
Recent advances in memristors based on two-dimensional ferroelectric materials
Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou
Front. Phys. ›› 2024, Vol. 19 ›› Issue (1) : 13402.
Recent advances in memristors based on two-dimensional ferroelectric materials
In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices.
two-dimensional ferroelectric materials / synthesis strategies / memristors / artificial synapses
Fig.1 High performance of memristors based on several kinds of 2D ferroelectric materials. (a) Reprinted with permission from Ref. [63], Copyright © 2020 Wiley‐VCH GmbH. (b) Reprinted with permission from Ref. [64], Copyright © 2019 American Chemical Society. (c) Reprinted with permission from Ref. [60], Copyright © 2021 American Chemical Society. (d) Reprinted with permission from Ref. [65], Copyright © 2022 American Chemical Society. |
Fig.2 (a) Hysteresis curve of ferroelectric materials under electric field. E1 represents the electric field. (b) AFM image of In2Se3 films with thicknesses of 1.26−4.25 nm. (c) AFM images of In2Se3 films at 2−6 nm. (d, e) Amplitude and phase images of OOP PFM. (f, g) Amplitude and phase images of IP PFM. (h, i) OPP and IP phase images corresponding to 6 nm In2Se3 flake obtained by applying successive voltages of −7 and +6 V with size of 2 and 1 μm. The scale bars are 1 μm in (b−i). (b−i) Reprinted with permission from Ref. [90], Copyright © 2018 American Chemical Society. |
Fig.3 (a) Side view of the crystal structure of α-In2Se3. (b) Schematic representation of the planar crystal structure and ferroelectric polarization P↑ and P↓ of α-In2Se3. (c) The sulfur framework of the CuInP2S6 crystal structure with octahedral gaps filled by Cu and In cations and P−P pairs, where Cu+ ions can leap within the layer and cross the vdWs gap under the electric field. (d) The labelled Cu1, Cu2 and Cu3 are the three copper positions. The downward and upward positions of Cu1 are also denoted. (a) Reprinted with permission from Ref. [76], Copyright © 2021 American Chemical Society. (b) Reprinted with permission from Ref. [113], Copyright © 2020 Wiley‐VCH GmbH. (c, d) Reprinted with permission from Ref. [79], Copyright © 2021 American Chemical Society. |
Fig.4 (a) Schematic diagram of mechanical exfoliation process for the production of 2D materials. (b) Diagram of the key process and main parameters tailored for use in PLD. (c) Schematic diagram of the CVD growth process of 2D ferroelectric material In2Se3 on mica substrate. (d) In2Se3 layers synthesized via PVD with In2Se3 powders as precursors. (e−g) Schematic diagram of the main liquid exfoliation mechanisms. (a) Reprinted with permission from Ref. [145], Copyright © 2019 The Author(s). Published by Elsevier Ltd. (b) Reprinted with permission from Ref. [146], Copyright © 2023 The Royal Society of Chemistry. (c) Reprinted with permission from Ref. [147], Copyright © 2021 Elsevier B.V. All rights reserved. (d) Reprinted with permission from Ref. [148], Copyright © 2015 American Chemical Society. (e−g) Reprinted with permission from Ref. [139], Copyright © 2013, American Association for the Advancement of Science. |
Tab.1 A summary of synthesis strategies to organize 2D ferroelectric materials. |
Preparation methods | Advantages | Disadvantages | Ref. |
---|---|---|---|
Mechanical exfoliation[Fig.4(a)] | (1) Easy to operate (2) Highly flexible (3) High quality of prepared material samples | (1) Easy to mix in large amounts of impurities (2) Unstable structure (3) Low production efficiency, cannot be industrialized (4) Poor samples controllability | [55, 77, 79, 89, 136, 137, 149-157] |
PLD [Fig.4(b)] | (1) Rapid response and growth (2) Varieties of films can be made (3) Less contamination to the film, can make high purity film (4) Strong orientation and high film resolution (5) Easy to make multi-layer films and heterogeneous films | (1) Large area deposition of materials cannot be achieved (2) Slow average deposition rate (3) Relatively high cost | [85, 145, 158, 146] |
CVD [Fig.4(c)] | (1) Fast film formation speed, can deposit large quantities of uniformly composed films (2) Good wrap-around properties, complex shaped devices can be uniformly coated (3) Good adhesion strength to the substrate (4) Easy to obtain high purity and good crystallinity of the film (5) A flat deposition surface can be obtained | (1) High reaction temperature may cause coarse grains and brittle phases (2) Affect the service life of the machinery (3) Deposition rate is not too high (4) Easy to pollute the environment | [90, 115, 159-163] |
PVD [Fig.4(d)] | (1) Simple principle, easy to operate (2) Uniform and dense film formation (3) Fast deposition rate and high efficiency (4) Low cost (5) Low environmental pollution | (1) Relatively poor adhesion of the film to the substrate (2) Repeatability is less satisfactory (3) Chemical impurities are difficult to remove | [56, 113, 132] |
Liquid phase exfoliation [Fig.4(e)] | (1) Simple process, easy to operate (2) Mild conditions (3) High crystalline quality (4) Low cost (5) Easy to achieve large-scale production | (1) A bit noisy (2) Small sample size (3) Some auxiliary chemical reagents are easy to pollute the environment and human body | [80, 83, 116, 141, 142, 144, 164] |
Fig.5 (a) Schematic diagram device structure of α-In2Se3 memristor. (b, c) Symmetric and rectifying devices with increasing maximum Vds. (d−f) |I|−Vds relationships, OOP PFM phase images and contact potential difference images of rectifying in the LRS. (g−i) |I|−Vds relationships, OOP PFM phase images and contact potential difference images of rectifying in the HRS. (a−i) Reprinted with permission from Ref. [113], Copyright © 2020 Wiley‐VCH GmbH. |
Fig.6 (a) Schematic diagram of α-In2Se3-based synaptic device. (b) Optical image of the α-In2Se3-based synaptic device. (c) I−V curves of the device under voltage sweep. (d) The endurance of α-In2Se3-based device (100 cycles, set pulse: 5 V/100 µs, reset pulse: −5 V/100 µs). (e) Schematic diagram of the artificial synapse based on α-In2Se3. (f) Long-term potentiation/long-term depression under the different pulse amplitude from 4 to 6 V. The current was read at 0.5 V after each pulse, and the pulse width is fixed with 1 µs. (g) STDP learning rules realized by α-In2Se3 artificial synapse. (h) The recognition results to MNIST handwritten dataset. The recognition accuracy of the α-In2Se3-based synaptic device is 93.2%, close to that of based on ideal hard-based device (94.1%). (a−h) Reprinted with permission from Ref. [153], Copyright © 2021 Wiley‐VCH GmbH. |
Fig.7 Nonvolatile ferroelectric memory based on lateral β/α/β In2Se3 heterojunction. (a) Schematic diagram of a β/α/β In2Se3 device. The dashed box in the middle represents the α-phase. The β-phase is in contact with the electrodes at both ends. The position of the pink Se atoms in the middle can be used to distinguish between α-In2Se3 and β-In2Se3 (Blue: In atoms). The arrows represent the direction of polarization. (b) Side view of the cell unit for the α and β of In2Se3. Indium (blue balls) and selenium (red balls) atoms combine to form the tetrahedral and octahedral structures shown in the inset, respectively. (c) Raman spectroscopy of the α and β phases of In2Se3. (d) The I−V curves output measured repeatedly between +5 to −5 V, with the arrows representing the scanning direction. (e) The current response under periodic voltage pulses. The pulse width for write and erase is 10 ms, and two logic states can be read at 0.1 V. (f, g) The retention and endurance performance of the device. (a−g) Reprinted with permission from Ref. [154], Copyright © 2022 American Chemical Society. |
Fig.8 The mimicking neuroplasticity via Cu+ ions migration in layered CuInP2S6. (a) Schematic diagram of a biological synapse. The lower right part is the CIPS artificial synaptic device. (b) Plot of I−V curves measured at a fixed voltage range (−2 to 2 V) after a voltage sweep from 0 V to positive stimulation voltages (6, 8, 10, 15 V). (c) I−V characteristics of the device at a swept voltage range (−10 to 10 V). The light blue, dark blue and black curves indicate the I−V curves for three consecutive cycles of testing, respectively, and the arrows indicate the direction of scanning. (d) Current at different resistive states of the device read with a voltage of 2 V after the 10 and −10 V scanning. (e) RS stability of the device at a set voltage of 15 V and a reset voltage of −10 V with a Vread of 2 V. (f) Excitatory postsynaptic currents at different Vread after application of a series of 10 V pulses lasting 1 s. (g) PPF on the device triggered by a pair of positively spaced pulses with different intervals. (h) Implementation of STDP based on CIPS devices with exponential functions fitted to the data points. (a−h) Reprinted with permission from Ref. [122], Copyright © 2021 Wiley‐VCH GmbH. |
Fig.9 Gate programmable vertical M−FE−S heterojunction memristor. (a) Schematic diagram of the M−FE−S memristor. (b) I−V curves of the M−FE−S memristor under 300 K (room temperature, black) and above Tc 400 K (red). The arrows indicate the scanning direction. (c, d) Reproducibility and retention. (e, f) SEM images of a 3 × 4 M−FE−S array device. (g−i) The letters “I”, “M” and “R” encoded by reading the HRS and LRS of each pixel in the 3 × 4 array. (a−i) Reprinted with permission from Ref. [171], Copyright © 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH. |
Fig.10 (a) Schematic diagram of the Pt/SnS/Pt synapse structure. (b) SnS polarization-electric field (P−E) hysteresis curve. (c) The performance of fatigue resistance and stability in 3 different devices. (d) PPF performance stimulated by applying 10, 30, and 50 presynaptic spikes (Vpulse = 3 V, Pwidth = 20 ms), read at 0.1 V. (e) LTP/LTD under different pulse amplitude (±3 V to ±5 V). Pulses width: 20 ms. (f) Cyclic LTP/LDP tests of this Pt/SnS/Pt artificial synapse. (g) The diagram of ANNs for the recognition of handwriting Arabic digits. (a−g) Reprinted with permission from Ref. [159], Copyright © 2020 American Chemical Society. |
Fig.11 (a) Schematic diagram of a multilayer MoS2 device consisting of two Cr/Au electrodes. (b) I−V characteristics of the multilayer MoS2 over 20 cycles, showing excellent stability. (c) HRS and LRS currents retention test over 3000 s. (d) Schematic illustration of the multilayer MoS2 device under light illumination. (e) The ratio of LRS to HRS changes after light modulation at different power levels, leading to a maximum ratio of 105. (f) After six consecutive light pulses at 1 V bias, the device transitions to long-term memory (LTM) mode (the inset shows that after a single light pulse at 2 mW power, the short-term memory (STM) mode). (a−f) Reprinted with permission from Ref. [173], Copyright © 2021 American Chemical Society. |
[1] |
J. Ajayan, D. Nirmal, B. K. Jebalin I. V, S. Sreejith. Advances in neuromorphic devices for the hardware implementation of neuromorphic computing systems for future artificial intelligence applications: A critical review. Microelectron. J., 2022, 130: 105634
CrossRef
ADS
Google scholar
|
[2] |
B. Sun, S. Ranjan, G. Zhou, T. Guo, Y. Xia, L. Wei, Y. N. Zhou, Y. A. Wu. Multistate resistive switching behaviors for neuromorphic computing in memristor. Mater. Today Adv., 2021, 9: 100125
CrossRef
ADS
Google scholar
|
[3] |
K. Sun, J. Chen, X. Yan. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
CrossRef
ADS
Google scholar
|
[4] |
D. Misra. Special issue of Interface on Neuromorphic Computing: An introduction and state of the field. Electrochem. Soc. Interface, 2023, 32(1): 45
CrossRef
ADS
Google scholar
|
[5] |
D. Ielmini, Z. Wang, Y. Liu. Brain-inspired computing via memory device physics. APL Mater., 2021, 9(5): 050702
CrossRef
ADS
Google scholar
|
[6] |
J. Q. Yang, R. Wang, Y. Ren, J. Y. Mao, Z. P. Wang, Y. Zhou, S. T. Han. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv. Mater., 2020, 32(52): 2003610
CrossRef
ADS
Google scholar
|
[7] |
L. Wang, X. Shen, Z. Gao, J. Fu, S. Yao, L. Cheng, X. Lian. Review of applications of 2D materials in memristive neuromorphic circuits. J. Mater. Sci., 2022, 57(8): 4915
CrossRef
ADS
Google scholar
|
[8] |
Z. Wang, L. Wang, M. Nagai, L. Xie, M. Yi, W. Huang. Nanoionics‐enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electron. Mater., 2017, 3(7): 1600510
CrossRef
ADS
Google scholar
|
[9] |
C. Gao, M. P. Lee, M. Li, K. C. Lee, F. S. Yang, C. Y. Lin, K. Watanabe, T. Taniguchi, P. W. Chiu, C. H. Lien, W. W. Wu, S. P. Lin, W. Li, Y. F. Lin, J. Chu. Mimic drug dosage modulation for neuroplasticity based on charge‐trap layered electronics. Adv. Funct. Mater., 2021, 31(5): 2005182
CrossRef
ADS
Google scholar
|
[10] |
X. Wang, Z. Shang, C. Zhang, J. Kang, T. Liu, X. Wang, S. Chen, H. Liu, W. Tang, Y. J. Zeng, J. Guo, Z. Cheng, L. Liu, D. Pan, S. Tong, B. Wu, Y. Xie, G. Wang, J. Deng, T. Zhai, H. X. Deng, J. Hong, J. Zhao. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun., 2023, 14(1): 840
CrossRef
ADS
Google scholar
|
[11] |
R. Lin, G. Shi, F. Qiao, C. Wang, S. Wu. Research progress and applications of memristor emulator circuits. Microelectron. J., 2023, 133: 105702
CrossRef
ADS
Google scholar
|
[12] |
Y. Zuo, H. Lin, J. Guo, Y. Yuan, H. He, Y. Li, Y. Xiao, X. Li, K. Zhu, T. Wang, X. Jing, C. Wen, M. Lanza. Effect of the pressure exerted by probe station tips in the electrical characteristics of memristors. Adv. Electron. Mater., 2020, 6(3): 1901226
CrossRef
ADS
Google scholar
|
[13] |
O.Vaughan, A history of memristors in five covers, Nat. Electron. 6(1), 7 (2023)
|
[14] |
L. Chua. Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507
CrossRef
ADS
Google scholar
|
[15] |
S. Yan, J. Zang, P. Xu, Y. Zhu, G. Li, Q. Chen, Z. Chen, Y. Zhang, M. Tang, X. Zheng. Recent progress in ferroelectric synapses and their applications. Sci. China Mater., 2023, 66(3): 877
CrossRef
ADS
Google scholar
|
[16] |
W. Chen, L. Song, S. Wang, Z. Zhang, G. Wang, G. Hu, S. Gao. Essential characteristics of memristors for neuromorphic computing. Adv. Electron. Mater., 2022, 9(2): 2200833
CrossRef
ADS
Google scholar
|
[17] |
S. H. Sung, Y. Jeong, J. W. Oh, H. J. Shin, J. H. Lee, K. J. Lee. Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence. Mater. Today, 2023, 62: 251
CrossRef
ADS
Google scholar
|
[18] |
F.YuanY. Li, A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor, Chaos 29(10), 101101 (2019)
|
[19] |
Z. Biolek, D. Biolek, V. Biolková, Z. Kolka, A. Ascoli, R. Tetzlaff. Analysis of memristors with nonlinear memristance versus state maps. Int. J. Circuit Theory Appl., 2017, 45(11): 1814
CrossRef
ADS
Google scholar
|
[20] |
M. Di Ventra, Y. V. Pershin, L. O. Chua. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE, 2009, 97(10): 1717
CrossRef
ADS
Google scholar
|
[21] |
S. G. Kim, J. S. Han, H. Kim, S. Y. Kim, H. W. Jang. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol., 2018, 3(12): 1800457
CrossRef
ADS
Google scholar
|
[22] |
X. Yan, H. Yan, G. Liu, J. Zhao, Z. Zhao, H. Wang, H. He, M. Hao, Z. Li, L. Wang, W. Wang, Z. Jian, J. Li, J. Chen. Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films. Nano Res., 2022, 15(10): 9654
CrossRef
ADS
Google scholar
|
[23] |
Z. Liu, H. Wang, M. Li, L. Tao, T. R. Paudel, H. Yu, Y. Wang, S. Hong, M. Zhang, Z. Ren, Y. Xie, E. Y. Tsymbal, J. Chen, Z. Zhang, H. Tian. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature, 2023, 613(7945): 656
CrossRef
ADS
Google scholar
|
[24] |
X.YanX. JiaY.ZhangS.ShiL.Wang Y.ShaoY. SunS.SunZ.ZhaoJ.Zhao J.SunZ. GuoZ.GuanZ.ZhangX.Han J.Chen, A low-power Si:HfO2 ferroelectric tunnel memristor for spiking neural networks, Nano Energy 107, 108091 (2023)
|
[25] |
Y. W. Fang, Z. J. Yang, R. Y. Liao, P. T. Chen, C. B. Liu, K. Y. Huang, H. H. Hsu, C. H. Cheng, W. C. Chou, S. H. Lin, Y. Zhou. Electrical characteristics investigation of ferroelectric memories using stacked and mixed hafnium zirconium oxides. Thin Solid Films, 2022, 757: 139395
CrossRef
ADS
Google scholar
|
[26] |
F. S. Yang, M. Li, M. P. Lee, I. Y. Ho, J. Y. Chen, H. Ling, Y. Li, J. K. Chang, S. H. Yang, Y. M. Chang, K. C. Lee, Y. C. Chou, C. H. Ho, W. Li, C. H. Lien, Y. F. Lin. Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat. Commun., 2020, 11(1): 2972
CrossRef
ADS
Google scholar
|
[27] |
L. Yin, R. Cheng, Y. Wen, B. Zhai, J. Jiang, H. Wang, C. Liu, J. He. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater., 2022, 34(9): 2108313
CrossRef
ADS
Google scholar
|
[28] |
F.QianR. S. ChenR.WangJ.WangP.Xie J.Y. MaoZ. LvS.YeJ.Q. YangZ.Wang Y.ZhouS. T. Han, A leaky integrate-and-fire neuron based on hexagonal boron nitride (h-BN) monocrystalline memristor, IEEE Trans. Electron Dev. 69(11), 6049 (2022)
|
[29] |
Z. P. Wang, P. Xie, J. Y. Mao, R. Wang, J. Q. Yang, Z. Feng, Y. Zhou, C. C. Kuo, S. T. Han. The floating body effect of a WSe2 transistor with volatile memory performance. Mater. Horiz., 2022, 9(7): 1878
CrossRef
ADS
Google scholar
|
[30] |
Z. Wang, W. Wang, P. Liu, G. Liu, J. Li, J. Zhao, Z. Zhou, J. Wang, Y. Pei, Z. Zhao, J. Li, L. Wang, Z. Jian, Y. Wang, J. Guo, X. Yan. Superlow power consumption artificial synapses based on WSe2 quantum dots memristor for neuromorphic computing. Research, 2022, 2022: 9754876
CrossRef
ADS
Google scholar
|
[31] |
B. Cheng, Z. Lei, P. Wu. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res., 2022, 15(6): 5538
CrossRef
ADS
Google scholar
|
[32] |
W.LeeZ. ZhouX.ChenN.QinJ.Jiang K.LiuM. LiuT.H. TaoW.Li, A rewritable optical storage medium of silk proteins using near-field nano-optics, Nat. Nanotechnol. 15(11), 941 (2020)
|
[33] |
M. Z. Li, L. C. Guo, G. L. Ding, K. Zhou, Z. Y. Xiong, S. T. Han, Y. Zhou. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces, 2021, 13(26): 30861
CrossRef
ADS
Google scholar
|
[34] |
X. F. Cheng, W. H. Qian, J. Wang, C. Yu, J. H. He, H. Li, Q. F. Xu, D. Y. Chen, N. J. Li, J. M. Lu. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731
CrossRef
ADS
Google scholar
|
[35] |
Q. Liu, W. Yue, Y. Li, W. Wang, L. Xu, Y. Wang, S. Gao, C. Zhang, H. Kan, C. Li. Multifunctional optoelectronic random access memory device based on surface‐plasma‐treated inorganic halide perovskite. Adv. Electron. Mater., 2021, 7(7): 2100366
CrossRef
ADS
Google scholar
|
[36] |
X. Zhu, Q. Wang, W. D. Lu. Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
CrossRef
ADS
Google scholar
|
[37] |
J. Zhao, W. Li, X. Wang, X. Wei, H. Zhu, W. Qu, D. Men, Z. Gao, B. Wei, H. Gao, Y. Wu. Organic memristor based on high planar cyanostilbene/polymer composite films. Chem. Res. Chin. Univ., 2023, 39(1): 121
CrossRef
ADS
Google scholar
|
[38] |
Z. Feng, M. Comí, Y. Ren, D. Sredojević, S. Attar, J. Yang, Z. Wang, R. S. Chen, S. T. Han, M. Al-Hashimi, Y. Zhou. Organic memory devices and synaptic simulation based on indacenodithienothiophene (IDTT) copolymers with improved planarity. J. Mater. Chem. C, 2022, 10(43): 16604
CrossRef
ADS
Google scholar
|
[39] |
W. Wang, G. Zhou, Y. Wang, B. Yan, B. Sun, S. Duan, Q. Song. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J. Phys. Chem. Lett., 2022, 13(42): 9941
CrossRef
ADS
Google scholar
|
[40] |
L. Qi, S. Ruan, Y. J. Zeng. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater., 2021, 33(13): 2005098
CrossRef
ADS
Google scholar
|
[41] |
C. Wang, L. You, D. Cobden, J. Wang. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
CrossRef
ADS
Google scholar
|
[42] |
J. Wang, J. Lou, J. F. Wang, S. B. Qu, H. L. Du, T. J. Cui. Ferroelectric composite artificially-structured functional material: Multifield control for tunable functional devices. J. Phys. D, 2022, 55(30): 303002
CrossRef
ADS
Google scholar
|
[43] |
C. Yang, C. Wang, Z. Cheng. Editorial for the special issue “Nanoscale ferroic materials — ferroelectric, piezoelectric, magnetic, and multiferroic materials”. Nanomaterials (Basel), 2022, 12(17): 2951
CrossRef
ADS
Google scholar
|
[44] |
L. W. Martin, A. M. Rappe. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
CrossRef
ADS
Google scholar
|
[45] |
K. Geirhos, S. Reschke, S. Ghara, S. Krohns, P. Lunkenheimer, I. Kézsmárki. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels. Phys. Status Solidi B, 2022, 259(5): 2100160
CrossRef
ADS
Google scholar
|
[46] |
F. Xue, X. He, W. Liu, D. Periyanagounder, C. Zhang, M. Chen, C. H. Lin, L. Luo, E. Yengel, V. Tung, T. D. Anthopoulos, L. J. Li, J. H. He, X. Zhang. Optoelectronic ferroelectric domain‐wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater., 2020, 30(52): 2004206
CrossRef
ADS
Google scholar
|
[47] |
J. Nam, H. Lee, M. Lee, J. H. Lee. Nonvolatile balanced ternary memory based on the multiferroelectric material GeSnTe2. J. Phys. Chem. Lett., 2019, 10(23): 7470
CrossRef
ADS
Google scholar
|
[48] |
D. Zhao, T. Lenz, G. H. Gelinck, P. Groen, D. Damjanovic, D. M. de Leeuw, I. Katsouras. Depolarization of multidomain ferroelectric materials. Nat. Commun., 2019, 10(1): 2547
CrossRef
ADS
Google scholar
|
[49] |
S. Baek, H. H. Yoo, J. H. Ju, P. Sriboriboon, P. Singh, J. Niu, J. H. Park, C. Shin, Y. Kim, S. Lee. Ferroelectric field‐effect‐transistor integrated with ferroelectrics heterostructure. Adv. Sci. (Weinh.), 2022, 9(21): 2200566
CrossRef
ADS
Google scholar
|
[50] |
A. I. Khan, A. Keshavarzi, S. Datta. The future of ferroelectric field-effect transistor technology. Nat. Electron., 2020, 3(10): 588
CrossRef
ADS
Google scholar
|
[51] |
C. Cui, F. Xue, W. J. Hu, L. J. Li. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl., 2018, 2(1): 18
CrossRef
ADS
Google scholar
|
[52] |
M. Dai, Z. Wang, F. Wang, Y. Qiu, J. Zhang, C. Y. Xu, T. Zhai, W. Cao, Y. Fu, D. Jia, Y. Zhou, P. A. Hu. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410
CrossRef
ADS
Google scholar
|
[53] |
D. Zhang, H. Wu, C. R. Bowen, Y. Yang. Recent advances in pyroelectric materials and applications. Small, 2021, 17(51): 2103960
CrossRef
ADS
Google scholar
|
[54] |
J. Jiang, L. Zhang, C. Ming, H. Zhou, P. Bose, Y. Guo, Y. Hu, B. Wang, Z. Chen, R. Jia, S. Pendse, Y. Xiang, Y. Xia, Z. Lu, X. Wen, Y. Cai, C. Sun, G. C. Wang, T. M. Lu, D. Gall, Y. Y. Sun, N. Koratkar, E. Fohtung, Y. Shi, J. Shi. Giant pyroelectricity in nanomembranes. Nature, 2022, 607(7919): 480
CrossRef
ADS
Google scholar
|
[55] |
Y. Li, J. Fu, X. Mao, C. Chen, H. Liu, M. Gong, H. Zeng. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
CrossRef
ADS
Google scholar
|
[56] |
D. Wu, C. Guo, L. Zeng, X. Ren, Z. Shi, L. Wen, Q. Chen, M. Zhang, X. J. Li, C. X. Shan, J. Jie. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl., 2023, 12(1): 5
CrossRef
ADS
Google scholar
|
[57] |
K. Tang, Y. Wang, C. Gong, C. Yin, M. Zhang, X. Wang, J. Xiong. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
CrossRef
ADS
Google scholar
|
[58] |
H. Duan, S. Cheng, L. Qin, X. Zhang, B. Xie, Y. Zhang, W. Jie. Low-power memristor based on two-dimensional materials. J. Phys. Chem. Lett., 2022, 13(31): 7130
CrossRef
ADS
Google scholar
|
[59] |
Z. M. Tsikriteas, J. I. Roscow, C. R. Bowen, H. Khanbareh. Flexible ferroelectric wearable devices for medical applications. iScience, 2021, 24(1): 101987
CrossRef
ADS
Google scholar
|
[60] |
X. Mao, J. Fu, C. Chen, Y. Li, H. Liu, M. Gong, H. Zeng. Nonvolatile electric control of exciton complexes in monolayer MoSe2 with two-dimensional ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces, 2021, 13(20): 24250
CrossRef
ADS
Google scholar
|
[61] |
K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, S. H. Ji. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
CrossRef
ADS
Google scholar
|
[62] |
C. C. Chiang, V. Ostwal, P. Wu, C. S. Pang, F. Zhang, Z. Chen, J. Appenzeller. Memory applications from 2D materials. Appl. Phys. Rev., 2021, 8(2): 021306
CrossRef
ADS
Google scholar
|
[63] |
L. Wang, X. Wang, Y. Zhang, R. Li, T. Ma, K. Leng, Z. Chen, I. Abdelwahab, K. P. Loh. Exploring ferroelectric switching in α‐In2Se3 for neuromorphic computing. Adv. Funct. Mater., 2020, 30(45): 2004609
CrossRef
ADS
Google scholar
|
[64] |
Y. Liu, W. Zhou, G. Tang, C. Yang, X. Wang, J. Hong. Coexistence of magnetism and ferroelectricity in 3D transition-metal-doped SnTe monolayer. J. Phys. Chem. C, 2019, 123(47): 28919
CrossRef
ADS
Google scholar
|
[65] |
T. Li, J. Cao, H. Gao, Z. Wang, M. Geiwitz, K. S. Burch, X. Ling. Epitaxial atomic substitution for MoS2−MoN heterostructure synthesis. ACS Appl. Mater. Interfaces, 2022, 14(51): 57144
CrossRef
ADS
Google scholar
|
[66] |
H. Qiao, C. Wang, W. S. Choi, M. H. Park, Y. Kim. Ultra-thin ferroelectrics. Mater. Sci. Eng. Rep., 2021, 145: 100622
CrossRef
ADS
Google scholar
|
[67] |
R. K. Vasudevan, N. Balke, P. Maksymovych, S. Jesse, S. V. Kalinin. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev., 2017, 4(2): 021302
CrossRef
ADS
Google scholar
|
[68] |
B. Jiang, J. Iocozzia, L. Zhao, H. Zhang, Y. W. Harn, Y. Chen, Z. Lin. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev., 2019, 48(4): 1194
CrossRef
ADS
Google scholar
|
[69] |
C. Zhao, Y. Huang, J. Wu. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163
CrossRef
ADS
Google scholar
|
[70] |
T. Mikolajick, M. H. Park, L. Begon-Lours, S. Slesazeck. From ferroelectric material optimization to neuromorphic devices. Adv. Mater., 2022, 35(27): 2206042
CrossRef
ADS
Google scholar
|
[71] |
M.Wu, 100 years of ferroelectricity, Nat. Rev. Phys. 3(11), 726 (2021)
|
[72] |
H. Sun, J. Gu, Y. Li, T. R. Paudel, D. Liu, J. Wang, Y. Zang, C. Gu, J. Yang, W. Sun, Z. Gu, E. Y. Tsymbal, J. Liu, H. Huang, D. Wu, Y. Nie. Prominent size effects without a depolarization field observed in ultrathin ferroelectric oxide membranes. Phys. Rev. Lett., 2023, 130(12): 126801
CrossRef
ADS
Google scholar
|
[73] |
X. Jia, R. Guo, B. K. Tay, X. Yan. Flexible ferroelectric devices: Status and applications. Adv. Funct. Mater., 2022, 32(45): 2205933
CrossRef
ADS
Google scholar
|
[74] |
D. Zhang, P. Schoenherr, P. Sharma, J. Seidel. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater., 2022, 8(1): 25
CrossRef
ADS
Google scholar
|
[75] |
Z.L. YuanY. SunD.WangK.Q. ChenL.M. Tang, A review of ultra-thin ferroelectric films, J. Phys.: Condens. Matter 33(40), 403003 (2021)
|
[76] |
J. Y. Li, H. D. Li, X. B. Niu, Z. M. Wang. Low-dimensional In2Se3 compounds: From material preparations to device applications. ACS Nano, 2021, 15(12): 18683
CrossRef
ADS
Google scholar
|
[77] |
H. Yang, M. Q. Xiao, Y. Cui, L. F. Pan, K. Zhao, Z. M. Wei. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric alpha-In2Se3 and WSe2. Sci. China Inform. Sci., 2019, 62(12): 220404
CrossRef
ADS
Google scholar
|
[78] |
S. Zhou, L. You, H. Zhou, Y. Pu, Z. Gui, J. Wang. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
CrossRef
ADS
Google scholar
|
[79] |
D. Zhang, Z. D. Luo, Y. Yao, P. Schoenherr, C. Sha, Y. Pan, P. Sharma, M. Alexe, J. Seidel. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett., 2021, 21(2): 995
CrossRef
ADS
Google scholar
|
[80] |
B. Lin, A. Chaturvedi, J. Di, L. You, C. Lai, R. Duan, J. Zhou, B. Xu, Z. Chen, P. Song, J. Peng, B. Ma, H. Liu, P. Meng, G. Yang, H. Zhang, Z. Liu, F. Liu. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy, 2020, 76: 104972
CrossRef
ADS
Google scholar
|
[81] |
A. Jindal, A. Saha, Z. Li, T. Taniguchi, K. Watanabe, J. C. Hone, T. Birol, R. M. Fernandes, C. R. Dean, A. N. Pasupathy, D. A. Rhodes. Coupled ferroelectricity and superconductivity in bilayer Td−MoTe2. Nature, 2023, 613(7942): 48
CrossRef
ADS
Google scholar
|
[82] |
F. Ahmed, A. M. Shafi, D. M. A. Mackenzie, M. A. Qureshi, H. A. Fernandez, H. H. Yoon, M. G. Uddin, M. Kuittinen, Z. Sun, H. Lipsanen. Multilayer MoTe2 field-effect transistor at high temperatures. Adv. Mater. Interfaces, 2021, 8(22): 2100950
CrossRef
ADS
Google scholar
|
[83] |
M.R. SokolovK.A. TumbinskiyA.I. ZvyaginaI.N. SenchikhinA.A. AverinA.E. AleksandrovA.R. TameevA.A. EzhovM.A. Kalinina, A new 2-methylimidazole-assisted liquid-exfoliation method for a rapid scalable fabrication of chemically pure MoS2 nanosheets, Colloid Interface Sci. Commun. 47, 100604 (2022)
|
[84] |
S. N. Shirodkar, U. V. Waghmare. Emergence of ferroelectricity at a metal−semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
CrossRef
ADS
Google scholar
|
[85] |
S. Kumar, A. Sharma, Y. T. Ho, A. Pandey, M. Tomar, A. K. Kapoor, E. Y. Chang, V. Gupta. High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique. J. Alloys Compd., 2020, 835: 155222
CrossRef
ADS
Google scholar
|
[86] |
X. Zhu, D. Li, X. Liang, W. D. Lu. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater., 2019, 18(2): 141
CrossRef
ADS
Google scholar
|
[87] |
Y. Sun, G. Niu, W. Ren, X. Meng, J. Zhao, W. Luo, Z. G. Ye, Y. H. Xie. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano, 2021, 15(7): 10982
CrossRef
ADS
Google scholar
|
[88] |
Y.T. HuangN. K. ChenZ.Z. LiX.P. WangH.B. Sun S.ZhangX. B. Li, Two-dimensional In2Se3: A rising advanced material for ferroelectric data storage, InfoMat 4(8) (2022)
|
[89] |
C. Chen, H. Liu, Q. Lai, X. Mao, J. Fu, Z. Fu, H. Zeng. Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect. Nano Lett., 2022, 22(8): 3275
CrossRef
ADS
Google scholar
|
[90] |
C. Cui, W. J. Hu, X. Yan, C. Addiego, W. Gao, Y. Wang, Z. Wang, L. Li, Y. Cheng, P. Li, X. Zhang, H. N. Alshareef, T. Wu, W. Zhu, X. Pan, L. J. Li. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
CrossRef
ADS
Google scholar
|
[91] |
J. Yang, J. Zhou, J. Lu, Z. Luo, J. Yang, L. Shen. Giant tunnelling electroresistance through 2D sliding ferroelectric materials. Mater. Horiz., 2022, 9(5): 1422
CrossRef
ADS
Google scholar
|
[92] |
L. Li, M. Wu. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
CrossRef
ADS
Google scholar
|
[93] |
M. V. Stern, Y. Waschitz, W. Cao, I. Nevo, K. Watanabe, T. Taniguchi, E. Sela, M. Urbakh, O. Hod, M. B. Shalom. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
CrossRef
ADS
Google scholar
|
[94] |
X. Hao, H. Wang, H. Zhang. Engineering application of nanomaterial and ferroelectric domain polarization to the dynamic structure of the surrounding rock of heavy-duty railway with small clear intersection tunnel. Adv. Mater. Sci. Eng., 2023, 2023: 8354167
CrossRef
ADS
Google scholar
|
[95] |
J. Schultheiß, G. Picht, J. Wang, Y. A. Genenko, L. Q. Chen, J. E. Daniels, J. Koruza. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics. Prog. Mater. Sci., 2023, 136: 101101
CrossRef
ADS
Google scholar
|
[96] |
C. Weymann, C. Lichtensteiger, S. Fernandez‐Peña, A. B. Naden, L. R. Dedon, L. W. Martin, J. M. Triscone, P. Paruch. Full control of polarization in ferroelectric thin films using growth temperature to modulate defects. Adv. Electron. Mater., 2020, 6(12): 2000852
CrossRef
ADS
Google scholar
|
[97] |
W. Wang, J. Li, H. Liu, S. Ge. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. (Weinh.), 2021, 8(1): 2003074
CrossRef
ADS
Google scholar
|
[98] |
W. Ding, J. Lu, X. Tang, L. Kou, L. Liu. Ferroelectric materials and their applications in activation of small molecules. ACS Omega, 2023, 8(7): 6164
CrossRef
ADS
Google scholar
|
[99] |
Y. Guo, H. Zhu, Q. Wang. Piezoelectric effects in surface-engineered two-dimensional group III nitrides. ACS Appl. Mater. Interfaces, 2019, 11(1): 1033
CrossRef
ADS
Google scholar
|
[100] |
I. Katsouras, K. Asadi, M. Li, T. B. van Driel, K. S. Kjaer, D. Zhao, T. Lenz, Y. Gu, P. W. Blom, D. Damjanovic, M. Nielsen, D. M. de Leeuw. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater., 2016, 15(1): 78
CrossRef
ADS
Google scholar
|
[101] |
M. M. Yang, Z. D. Luo, Z. Mi, J. Zhao, S. P. E, M. Alexe. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature, 2020, 584(7821): 377
CrossRef
ADS
Google scholar
|
[102] |
P. Kumbhakar, C. C. Gowda, C. S. Tiwary. Advance optical properties and emerging applications of 2D materials. Front. Mater., 2021, 8: 721514
CrossRef
ADS
Google scholar
|
[103] |
J. An, X. Zhao, Y. Zhang, M. Liu, J. Yuan, X. Sun, Z. Zhang, B. Wang, S. Li, D. Li. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater., 2021, 32(14): 2110119
CrossRef
ADS
Google scholar
|
[104] |
Q.QianJ. LeiJ.WeiZ.ZhangG.Tang K.ZhongZ. ZhengK.J. Chen, 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current, npj 2D Mater. Appl. 3, 24 (2019)
|
[105] |
T. Afaneh, P. K. Sahoo, I A P. Nobrega, Y. Xin, H. R. Gutiérrez. Laser‐assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater., 2018, 28(37): 1802949
CrossRef
ADS
Google scholar
|
[106] |
V. Shautsova, S. Sinha, L. Hou, Q. Zhang, M. Tweedie, Y. Lu, Y. Sheng, B. F. Porter, H. Bhaskaran, J. H. Warner. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano, 2019, 13(12): 14162
CrossRef
ADS
Google scholar
|
[107] |
G. G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys., 2017, 80(9): 096501
CrossRef
ADS
Google scholar
|
[108] |
H. Qiu, W. Zhou, W. Guo. Nanopores in graphene and other 2D materials: A decade’s journey toward sequencing. ACS Nano, 2021, 15(12): 18848
CrossRef
ADS
Google scholar
|
[109] |
H. Ju, Y. Lee, K. T. Kim, I. H. Choi, C. J. Roh, S. Son, P. Park, J. H. Kim, T. S. Jung, J. H. Kim, K. H. Kim, J. G. Park, J. S. Lee. Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI2. Nano Lett., 2021, 21(12): 5126
CrossRef
ADS
Google scholar
|
[110] |
M. Kruse, U. Petralanda, M. N. Gjerding, K. W. Jacobsen, K. S. Thygesen, T. Olsen. Two-dimensional ferroelectrics from high throughput computational screening. npj Comput Mater., 2023, 9(1): 45
CrossRef
ADS
Google scholar
|
[111] |
J. Liu, S. T. Pantelides. Pyroelectric response and temperature-induced α-β phase transitions in α-In2Se3 and other α-III2VI3 (III = Al, Ga, In; VI = S, Se) monolayers. 2D Mater., 2019, 6(2): 025001
CrossRef
ADS
Google scholar
|
[112] |
P. Finkel, M. G. Cain, T. Mion, M. Staruch, J. Kolacz, S. Mantri, C. Newkirk, K. Kavetsky, J. Thornton, J. Xia, M. Currie, T. Hase, A. Moser, P. Thompson, C. A. Lucas, A. Fitch, J. M. Cairney, S. D. Moss, A. G. A. Nisbet, J. E. Daniels, S. E. Lofland. Simultaneous large optical and piezoelectric effects induced by domain reconfiguration related to ferroelectric phase transitions. Adv. Mater., 2022, 34(7): 2106827
CrossRef
ADS
Google scholar
|
[113] |
M. Gabel, Y. Gu. Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor. Adv. Funct. Mater., 2021, 31(9): 2009999
CrossRef
ADS
Google scholar
|
[114] |
K. Liu, T. Zhang, B. Dang, L. Bao, L. Xu, C. Cheng, Z. Yang, R. Huang, Y. Yang. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron., 2022, 5(11): 761
CrossRef
ADS
Google scholar
|
[115] |
S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J. S. Chen, Q. Yan. Bilateral interfaces in In2Se3−CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15(8): 13307
CrossRef
ADS
Google scholar
|
[116] |
R. Xue, Z. Shao, X. Yang, Y. Zhang, Z. Fu, Y. Huang, W. Feng. Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets. ACS Appl. Nano Mater., 2022, 5(5): 7036
CrossRef
ADS
Google scholar
|
[117] |
R. Moshwan, L. Yang, J. Zou, Z. G. Chen. Eco‐friendly SnTe thermoelectric materials: Progress and future challenges. Adv. Funct. Mater., 2017, 27(43): 1703278
CrossRef
ADS
Google scholar
|
[118] |
K. Chang, J. Liu, H. Lin, N. Wang, K. Zhao, A. Zhang, F. Jin, Y. Zhong, X. Hu, W. Duan, Q. Zhang, L. Fu, Q. K. Xue, X. Chen, S. H. Ji. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
CrossRef
ADS
Google scholar
|
[119] |
C. R. Guo, B. C. Qin, D. Y. Wang, L. D. Zhao. Investigation on halogen-doped n-type SnTe thermoelectrics. Rare Met., 2022, 41(11): 3803
CrossRef
ADS
Google scholar
|
[120] |
F. Xiong, H. B. Tan, C. Xia, Y. Chen. Strain and doping in two-dimensional SnTe nanosheets: Implications for thermoelectric conversion. ACS Appl. Nano Mater., 2020, 3(1): 114
CrossRef
ADS
Google scholar
|
[121] |
H. Pang, Y. Qiu, D. Wang, Y. Qin, R. Huang, Z. Yang, X. Zhang, L. D. Zhao. Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J. Am. Chem. Soc., 2021, 143(23): 8538
CrossRef
ADS
Google scholar
|
[122] |
J. Chen, C. Zhu, G. Cao, H. Liu, R. Bian, J. Wang, C. Li, J. Chen, Q. Fu, Q. Liu, P. Meng, W. Li, F. Liu, Z. Liu. Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater., 2022, 34(25): 2104676
CrossRef
ADS
Google scholar
|
[123] |
X. Jiang, X. Wang, X. Wang, X. Zhang, R. Niu, J. Deng, S. Xu, Y. Lun, Y. Liu, T. Xia, J. Lu, J. Hong. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun., 2022, 13(1): 574
CrossRef
ADS
Google scholar
|
[124] |
D. Wijethunge, L. Zhang, A. Du. Prediction of two-dimensional ferroelectric metal Mxenes. J. Mater. Chem. C, 2021, 9(34): 11343
CrossRef
ADS
Google scholar
|
[125] |
R. Tahir, S. A. Zahra, U. Naeem, D. Akinwande, S. Rizwan. First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film. RSC Adv., 2022, 12(38): 24571
CrossRef
ADS
Google scholar
|
[126] |
R. Tahir, S. Fatima, S. A. Zahra, D. Akinwande, H. Li, S. H. M. Jafri, S. Rizwan. Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. npj 2D Mater. Appl., 2023, 7(1): 7
CrossRef
ADS
Google scholar
|
[127] |
S. Yuan, X. Luo, H. L. Chan, C. Xiao, Y. Dai, M. Xie, J. Hao. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
CrossRef
ADS
Google scholar
|
[128] |
A. Weston, E. G. Castanon, V. Enaldiev, F. Ferreira, S. Bhattacharjee, S. Xu, H. Corte-Leon, Z. Wu, N. Clark, A. Summerfield, T. Hashimoto, Y. Gao, W. Wang, M. Hamer, H. Read, L. Fumagalli, A. V. Kretinin, S. J. Haigh, O. Kazakova, A. K. Geim, V. I. Fal’ko, R. Gorbachev. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
CrossRef
ADS
Google scholar
|
[129] |
M. Han, C. Wang, K. Niu, Q. Yang, C. Wang, X. Zhang, J. Dai, Y. Wang, X. Ma, J. Wang, L. Kang, W. Ji, J. Lin. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat. Commun., 2022, 13(1): 5903
CrossRef
ADS
Google scholar
|
[130] |
R. Fei, W. Kang, L. Yang. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
CrossRef
ADS
Google scholar
|
[131] |
K. Chang, S. S. P. Parkin. Experimental formation of monolayer group-IV monochalcogenides. J. Appl. Phys., 2020, 127(22): 220902
CrossRef
ADS
Google scholar
|
[132] |
N. Higashitarumizu, H. Kawamoto, C. J. Lee, B. H. Lin, F. H. Chu, I. Yonemori, T. Nishimura, K. Wakabayashi, W. H. Chang, K. Nagashio. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun., 2020, 11(1): 2428
CrossRef
ADS
Google scholar
|
[133] |
X. F. Lu, Y. Zhang, N. Wang, S. Luo, K. Peng, L. Wang, H. Chen, W. Gao, X. H. Chen, Y. Bao, G. Liang, K. P. Loh. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett., 2021, 21(20): 8800
CrossRef
ADS
Google scholar
|
[134] |
Y. Luo, N. Mao, D. Ding, M. H. Chiu, X. Ji, K. Watanabe, T. Taniguchi, V. Tung, H. Park, P. Kim, J. Kong, W. L. Wilson. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol., 2023, 18(4): 350
CrossRef
ADS
Google scholar
|
[135] |
K. Chang, F. Kuster, B. J. Miller, J. R. Ji, J. L. Zhang, P. Sessi, S. Barraza-Lopez, S. S. P. Parkin. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett., 2020, 20(9): 6590
CrossRef
ADS
Google scholar
|
[136] |
H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, D. Baillargeat. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
CrossRef
ADS
Google scholar
|
[137] |
E. Gao, S. Z. Lin, Z. Qin, M. J. Buehler, X. Q. Feng, Z. Xu. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids, 2018, 115: 248
CrossRef
ADS
Google scholar
|
[138] |
K. S. Novoselov, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef
ADS
Google scholar
|
[139] |
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King.
CrossRef
ADS
Google scholar
|
[140] |
C. Chang, W. Chen, Y. Chen, Y. Chen, Y. Chen.
CrossRef
ADS
Google scholar
|
[141] |
Z. Lin, Y. Liu, U. Halim, M. Ding, Y. Liu, Y. Wang, C. Jia, P. Chen, X. Duan, C. Wang, F. Song, M. Li, C. Wan, Y. Huang, X. Duan. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
CrossRef
ADS
Google scholar
|
[142] |
J. N. Coleman, M. Lotya, A. O’Neill, S. D. Bergin, P. J. King.
CrossRef
ADS
Google scholar
|
[143] |
X. Cai, Y. Luo, B. Liu, H. M. Cheng. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 47(16): 6224
CrossRef
ADS
Google scholar
|
[144] |
M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, H. Zhang. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263
CrossRef
ADS
Google scholar
|
[145] |
J. D. Yao, Z. Q. Zheng, G. W. Yang. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci., 2019, 106: 100573
CrossRef
ADS
Google scholar
|
[146] |
N.A. ShepelinZ.P. TehraniN.OhannessianC.W. SchneiderD.PergolesiT.Lippert, A practical guide to pulsed laser deposition, Chem. Soc. Rev. 52(7), 2294 (2023)
|
[147] |
R.RashidF. C. C. LingS.P. WangK.XiaoX.Cui Q.RaoD. K. Ki, IP and OOP ferroelectricity in hexagonal γ-In2Se3 nanoflakes grown by chemical vapor deposition, J. Alloys Compd. 870, 159344 (2021)
|
[148] |
J. Zhou, Q. Zeng, D. Lv, L. Sun, L. Niu, W. Fu, F. Liu, Z. Shen, C. Jin, Z. Liu. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett., 2015, 15(10): 6400
CrossRef
ADS
Google scholar
|
[149] |
Y. Huang, Y. H. Pan, R. Yang, L. H. Bao, L. Meng.
CrossRef
ADS
Google scholar
|
[150] |
J. Gao, Y. Zheng, W. Yu, Y. Wang, T. Jin, X. Pan, K. P. Loh, W. Chen. Intrinsic polarization coupling in 2D α‐In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2(1): 88
CrossRef
ADS
Google scholar
|
[151] |
Z. Wang, W. Zhu. Tunable band alignments in 2D ferroelectric α-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater., 2021, 3(11): 5114
CrossRef
ADS
Google scholar
|
[152] |
B. Lv, W. Xue, Z. Yan, R. Yang, H. Wu, P. Wang, Y. Zhang, J. Hou, W. Zhu, X. Xu. Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-In2Se3 ferroelectric. Sci. China Mater., 2022, 65(6): 1639
CrossRef
ADS
Google scholar
|
[153] |
Y. Zhang, L. Wang, H. Chen, T. Ma, X. Lu, K. P. Loh. Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater., 2021, 7(12): 2100609
CrossRef
ADS
Google scholar
|
[154] |
S. Wan, Q. Peng, Z. Wu, Y. Zhou. Nonvolatile ferroelectric memory with lateral β/α/β In2Se3 heterojunctions. ACS Appl. Mater. Interfaces, 2022, 14(22): 25693
CrossRef
ADS
Google scholar
|
[155] |
Y.LiuY. WuB.WangH.ChenD.Yi K.Liu, Versatile memristor implemented in van der Waals CuInP2S6, Nano Res. 16(6), (2023)
|
[156] |
B. Li, S. Li, H. Wang, L. Chen, L. Liu, X. Feng, Y. Li, J. Chen, X. Gong, K. W. Ang. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater., 2020, 6(12): 2000760
CrossRef
ADS
Google scholar
|
[157] |
P. Li, A. Chaturvedi, H. Zhou, G. Zhang, Q. Li, J. Xue, Z. Zhou, S. Wang, K. Zhou, Y. Weng, F. Zheng, Z. Shi, E. H. T. Teo, L. Fang, L. You. Electrostatic coupling in MoS2/CuInP2S6 ferroelectric vdW heterostructures. Adv. Funct. Mater., 2022, 32(29): 2201359
CrossRef
ADS
Google scholar
|
[158] |
S. R. Jian, J. Y. Juang, C. W. Luo, S. A. Ku, K. H. Wu. Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd., 2012, 542: 124
CrossRef
ADS
Google scholar
|
[159] |
K. C. Kwon, Y. Zhang, L. Wang, W. Yu, X. Wang, I. H. Park, H. S. Choi, T. Ma, Z. Zhu, B. Tian, C. Su, K. P. Loh. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano, 2020, 14(6): 7628
CrossRef
ADS
Google scholar
|
[160] |
P.C. ShenY. LinH.WangJ.H. ParkW.S. Leong A.Y. LuT. PalaciosJ.Kong, CVD technology for 2-D materials, IEEE Trans. Electron Dev. 65(10), 4040 (2018)
|
[161] |
D. Vernardou. Special issue: Advances in chemical vapor deposition. Materials (Basel), 2020, 13(18): 4167
CrossRef
ADS
Google scholar
|
[162] |
W. F. Io, S. Yuan, S. Y. Pang, L. W. Wong, J. Zhao, J. Hao. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res., 2020, 13(7): 1897
CrossRef
ADS
Google scholar
|
[163] |
C. Muratore, A. A. Voevodin, N. R. Glavin. Physical vapor deposition of 2D van der Waals materials: A review. Thin Solid Films, 2019, 688: 137500
CrossRef
ADS
Google scholar
|
[164] |
B. Liu, Q. Han, L. Li, S. Zheng, Y. Shu, J. A. Pedersen, Z. Wang. Synergistic effect of metal cations and visible light on 2D MoS2 nanosheet aggregation. Environ. Sci. Technol., 2021, 55(24): 16379
CrossRef
ADS
Google scholar
|
[165] |
P. D. Taylor, S. A. Tawfik, M. J. S. Spencer. Ferroelectric van der Waals heterostructures of CuInP2S6 for non-volatile memory device applications. Nanotechnology, 2023, 34(6): 065701
CrossRef
ADS
Google scholar
|
[166] |
W. Yang, B. Cheng, J. Hou, J. Deng, X. Ding, J. Sun, J. Z. Liu. Writing-speed dependent thresholds of ferroelectric domain switching in monolayer α-In2Se3. Small Methods, 2023, 7(6): 2300050
CrossRef
ADS
Google scholar
|
[167] |
Y. Yan, M. Xiang, X. Wang, T. Xu, F. Xuan. Ferroelectric domain wall in two-dimensional GeS. J. Appl. Phys., 2022, 132(7): 074302
CrossRef
ADS
Google scholar
|
[168] |
F. Xue, X. He, Y. Ma, D. Zheng, C. Zhang, L. J. Li, J. H. He, B. Yu, X. Zhang. Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nat. Commun., 2021, 12(1): 7291
CrossRef
ADS
Google scholar
|
[169] |
S. Zhou, L. Liao, J. Chen, Y. Yu, Z. Lv, M. Yang, B. Yao, S. Zhang, G. Peng, Z. Huang, Y. Liu, X. Qi, G. Wang. Periodic ferroelectric stripe domains in α-In2Se3 nanoflakes grown via reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces, 2023, 15(19): 23613
CrossRef
ADS
Google scholar
|
[170] |
Y. Zhai, P. Xie, J. Hu, X. Chen, Z. Feng, Z. Lv, G. Ding, K. Zhou, Y. Zhou, S. T. Han. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Phys. Rev. Appl., 2023, 10(1): 011408
CrossRef
ADS
Google scholar
|
[171] |
W.LiY.Guo Z.LuoS. WuB.HanW.HuL.You K.WatanabeT. TaniguchiT.AlavaJ.ChenP.Gao X.LiZ.Wei L.W. WangY. Y. LiuC.ZhaoX.ZhanZ.V. Han H.Wang, A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory, Adv. Mater. 35(5), 2208266 (2023)
|
[172] |
Y.WangW. LiY.GuoX.HuangZ.Luo S.WuH.Wang J.ChenX. LiX.ZhanH.Wang, A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction, J. Mater. Sci. Technol. 128, 239 (2022)
|
[173] |
A. Abnavi, R. Ahmadi, A. Hasani, M. Fawzy, M. R. Mohammadzadeh, T. De Silva, N. Yu, M. M. Adachi. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces, 2021, 13(38): 45843
CrossRef
ADS
Google scholar
|
[174] |
K. Wang, J. Chen, X. Yan. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 2021, 79: 105453
CrossRef
ADS
Google scholar
|
[175] |
Y. Yoon, K. Ganapathi, S. Salahuddin. How good can monolayer MoS2 transistors be. Nano Lett., 2011, 11(9): 3768
CrossRef
ADS
Google scholar
|
[176] |
A. B. Loginov, P. V. Fedotov, S. N. Bokova-Sirosh, I. V. Sapkov, D. N. Chmelenin, R. R. Ismagilov, E. D. Obraztsova, B. A. Loginov, A. N. Obraztsov. Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status Solidi B, 2022, 260(6): 2200481
CrossRef
ADS
Google scholar
|
[177] |
T.ShimadaK. MinaguroT.XuJ.WangT.Kitamura, Ab initio study of ferroelectric critical size of SnTe low-dimensional nanostructures, Nanomaterials (Basel) 10(4), 732 (2020)
|
Part of a collection:
Special Topic: Materials, Mechanisms and Applications of Memristors
/
〈 |
|
〉 |