
A high-speed true random number generator based on Ag/SiNx/n-Si memristor
Xiaobing Yan, Zixuan Zhang, Zhiyuan Guan, Ziliang Fang, Yinxing Zhang, Jianhui Zhao, Jiameng Sun, Xu Han, Jiangzhen Niu, Lulu Wang, Xiaotong Jia, Yiduo Shao, Zhen Zhao, Zhenqiang Guo, Bing Bai
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13202.
A high-speed true random number generator based on Ag/SiNx/n-Si memristor
The intrinsic variability of memristor switching behavior can be used as a natural source of randomness, this variability is valuable for safe applications in hardware, such as the true random number generator (TRNG). However, the speed of TRNG is still be further improved. Here, we propose a reliable Ag/SiNx/n-Si volatile memristor, which exhibits a typical threshold switching device with stable repeat ability and fast switching speed. This volatile-memristor-based TRNG is combined with nonlinear feedback shift register (NFSR) to form a new type of high-speed dual output TRNG. Interestingly, the bit generation rate reaches a high speed of 112 kb/s. In addition, this new TRNG passed all 15 National Institute of Standards and Technology (NIST) randomness tests without post-processing steps, proving its performance as a hardware security application. This work shows that the SiNx-based volatile memristor can realize TRNG and has great potential in hardware network security.
volatile memristor / true random number generator (TRNG) / delay time / threshold switching device
Fig.1 Characterization of the SiNx film and ASS device. (a) TEM images of a cross-section of the SiNx film grown on n-Si substrate. (b, c) The top-view images of the SiNx film surface of TEM and AFM, respectively. (d) Schematic of the electrical measurement setup for characterizing the ASS structure. (e) 100 Consecutive DC switching cycles of the volatile memristor. (f) The resistance states distribution from 100 I–V cycles with the Icc of 10−5 A. (g) Cumulative distribution functions of threshold voltage Vth, Vh of the SiNx/n-Si structure. (h, i) The distribution of the threshold/hold voltage with the Icc of 10−5 A, respectively. |
Fig.2 The current response to the input voltage pulse of the devices. (a) A series of input pulses (blue line), consisting of variable width from 0.10 to 0.50 μs and the output voltage (red curve). (b) A series of input pulses (blue line), consisting of variable amplitude from 1.0 to 5.0 V, and the red line represents the corresponding output voltage. A higher input voltage leads to a larger output current. (c) The relaxation characteristic of using 3 V pulse and then using 1 V pulse, the time interval between the two pulses is 0 µs, 2.5 µs, 4.5 µs, 6.5 µs and the output voltage (red curve). (d) The retention characteristic of using 8 V pulse and then using a 1 V pulse, the time interval between the two pulses from 0 µs, 2.5 µs, 4.5 µs, 6.5 µs and the output voltage (red curve). |
Fig.3 The effect of voltage and frequency on delay time. (a, b) Switching speed of the device. (c) Delay time distribution for different input pulse amplitudes (4 V, 4.5 V, 5 V, 5.5 V, 6 V). (d) Delay time distribution for different input pulse frequencies (60 kHz, 80 kHz, 100 kHz, 120 kHz, 140 kHz). (e) Conduct 100 cycle delay time statistics under the pulse with amplitude of 5 V and frequency of 1 MHz. (f) Relationship between average delay time and input voltage. (g) Relationship between average delay time and input frequency. |
Tab.1 Comparison of this work with previously reported TRNG. |
Random source | Bit generation rate | NIST tests | |
---|---|---|---|
Ag:SiO2 DM TRNG | Delay time | 6 kb/s | Passed |
HfO2-based memristor TRNG | Delay and relaxation time | 16 kb/s | Passed |
CuxTe1−x DM TRNG | Delay and relaxation time | 32 kb/s | Passed |
mott memristor TRNG | Thermal fluctuation | 40 kb/s | Passed |
Ag/TiN/HfOx/HfOy/HfOx/Pt DM TRNG | integrate-and-firebehaviors | 108 kb/s | Passed |
This work | Delay time | 112 kb/s | Passed |
Tab.2 NIST randomness test results. |
Test | Pass rate | Min. pass rate | Pass/fail | |
---|---|---|---|---|
1. Frequency | 0.676097 | 81/85 | 80/85 | Pass |
2. Block frequency | 0.701879 | 84/85 | 80/85 | Pass |
3. Cumulative sums | 0.624107, 0.126842 | 82/85, 81/85 | 80/85 | Pass |
4. Runs | 0.340461 | 84/85 | 80/85 | Pass |
5. Longest run | 0.126842 | 84/85 | 80/85 | Pass |
6. Rank | 0.947557 | 85/85 | 80/85 | Pass |
7. FFT | 0.284375 | 83/85 | 80/85 | Pass |
8. Non overlapping template | − | 12447/12580 | 11917/12580 | Pass |
9. Overlapping template | 0.823278 | 81/85 | 80/85 | Pass |
10. Universal | 0.999091 | 85/85 | 80/85 | Pass |
11. Approximate entropy | 0.624107 | 83/85 | 80/85 | Pass |
12. Random excursions | − | 413/416 | 388/416 | Pass |
13. Random excursions variant | − | 928/936 | 874/936 | Pass |
14. Serial | 0.572333, 0.448892 | 83/85, 83/85 | 80/85 | Pass |
15. Linear complexity | 0.598138 | 83/85 | 80/85 | Pass |
[1] |
R.H. WeberR.Weber, Internet of Things, Springer, 2010
|
[2] |
V.d. LeestR.MaesG.J. SchrijenP.Tuyls, in: ISSE 2014 Securing Electronic Business Processes, Springer, 2014, pp 188–198
|
[3] |
C. Stergiou , K. E. Psannis , B. G. Kim , B. Gupta . Secure integration of IoT and cloud computing. Future Gener. Comput. Syst., 2018, 78: 964
CrossRef
ADS
Google scholar
|
[4] |
M. D. Pickett , R. Stanly Williams . Sub-100 fJ and sub-nanosecond thermally driven threshold switching in niobium oxide crosspoint nanodevices. Nanotechnology, 2012, 23(21): 215202
CrossRef
ADS
Google scholar
|
[5] |
M.J. LeeC.B. LeeD.LeeS.R. LeeM.ChangJ.H. HurY.B. KimC.J. KimD.H. SeoS.SeoU.I. ChungI.K. YooK.Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x/TaO2−x bilayer structures, Nat. Mater. 10(8), 625 (2011)
|
[6] |
A. C. Torrezan , J. P. Strachan , G. Medeiros-Ribeiro , R. S. Williams . Sub-nanosecond switching of a tantalum oxide memristor. Nanotechnology, 2011, 22(48): 485203
CrossRef
ADS
Google scholar
|
[7] |
S.KvatinskyE.G. FriedmanA.KolodnyU.C. Weiser, TEAM: Threshold adaptive memristor model, IEEE Trans. Circuits Syst. I Regul. Pap. 60(1), 211 (2013)
|
[8] |
Q. Xia , W. Robinett , M. W. Cumbie , N. Banerjee , T. J. Cardinali , J. J. Yang , W. Wu , X. Li , W. M. Tong , D. B. Strukov , G. S. Snider , G. Medeiros-Ribeiro , R. S. Williams . Memristor−CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett., 2009, 9(10): 3640
CrossRef
ADS
Google scholar
|
[9] |
Z. K. Dong , D. L. Qi , Y. F. He , Z. Xu , X. F. Hu , S. K. Duan . Easily cascaded memristor-CMOS hybrid circuit for high-efficiency boolean logic implementation. Int. J. Bifurcat. Chaos, 2018, 28(12): 1850149
CrossRef
ADS
Google scholar
|
[10] |
T. Zhang , M. Yin , C. Xu , X. Lu , X. Sun , Y. Yang , R. Huang . High-speed true random number generation based on paired memristors for security electronics. Nanotechnology, 2017, 28(45): 455202
CrossRef
ADS
Google scholar
|
[11] |
H.JiangD.BelkinS.E. Savel’evS.LinZ.WangY.LiS.JoshiR.MidyaC.LiM.RaoM.BarnellQ.WuJ.J. YangQ.Xia, A novel true random number generator based on a stochastic diffusive memristor, Nat. Commun. 8(1), 882 (2017)
|
[12] |
L.E. BasshamA.L. RukhinJ.SotoJ.R. NechvatalM.E. SmidS.D. LeighM.LevensonM.VangelN.A. HeckertD.L. Banks, A statistical test suite for random and pseudorandom number generators for cryptographic applications, National Institute of Standards & Technology, 2010
|
[13] |
S. Balatti , S. Ambrogio , R. Carboni , V. Milo , Z. Wang , A. Calderoni , N. Ramaswamy , D. Ielmini . Physical unbiased generation of random numbers with coupled resistive switching devices. IEEE Trans. Electron Dev., 2016, 63(5): 2029
CrossRef
ADS
Google scholar
|
[14] |
J. H. Yoon , Z. Wang , K. M. Kim , H. Wu , V. Ravichandran , Q. Xia , C. S. Hwang , J. J. Yang . An artificial nociceptor based on a diffusive memristor. Nat. Commun., 2018, 9(1): 417
CrossRef
ADS
Google scholar
|
[15] |
K.S. WooY.M. WangJ.KimY.KimY.J. KwonJ.H. YoonW.KimC.S. Hwang, A true random number generator using threshold-switching-based memristors in an efficient circuit design, Adv. Electron. Mater. 5(2), 1800543 (2019)
|
[16] |
G. Kim , J. H. In , Y. S. Kim , H. Rhee , W. Park , H. Song , J. Park , K. M. Kim . Self-clocking fast and variation tolerant true random number generator based on a stochastic Mott memristor. Nat. Commun., 2021, 12(1): 2906
CrossRef
ADS
Google scholar
|
[17] |
Y.F. LuH.Y. LiY.LiL.H. LiT.Q. WanL.YangW.B. ZuoK.H. XueX.S. Miao, A high‐performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration‐free true random number generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
|
[18] |
H.HeY.PeiJ.WangZ.ZhangJ.LiuL.YanY.ZhaoX.LiY.WeiJ.Chen, A hamming weight calculation of binary string in one nMOS transistor–one Ag/HfO2/black phosphorus/Pt memristor, IEEE Trans. Electron Devices 69(9), 22008490 (2022)
|
[19] |
L. Yan , Y. F. Pei , J. J. Wang , H. He , Y. Zhao , X. Y. Li , Y. X. Wei , X. B. Yan . High-speed Si films based threshold switching device and its artificial neuron application. Appl. Phys. Lett., 2021, 119(15): 153507
CrossRef
ADS
Google scholar
|
[20] |
Y. X. Zhang , Z. L. Fang , X. B. Yan . HfO2-based memristor-CMOS hybrid implementation of artificial neuron model. Appl. Phys. Lett., 2022, 120(21): 213502
CrossRef
ADS
Google scholar
|
[21] |
Z. R. Wang , S. Joshi , S. E. Savel’ev , H. Jiang , R. Midya , P. Lin , M. Hu , N. Ge , J. P. Strachan , Z. Y. Li , Q. Wu , M. Barnell , G. L. Li , H. L. Xin , R. S. Williams , Q. F. Xia , J. J. Yang . Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater., 2017, 16(1): 101
CrossRef
ADS
Google scholar
|
[22] |
X.XuE.J. ChoL.BekkerA.A. TalinE.LeeA.J. PascallM.A. WorsleyJ.ZhouC.C. CookJ.D. KuntzS.ChoC.A. Orme, A bioinspired artificial injury response system based on a robust polymer memristor to mimic a sense of pain, sign of injury, and healing, Adv. Sci. (Weinh.) 9(15), 2200629 (2022)
|
[23] |
R. Midya , Z. Wang , J. Zhang , S. E. Savel’ev , C. Li , M. Rao , M. H. Jang , S. Joshi , H. Jiang , P. Lin , K. Norris , N. Ge , Q. Wu , M. Barnell , Z. Li , H. L. Xin , R. S. Williams , Q. Xia , J. J. Yang . Anatomy of Ag/Hafnia‐based selectors with 1010 nonlinearity. Adv. Mater., 2017, 29(12): 1604457
CrossRef
ADS
Google scholar
|
[24] |
X. Yan , H. Li , L. Zhang , C. Lu , J. Zhao , Z. Zhou , H. Wang , J. Wang , X. Li , Y. Pei , C. Qin , G. Wang , Z. Xiao , Q. Zhao , K. Wang , D. Ren , S. Zheng . Density effects of graphene oxide quantum dots on characteristics of Zr0.5Hf0.5O2 film memristors. Appl. Phys. Lett., 2019, 114(16): 162906
CrossRef
ADS
Google scholar
|
[25] |
Y.WangQ.WangJ.ZhaoT.NiermannY.LiuL.DaiK.ZhengY.SunY.ZhangJ.SchwarzkopfT.SchroederZ.JiangW.RenG.Niu, A robust high-performance electronic synapse based on epitaxial ferroelectric Hf0.5Zr0.5O2 films with uniform polarization and high Curie temperature, Appl. Mater. Today 29, 101587 (2022)
|
[26] |
D. Q. Liu , H. F. Cheng , G. Wang , X. Zhu , N. N. Wang . Diode-like volatile resistive switching properties in amorphous Sr-doped LaMnO3 thin films under lower current compliance. J. Appl. Phys., 2013, 114(15): 154906
CrossRef
ADS
Google scholar
|
[27] |
L.A. LiuJ.H. ZhaoG.CaoS.K. ZhengX.B. Yan, A memristor‐based silicon carbide for artificial nociceptor and neuromorphic computing, Adv. Mater. Technol. 6(12), 2100373 (2021)
|
[28] |
S. A. Chekol , S. Menzel , R. Waser , S. Hoffmann-Eifert . Strategies to control the relaxation kinetics of Ag‐based diffusive memristors and implications for device operation. Adv. Electron. Mater., 2022, 8(11): 2200549
CrossRef
ADS
Google scholar
|
[29] |
Y. H. Chen , Y. Wang , Y. H. Luo , X. W. Liu , Y. Q. Wang , F. Gao , J. G. Xu , E. T. Hu , S. Samanta , X. Wan , X. J. Lian , J. Xiao , Y. Tong . Realization of artificial neuron using MXene Bi-directional threshold switching memristors. IEEE Electron Device Lett., 2019, 40(10): 1686
CrossRef
ADS
Google scholar
|
[30] |
O. Kwon , J. Shin , D. Chung , S. Kim . Energy efficient short-term memory characteristics in Ag/SnOx/TiN RRAM for neuromorphic system. Ceram. Int., 2022, 48(20): 30482
CrossRef
ADS
Google scholar
|
[31] |
O. Kwon , Y. Lee , M. Kang , S. Kim . Synaptic plasticity features and neuromorphic system simulation in AlN-based memristor devices. J. Alloys Compd., 2022, 911: 164870
CrossRef
ADS
Google scholar
|
[32] |
S. Saitoh , K. Kinoshita . Oxide-based selector with trap-filling-controlled threshold switching. Appl. Phys. Lett., 2020, 116(11): 112101
CrossRef
ADS
Google scholar
|
[33] |
D.DevA.KrishnaprasadM.S. ShawkatZ.HeS.DasD.FanH.S. ChungY.JungT.Roy, 2D MoS2-based threshold switching memristor for artificial neuron, IEEE Electron Device Lett. 41(6), 936 (2020)
|
[34] |
W. Wang , W. Song , P. Yao , Y. Li , J. Van Nostrand , Q. Qiu , D. Ielmini , J. J. Yang . Integration and Co-design of memristive devices and algorithms for artificial intelligence. iScience, 2020, 23(12): 101809
CrossRef
ADS
Google scholar
|
[35] |
S. Balatti , S. Ambrogio , Z. Q. Wang , D. Ielmini . True random number generation by variability of resistive switching in oxide-based devices. IEEE J. Emerg. Sel. Top. Circuits Syst., 2015, 5(2): 214
CrossRef
ADS
Google scholar
|
[36] |
B. Wei , C. Lu . Exploring device-circuit co-design in LC VCO circuits using monolayer transition metal dischalcogenide MoS2 field-effect transistors. AEU Int. J. Electron. Commun., 2021, 138: 153867
CrossRef
ADS
Google scholar
|
[37] |
K.S. WooJ.KimJ.HanJ.M. ChoiW.KimC.S. Hwang, A high‐speed true random number generator based on a CuxTe1−x diffusive memristor, Adv. Intell. Syst. 3(7), 2100062 (2021)
|
[38] |
K.S. WooY.WangY.KimJ.KimW.KimC.S. Hwang, A combination of a volatile‐memristor‐based true random‐number generator and a nonlinear‐feedback shift register for high‐speed encryption, Adv. Electron. Mater. 6(5), 1901117 (2020)
|
[39] |
Y.F. LuH.Y. LiY.LiL.H. LiT.Q. WanL.YangW.B. ZuoK.H. XueX.S. Miao, A high-performance Ag/TiN/HfOx/HfOy/HfOx/Pt diffusive memristor for calibration-free True Random Number Generator, Adv. Electron. Mater. 8(9), 2200202 (2022)
|
[40] |
S. W. Ke , L. Jiang , Y. F. Zhao , Y. Y. Xiao , B. Jiang , G. Cheng , F. C. Wu , G. S. Cao , Z. H. Peng , M. Zhu , C. Ye . Brain-like synaptic memristor based on lithium-doped silicate for neuromorphic computing. Front. Phys., 2022, 17(5): 53508
CrossRef
ADS
Google scholar
|
[41] |
L. G. Gao , F. Alibart , D. B. Strukov . Programmable CMOS/memristor threshold logic. IEEE Trans. NanoTechnol., 2013, 12(2): 115
CrossRef
ADS
Google scholar
|
[42] |
R.R. Dube, Hardware-Based Computer Security Techniques to Defeat Hackers: From Biometrics to Quantum Cryptography, John Wiley & Sons, 2008
|
[43] |
K. Zeng , C. H. Yang , D. Y. Wei , T. Rao . Pseudorandom bit generators in stream-cipher cryptography. Computer, 1991, 24(2): 8
CrossRef
ADS
Google scholar
|
[44] |
E.Dubrova, A transformation from the fibonacci to the galois NLFSRs, IEEE Trans. Inf. Theory 55(11), 5263 (2009)
|
[45] |
W. H. Wang , G. D. Zhou . Moisture influence in emerging neuromorphic device. Front. Phys., 2022, 18(5): 53601
CrossRef
ADS
Google scholar
|
Supplementary files
fop-21331-of-XiaobingYan_suppl_1 (2659 KB)
Part of a collection:
Special Topic: Materials, Mechanisms and Applications of Memristors
/
〈 |
|
〉 |