A high-speed true random number generator based on Ag/SiNx/n-Si memristor

Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai

PDF(5932 KB)
PDF(5932 KB)
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13202. DOI: 10.1007/s11467-023-1331-1
RESEARCH ARTICLE
RESEARCH ARTICLE

A high-speed true random number generator based on Ag/SiNx/n-Si memristor

Author information +
History +

Abstract

The intrinsic variability of memristor switching behavior can be used as a natural source of randomness, this variability is valuable for safe applications in hardware, such as the true random number generator (TRNG). However, the speed of TRNG is still be further improved. Here, we propose a reliable Ag/SiNx/n-Si volatile memristor, which exhibits a typical threshold switching device with stable repeat ability and fast switching speed. This volatile-memristor-based TRNG is combined with nonlinear feedback shift register (NFSR) to form a new type of high-speed dual output TRNG. Interestingly, the bit generation rate reaches a high speed of 112 kb/s. In addition, this new TRNG passed all 15 National Institute of Standards and Technology (NIST) randomness tests without post-processing steps, proving its performance as a hardware security application. This work shows that the SiNx-based volatile memristor can realize TRNG and has great potential in hardware network security.

Graphical abstract

Keywords

volatile memristor / true random number generator (TRNG) / delay time / threshold switching device

Cite this article

Download citation ▾
Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai. A high-speed true random number generator based on Ag/SiNx/n-Si memristor. Front. Phys., 2024, 19(1): 13202 https://doi.org/10.1007/s11467-023-1331-1

References

[1]
R.H. WeberR.Weber, Internet of Things, Springer, 2010
[2]
V.d. LeestR.MaesG.J. SchrijenP.Tuyls, in: ISSE 2014 Securing Electronic Business Processes, Springer, 2014, pp 188–198
[3]
C. Stergiou , K. E. Psannis , B. G. Kim , B. Gupta . Secure integration of IoT and cloud computing. Future Gener. Comput. Syst., 2018, 78: 964
CrossRef ADS Google scholar
[4]
M. D. Pickett , R. Stanly Williams . Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, 23(21): 215202
CrossRef ADS Google scholar
[5]
M.J. LeeC.B. LeeD.LeeS.R. LeeM.ChangJ.H. HurY.B. KimC.J. KimD.H. SeoS.SeoU.I. ChungI.K. YooK.Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10(8), 625 (2011)
[6]
A. C. Torrezan , J. P. Strachan , G. Medeiros-Ribeiro , R. S. Williams . Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology, 2011, 22(48): 485203
CrossRef ADS Google scholar
[7]
S.KvatinskyE.G. FriedmanA.KolodnyU.C. Weiser, TEAM: Threshold adaptive memristor model, IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211 (2013)
[8]
Q. Xia , W. Robinett , M. W. Cumbie , N. Banerjee , T. J. Cardinali , J. J. Yang , W. Wu , X. Li , W. M. Tong , D. B. Strukov , G. S. Snider , G. Medeiros-Ribeiro , R. S. Williams . Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett., 2009, 9(10): 3640
CrossRef ADS Google scholar
[9]
Z. K. Dong , D. L. Qi , Y. F. He , Z. Xu , X. F. Hu , S. K. Duan . Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation. Int. J. Bifurcat. Chaos, 2018, 28(12): 1850149
CrossRef ADS Google scholar
[10]
T. Zhang , M. Yin , C. Xu , X. Lu , X. Sun , Y. Yang , R. Huang . High-speed true random number generation based on paired memristors for security electronics. Nanotechnology, 2017, 28(45): 455202
CrossRef ADS Google scholar
[11]
H.JiangD.BelkinS.E. Savel’evS.LinZ.WangY.LiS.JoshiR.MidyaC.LiM.RaoM.BarnellQ.WuJ.J. YangQ.Xia, A novel true random number generator based on a stochastic diffusive memristor, Nat. Commun. 8(1), 882 (2017)
[12]
L.E. BasshamA.L. RukhinJ.SotoJ.R. NechvatalM.E. SmidS.D. LeighM.LevensonM.VangelN.A. HeckertD.L. Banks, A statistical test suite for random and pseudorandom number generators for cryptographic applications, National Institute of Standards & Technology, 2010
[13]
S. Balatti , S. Ambrogio , R. Carboni , V. Milo , Z. Wang , A. Calderoni , N. Ramaswamy , D. Ielmini . Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Dev., 2016, 63(5): 2029
CrossRef ADS Google scholar
[14]
J. H. Yoon , Z. Wang , K. M. Kim , H. Wu , V. Ravichandran , Q. Xia , C. S. Hwang , J. J. Yang . An artificial nociceptor based on a diffusive memristor. Nat. Commun., 2018, 9(1): 417
CrossRef ADS Google scholar
[15]
K.S. WooY.M. WangJ.KimY.KimY.J. KwonJ.H. YoonW.KimC.S. Hwang, A true random number generator using threshold-switching-based memristors in an efficient circuit design, Adv. Electron. Mater. 5(2), 1800543 (2019)
[16]
G. Kim , J. H. In , Y. S. Kim , H. Rhee , W. Park , H. Song , J. Park , K. M. Kim . Self-clocking fast and variation tolerant true random number generator based on a stochastic Mott memristor. Nat. Commun., 2021, 12(1): 2906
CrossRef ADS Google scholar
[17]
Y.F. LuH.Y. LiY.LiL.H. LiT.Q. WanL.YangW.B. ZuoK.H. XueX.S. Miao, A high‐performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration‐free true random number generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
[18]
H.HeY.PeiJ.WangZ.ZhangJ.LiuL.YanY.ZhaoX.LiY.WeiJ.Chen, A hamming weight calculation of binary string in one nMOS transistor–one Ag/HfO2/black phosphorus/Pt memristor, IEEE Trans. Electron Devices 69(9), 22008490 (2022)
[19]
L. Yan , Y. F. Pei , J. J. Wang , H. He , Y. Zhao , X. Y. Li , Y. X. Wei , X. B. Yan . High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett., 2021, 119(15): 153507
CrossRef ADS Google scholar
[20]
Y. X. Zhang , Z. L. Fang , X. B. Yan . HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Appl. Phys. Lett., 2022, 120(21): 213502
CrossRef ADS Google scholar
[21]
Z. R. Wang , S. Joshi , S. E. Savel’ev , H. Jiang , R. Midya , P. Lin , M. Hu , N. Ge , J. P. Strachan , Z. Y. Li , Q. Wu , M. Barnell , G. L. Li , H. L. Xin , R. S. Williams , Q. F. Xia , J. J. Yang . Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater., 2017, 16(1): 101
CrossRef ADS Google scholar
[22]
X.XuE.J. ChoL.BekkerA.A. TalinE.LeeA.J. PascallM.A. WorsleyJ.ZhouC.C. CookJ.D. KuntzS.ChoC.A. Orme, A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing, Adv. Sci. (Weinh.) 9(15), 2200629 (2022)
[23]
R. Midya , Z. Wang , J. Zhang , S. E. Savel’ev , C. Li , M. Rao , M. H. Jang , S. Joshi , H. Jiang , P. Lin , K. Norris , N. Ge , Q. Wu , M. Barnell , Z. Li , H. L. Xin , R. S. Williams , Q. Xia , J. J. Yang . Anatomy of Ag/Hafnia‐based selectors with 1010 nonlinearity. Adv. Mater., 2017, 29(12): 1604457
CrossRef ADS Google scholar
[24]
X. Yan , H. Li , L. Zhang , C. Lu , J. Zhao , Z. Zhou , H. Wang , J. Wang , X. Li , Y. Pei , C. Qin , G. Wang , Z. Xiao , Q. Zhao , K. Wang , D. Ren , S. Zheng . Density effects of graphene oxide quantum dots on characteristics of Zr0.5Hf0.5O2 film memristors. Appl. Phys. Lett., 2019, 114(16): 162906
CrossRef ADS Google scholar
[25]
Y.WangQ.WangJ.ZhaoT.NiermannY.LiuL.DaiK.ZhengY.SunY.ZhangJ.SchwarzkopfT.SchroederZ.JiangW.RenG.Niu, A robust high-performance electronic synapse based on epitaxial ferroelectric Hf0.5Zr0.5O2 films with uniform polarization and high Curie temperature, Appl. Mater. Today 29, 101587 (2022)
[26]
D. Q. Liu , H. F. Cheng , G. Wang , X. Zhu , N. N. Wang . Diode-like volatile resistive switching properties in amorphous Sr-doped LaMnO3 thin films under lower current compliance. J. Appl. Phys., 2013, 114(15): 154906
CrossRef ADS Google scholar
[27]
L.A. LiuJ.H. ZhaoG.CaoS.K. ZhengX.B. Yan, A memristor‐based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Mater. Technol. 6(12), 2100373 (2021)
[28]
S. A. Chekol , S. Menzel , R. Waser , S. Hoffmann-Eifert . Strategies to control the relaxation kinetics of Ag‐based diffusive memristors and implications for device operation. Adv. Electron. Mater., 2022, 8(11): 2200549
CrossRef ADS Google scholar
[29]
Y. H. Chen , Y. Wang , Y. H. Luo , X. W. Liu , Y. Q. Wang , F. Gao , J. G. Xu , E. T. Hu , S. Samanta , X. Wan , X. J. Lian , J. Xiao , Y. Tong . Realization of artificial neuron using MXene Bi-directional threshold switching memristors. IEEE Electron Device Lett., 2019, 40(10): 1686
CrossRef ADS Google scholar
[30]
O. Kwon , J. Shin , D. Chung , S. Kim . Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system. Ceram. Int., 2022, 48(20): 30482
CrossRef ADS Google scholar
[31]
O. Kwon , Y. Lee , M. Kang , S. Kim . Synaptic plasticity features and neuromorphic system simulation in AlN-based memristor devices. J. Alloys Compd., 2022, 911: 164870
CrossRef ADS Google scholar
[32]
S. Saitoh , K. Kinoshita . Oxide-based selector with trap-filling-controlled threshold switching. Appl. Phys. Lett., 2020, 116(11): 112101
CrossRef ADS Google scholar
[33]
D.DevA.KrishnaprasadM.S. ShawkatZ.HeS.DasD.FanH.S. ChungY.JungT.Roy, 2D MoS2-based threshold switching memristor for artificial neuron, IEEE Electron Device Lett. 41(6), 936 (2020)
[34]
W. Wang , W. Song , P. Yao , Y. Li , J. Van Nostrand , Q. Qiu , D. Ielmini , J. J. Yang . Integration and Co-design of memristive devices and algorithms for artificial intelligence. iScience, 2020, 23(12): 101809
CrossRef ADS Google scholar
[35]
S. Balatti , S. Ambrogio , Z. Q. Wang , D. Ielmini . True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst., 2015, 5(2): 214
CrossRef ADS Google scholar
[36]
B. Wei , C. Lu . Exploring device-circuit co-design in LC VCO circuits using monolayer transition metal dischalcogenide MoS2 field-effect transistors. AEU Int. J. Electron. Commun., 2021, 138: 153867
CrossRef ADS Google scholar
[37]
K.S. WooJ.KimJ.HanJ.M. ChoiW.KimC.S. Hwang, A high‐speed true random number generator based on a CuxTe1−x diffusive memristor, Adv. Intell. Syst. 3(7), 2100062 (2021)
[38]
K.S. WooY.WangY.KimJ.KimW.KimC.S. Hwang, A combination of a volatile‐memristor‐based true random‐number generator and a nonlinear‐feedback shift register for high‐speed encryption, Adv. Electron. Mater. 6(5), 1901117 (2020)
[39]
Y.F. LuH.Y. LiY.LiL.H. LiT.Q. WanL.YangW.B. ZuoK.H. XueX.S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free True Random Number Generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
[40]
S. W. Ke , L. Jiang , Y. F. Zhao , Y. Y. Xiao , B. Jiang , G. Cheng , F. C. Wu , G. S. Cao , Z. H. Peng , M. Zhu , C. Ye . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef ADS Google scholar
[41]
L. G. Gao , F. Alibart , D. B. Strukov . Programmable CMOS/memristor threshold logic. IEEE Trans. NanoTechnol., 2013, 12(2): 115
CrossRef ADS Google scholar
[42]
R.R. Dube, Hardware-Based Computer Security Techniques to Defeat Hackers: From Biometrics to Quantum Cryptography, John Wiley & Sons, 2008
[43]
K. Zeng , C. H. Yang , D. Y. Wei , T. Rao . Pseudorandom bit generators in stream-cipher cryptography. Computer, 1991, 24(2): 8
CrossRef ADS Google scholar
[44]
E.Dubrova, A transformation from the fibonacci to the galois NLFSRs, IEEE Trans. Inf. Theory 55(11), 5263 (2009)
[45]
W. H. Wang , G. D. Zhou . Moisture influence in emerging neuromorphic device. Front. Phys., 2022, 18(5): 53601
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Electronic supplementary materials

The online version contains supplementary material available at https://doi.org/10.1007/s11467-023-1331-1 and https://journal.hep.com.cn/fop/EN/10.1007/s11467-023-1331-1.

Acknowledgements

This work was financially supported by the National Key R&D Plan “Nano Frontier” Key Special Project (Grant No. 2021YFA1200502), Cultivation Projects of National Major R&D Project (Grant No. 92164109), the National Natural Science Foundation of China (Grant Nos. 61874158, 62004056, and 62104058), the Special Project of Strategic Leading Science and Technology of Chinese Academy of Sciences (Grant No. XDB44000000-7), Key R&D Plan Projects in Hebei Province (Grant No. 22311101D), Hebei Basic Research Special Key Project (Grant No. F2021201045), the Support Program for the Top Young Talents of Hebei Province (Grant No. 70280011807), the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province (Grant No. SLRC2019018), the Interdisciplinary Research Program of Natural Science of Hebei University (No. DXK202101), the Institute of Life Sciences and Green Development (No. 521100311), the Natural Science Foundation of Hebei Province (Nos. F2022201054 and F2021201022), the Outstanding Young Scientific Research and Innovation Team of Hebei University (Grant No. 605020521001), the Special Support Funds for National High Level Talents (Grant No. 041500120001), the Advanced Talents Incubation Program of the Hebei University (Grant Nos. 521000981426, 521100221071, and 521000981363), and the Science and Technology Project of Hebei Education Department (Grant Nos. QN2020178 and QN2021026).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5932 KB)

Accesses

Citations

Detail

Sections
Recommended

/