Bell states. Third, we show a protocol to create a three-atom electrons-nuclei entangled state which contains the three-body W and Greenberger−Horne−Zeilinger (GHZ) states simultaneously. These protocols possess high intrinsic fidelities, do not require single-site Rydberg addressing, and can be executed with large Rydberg Rabi frequencies in a weak, Gauss-scale magnetic field. The latter two protocols can enable measurement-based preparation of Bell, hyperentangled, and GHZ states, and, specifically, SBS can enable quantum dense coding where one can share three classical bits of information by sending one particle.

Graphical abstract

Keywords

nuclear-spin qubit / electrons−nuclei entanglement / super Bell state / Greenberger−Horne−Zeilinger state / Rydberg-mediated entanglement / quantum dense coding

Cite this article

Download citation ▾
Xiao-Feng Shi. Fast nuclear-spin gates and electrons−nuclei entanglement of neutral atoms in weak magnetic fields. Front. Phys., 2024, 19(2): 22203 https://doi.org/10.1007/s11467-023-1332-0

References

[1]
D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, M. D. Lukin. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 2000, 85(10): 2208
CrossRef ADS Google scholar
[2]
M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, P. Zoller. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett., 2001, 87(3): 037901
CrossRef ADS Google scholar
[3]
T. Wilk, A. Gaetan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, A. Browaeys. Entanglement of two individual neutral atoms using Rydberg blockade. Phys. Rev. Lett., 2010, 104(1): 010502
CrossRef ADS Google scholar
[4]
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, M. Saffman. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
CrossRef ADS Google scholar
[5]
X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, M. Saffman. Deterministic entanglement of two neutral atoms via Rydberg blockade. Phys. Rev. A, 2010, 82: 030306(R)
CrossRef ADS Google scholar
[6]
K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz, A. W. Carr, L. Isenhower, M. Saffman. Rydberg-blockade controlled-not gate and entanglement in a two-dimensional array of neutral-atom qubits. Phys. Rev. A, 2015, 92(2): 022336
CrossRef ADS Google scholar
[7]
Y. Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, G. W. Biedermann. Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys., 2016, 12(1): 71
CrossRef ADS Google scholar
[8]
Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, M. Zhan. Entangling two individual atoms of different isotopes via Rydberg blockade. Phys. Rev. Lett., 2017, 119(16): 160502
CrossRef ADS Google scholar
[9]
H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletíc, M. D. Lukin. High-fidelity control and entanglement of Rydberg atom qubits. Phys. Rev. Lett., 2018, 121(12): 123603
CrossRef ADS Google scholar
[10]
C. J. Picken, R. Legaie, K. McDonnell, J. D. Pritchard. Entanglement of neutral-atom qubits with long ground-Rydberg coherence times. Quantum Sci. Technol., 2018, 4(1): 015011
CrossRef ADS Google scholar
[11]
H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletíc, H. Pichler, M. D. Lukin. Parallel implementation of high-fidelity multi-qubit gates with neutral atoms. Phys. Rev. Lett., 2019, 123(17): 170503
CrossRef ADS Google scholar
[12]
T. M. Graham, M. Kwon, B. Grinkemeyer, Z. Marra, X. Jiang, M. T. Lichtman, Y. Sun, M. Ebert, M. Saffman. Rydberg mediated entanglement in a two-dimensional neutral atom qubit array. Phys. Rev. Lett., 2019, 123(23): 230501
CrossRef ADS Google scholar
[13]
H. Jo, Y. Song, M. Kim, J. Ahn. Rydberg atom entanglements in the weak coupling regime. Phys. Rev. Lett., 2020, 124(3): 033603
CrossRef ADS Google scholar
[14]
Z. Fu, P. Xu, Y. Sun, Y. Y. Liu, X. D. He, X. Li, M. Liu, R. B. Li, J. Wang, L. Liu, M. S. Zhan. High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-PHASE gate. Phys. Rev. A, 2022, 105(4): 042430
CrossRef ADS Google scholar
[15]
K. McDonnell, L. F. Keary, J. D. Pritchard. Demonstration of a quantum gate using electromagnetically induced transparency. Phys. Rev. Lett., 2022, 129(20): 200501
CrossRef ADS Google scholar
[16]
D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuleti’c, M. D. Lukin. A quantum processor based on coherent transport of entangled atom arrays. Nature, 2022, 604(7906): 451
CrossRef ADS Google scholar
[17]
T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, M. Saffman. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer. Nature, 2022, 604(7906): 457
CrossRef ADS Google scholar
[18]
S.J. EveredD. BluvsteinM.KalinowskiS.EbadiT.Manovitz H.ZhouS. H. LiA.A. GeimT.T. WangN.Maskara H.LevineG. SemeghiniM.GreinerV.VuleticM.D. Lukin, High-fidelity parallel entangling gates on a neutral atom quantum computer, arXiv: 2304.05420v1 (2023)
[19]
I. S. Madjarov, J. P. Covey, A. L. Shaw, J. Choi, A. Kale, A. Cooper, H. Pichler, V. Schkolnik, J. R. Williams, M. Endres. High-fidelity entanglement and detection of alkaline-earth Rydberg atoms. Nat. Phys., 2020, 16(8): 857
CrossRef ADS Google scholar
[20]
S. Ma, A. P. Burgers, G. Liu, J. Wilson, B. Zhang, J. D. Thompson. Universal gate operations on nuclear spin qubits in an optical tweezer array of 171Yb atoms. Phys. Rev. X, 2022, 12(2): 021028
CrossRef ADS Google scholar
[21]
N. Schine, A. W. Young, W. J. Eckner, M. J. Martin, A. M. Kaufman. Long-lived Bell states in an array of optical clock qubits. Nat. Phys., 2022, 18(9): 1067
CrossRef ADS Google scholar
[22]
P.SchollA. L. ShawR.B. S. TsaiR.FinkelsteinJ.Choi M.Endres, Erasure conversion in a high-fidelity Rydberg quantum simulator, arXiv: 2305.03406v1 (2023)
[23]
S.MaG.Liu P.PengB. ZhangS.JanduraA.P. BurgersG.Pupillo S.PuriJ. D. Thompson, High-fidelity gates with mid-circuit erasure conversion in a metastable neutral atom qubit, arXiv: 2305.05493v1 (2023)
[24]
R. Yamamoto, J. Kobayashi, T. Kuno, K. Kato, Y. Takahashi. An ytterbium quantum gas microscope with narrow-line laser cooling. New J. Phys., 2016, 18(2): 023016
CrossRef ADS Google scholar
[25]
S. Saskin, J. T. Wilson, B. Grinkemeyer, J. D. Thompson. Narrow-line cooling and imaging of ytterbium atoms in an optical tweezer array. Phys. Rev. Lett., 2019, 122(14): 143002
CrossRef ADS Google scholar
[26]
A. Cooper, J. P. Covey, I. S. Madjarov, S. G. Porsev, M. S. Safronova, M. Endres. Alkaline-earth atoms in optical tweezers. Phys. Rev. X, 2018, 8(4): 041055
CrossRef ADS Google scholar
[27]
M. A. Norcia, A. W. Young, A. M. Kaufman. Microscopic control and detection of ultracold strontium in optical-tweezer arrays. Phys. Rev. X, 2018, 8(4): 041054
CrossRef ADS Google scholar
[28]
J. P. Covey, I. S. Madjarov, A. Cooper, M. Endres. 2000-times repeated imaging of strontium atoms in clock-magic tweezer arrays. Phys. Rev. Lett., 2019, 122(17): 173201
CrossRef ADS Google scholar
[29]
J. T. Wilson, S. Saskin, Y. Meng, S. Ma, R. Dilip, A. P. Burgers, J. D. Thompson. Trapping alkaline earth Rydberg atoms optical tweezer arrays. Phys. Rev. Lett., 2022, 128(3): 033201
CrossRef ADS Google scholar
[30]
A. J. Daley, M. M. Boyd, J. Ye, P. Zoller. Quantum computing with alkaline-earth-metal atoms. Phys. Rev. Lett., 2008, 101(17): 170504
CrossRef ADS Google scholar
[31]
A. V. Gorshkov, A. M. Rey, A. J. Daley, M. M. Boyd, J. Ye, P. Zoller, M. D. Lukin. Alkaline-earth-metal atoms as few-qubit quantum registers. Phys. Rev. Lett., 2009, 102(11): 110503
CrossRef ADS Google scholar
[32]
I. Reichenbach, I. H. Deutsch. Sideband cooling while preserving coherences in the nuclear spin state in group-II-like atoms. Phys. Rev. Lett., 2007, 99(12): 123001
CrossRef ADS Google scholar
[33]
X. F. Shi. Coherence-preserving cooling of nuclear-spin qubits in a weak magnetic field. Phys. Rev. A, 2023, 107(2): 023102
CrossRef ADS Google scholar
[34]
S. Omanakuttan, A. Mitra, M. J. Martin, I. H. Deutsch. Quantum optimal control of ten-level nuclear spin qudits in 87Sr. Phys. Rev. A, 2021, 104(6): L060401
CrossRef ADS Google scholar
[35]
N. Chen, L. Li, W. Huie, M. Zhao, I. Vetter, C. H. Greene, J. P. Covey. Analyzing the Rydberg-based optical-metastable-ground architecture for 171Yb nuclear spins. Phys. Rev. A, 2022, 105(5): 052438
CrossRef ADS Google scholar
[36]
M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. Blatt, T. Zanon-Willette, S. M. Foreman, J. Ye. Nuclear spin effects in optical lattice clocks. Phys. Rev. A, 2007, 76(2): 022510
CrossRef ADS Google scholar
[37]
X. F. Shi. Rydberg quantum computation with nuclear spins in two-electron neutral atoms. Front. Phys., 2021, 16(5): 52501
CrossRef ADS Google scholar
[38]
X. F. Shi. Fast, accurate, and realizable two-qubit entangling gates by quantum interference in detuned Rabi cycles of Rydberg atoms. Phys. Rev. Appl., 2019, 11(4): 044035
CrossRef ADS Google scholar
[39]
K. Barnes, P. Battaglino, B. J. Bloom, K. Cassella, N. Coxe, N. Crisosto, J. P. King, S. S. Kondov, K. Kotru, S. C. Larsen, J. Lauigan, B. J. Lester, M. McDonald, E. Megidish, S. Narayanaswami, C. Nishiguchi, R. Notermans, L. S. Peng, A. Ryou, T. Y. Wu, M. Yarwood. Assembly and coherent control of a register of nuclear spin qubits. Nat. Commun., 2022, 13(1): 2779
CrossRef ADS Google scholar
[40]
A. Jenkins, J. W. Lis, A. Senoo, W. F. McGrew, A. M. Kaufman. Ytterbium nuclear-spin qubits in an optical tweezer array. Phys. Rev. X, 2022, 12(2): 021027
CrossRef ADS Google scholar
[41]
C. H. Bennett, S. J. Wiesner. Communication via one- and two-particle operators on Einstein−Podolsky−Rosen states. Phys. Rev. Lett., 1992, 69(20): 2881
CrossRef ADS Google scholar
[42]
W. Dür, G. Vidal, J. I. Cirac. Three qubits can be entangled in two inequivalent ways. Phys. Rev. A, 2000, 62(6): 062314
CrossRef ADS Google scholar
[43]
B. Fang, M. Menotti, M. Liscidini, J. E. Sipe, V. O. Lorenz. Three-photon discrete-energy-entangled W state in an optical fiber. Phys. Rev. Lett., 2019, 123(7): 070508
CrossRef ADS Google scholar
[44]
D.M. GreenbergerM.HorneA.Zeilinger, Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos, Kluwer, Dordrecht, 1989
[45]
X. F. Shi. Hyperentanglement of divalent neutral atoms by Rydberg blockade. Phys. Rev. A, 2021, 104(4): 042422
CrossRef ADS Google scholar
[46]
M. Saffman, T. G. Walker, K. Mølmer. Quantum information with Rydberg atoms. Rev. Mod. Phys., 2010, 82(3): 2313
CrossRef ADS Google scholar
[47]
X. F. Shi. Quantum logic and entanglement by neutral Rydberg atoms: Methods and fidelity. Quantum Sci. Technol., 2022, 7(2): 023002
CrossRef ADS Google scholar
[48]
A. P. Burgers, S. Ma, S. Saskin, J. Wilson, M. A. Alarcón, C. H. Greene, J. D. Thompson. Controlling Rydberg excitations using ion core transitions in alkaline earth atom tweezer arrays. PRX Quantum, 2022, 3(2): 020326
CrossRef ADS Google scholar
[49]
R. Ding, J. D. Whalen, S. K. Kanungo, T. C. Killian, F. B. Dunning, S. Yoshida, J. Burgdörfer. Spectroscopy of 87Sr triplet Rydberg states. Phys. Rev. A, 2018, 98(4): 042505
CrossRef ADS Google scholar
[50]
A. Lurio, M. Mandel, R. Novick. Second-order hyperfine and Zeeman corrections for an (sl) configuration. Phys. Rev., 1962, 126(5): 1758
CrossRef ADS Google scholar
[51]
X. F. Shi. Rydberg quantum gates free from blockade error. Phys. Rev. Appl., 2017, 7(6): 064017
CrossRef ADS Google scholar
[52]
X. F. Shi. Accurate quantum logic gates by spin echo in Rydberg atoms. Phys. Rev. Appl., 2018, 10(3): 034006
CrossRef ADS Google scholar
[53]
C.P. Williams, Explorations in Quantum Computing, 2nd Ed., edited by D. Gries and F. B. Schneider, Texts in Computer Science, Springer-Verlag, London, 2011
[54]
M. Saffman, T. G. Walker. Analysis of a quantum logic device based on dipole−dipole interactions of optically trapped Rydberg atoms. Phys. Rev. A, 2005, 72(2): 022347
CrossRef ADS Google scholar
[55]
L. H. Pedersen, N. M. Møller, K. Mølmer. Fidelity of quantum operations. Phys. Lett. A, 2007, 367(1−2): 47
CrossRef ADS Google scholar
[56]
X. F. Shi. Deutsch, Toffoli, and CNOT gates via rydberg blockade of neutral atoms. Phys. Rev. Appl., 2018, 9: 051001(R)
CrossRef ADS Google scholar
[57]
X. F. Shi. Transition slow-down by Rydberg interaction of neutral atoms and a fast controlled-NOT quantum gate. Phys. Rev. Appl., 2020, 14(5): 054058
CrossRef ADS Google scholar
[58]
J. L. Wu, Y. Wang, J. X. Han, S. L. Su, Y. Xia, Y. Jiang, J. Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates. Front. Phys., 2022, 17(2): 22501
CrossRef ADS Google scholar
[59]
S. Liu, J. H. Shen, R. H. Zheng, Y. H. Kang, Z. C. Shi, J. Song, Y. Xia. Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms. Front. Phys., 2022, 17(2): 21502
CrossRef ADS Google scholar
[60]
V. M. Stojanović, J. K. Nauth. Interconversion of W and Greenberger−Horne−Zeilinger states for Ising-coupled qubits with transverse global control. Phys. Rev. A, 2022, 106(5): 052613
CrossRef ADS Google scholar
[61]
X. Wu, X. Liang, Y. Tian, F. Yang, C. Chen, Y. C. Liu, M. K. Tey, L. You. A concise review of Rydberg atom based quantum computation and quantum simulation. Chin. Phys. B, 2021, 30(2): 020305
CrossRef ADS Google scholar
[62]
D. R. Chong, M. Kim, J. Ahn, H. Jeong. Machine learning identification of symmetrized base states of Rydberg atoms. Front. Phys., 2022, 17(1): 12504
CrossRef ADS Google scholar
[63]
H. Zhang, J. Wu, M. Artoni, G. C. La Rocca. Single-photon-level light storage with distributed Rydberg excitations in cold atoms. Front. Phys., 2022, 17(2): 22502
CrossRef ADS Google scholar
[64]
J. P. Covey, A. Sipahigil, S. Szoke, N. Sinclair, M. Endres, O. Painter. Telecom-band quantum optics with ytterbium atoms and silicon nanophotonics. Phys. Rev. Appl., 2019, 11(3): 034044
CrossRef ADS Google scholar
[65]
A. D. Boozer, A. Boca, R. Miller, T. E. Northup, H. J. Kimble. Reversible state transfer between light and a single trapped atom. Phys. Rev. Lett., 2007, 98(19): 193601
CrossRef ADS Google scholar
[66]
Y. Wu, S. Kolkowitz, S. Puri, J. D. Thompson. Erasure conversion for fault-tolerant quantum computing in alkaline earth Rydberg atom arrays. Nat. Commun., 2022, 13(1): 4657
CrossRef ADS Google scholar
[67]
A. Mitra, M. J. Martin, G. W. Biedermann, A. M. Marino, P. M. Poggi, I. H. Deutsch. Robust Mølmer−Sørensen gate for neutral atoms using rapid adiabatic Rydberg dressing. Phys. Rev. A, 2020, 101: 030301(R)
CrossRef ADS Google scholar
[68]
K. L. Pham, T. F. Gallagher, P. Pillet, S. Lepoutre, P. Cheinet. A coherent light shift on alkaline-earth Rydberg atoms from isolated core excitation without auto-ionization. PRX Quantum, 2022, 3(2): 020327
CrossRef ADS Google scholar

Acknowledgements

The author thanks Yan Lu for useful discussions. This work was supported by the National Natural Science Foundation of China under Grant Nos. 12074300 and 11805146, the Innovation Program for Quantum Science and Technology 2021ZD0302100, and the Fundamental Research Funds for the Central Universities.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6849 KB)

Accesses

Citations

Detail

Sections
Recommended

/