Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures

Hao Zhang, Mohsin Ijaz, Richard J. Blaikie

PDF(7267 KB)
PDF(7267 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63602. DOI: 10.1007/s11467-023-1328-9
TOPICAL REVIEW
TOPICAL REVIEW

Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures

Author information +
History +

Abstract

Plasmonic resonators are widely used for the manipulation of light on subwavelength scales through the near-field electromagnetic wave produced by the collective oscillation of free electrons within metallic systems, well known as the surface plasmon (SP). The non-radiative decay of the surface plasmon can excite a plasmonic hot electron. This review article systematically describes the excitation progress and basic properities of SPs and plasmonic hot electrons according to recent publications. The extraction mechanism of plasmonic hot electrons via Schottky conjunction to an adjacent semiconductor is also illustrated. Also, a calculation model of hot electron density is given, where the efficiency of hot-electron excitation, transport and extraction is discussed. We believe that plasmonic hot electrons have a huge potential in the future development of optoelectronic systems and devices.

Graphical abstract

Keywords

surface plasmon / plasmonic hot electrons / plasmonic resonators / electron−electron scattering / Schottky conjunctions / nanophotonics

Cite this article

Download citation ▾
Hao Zhang, Mohsin Ijaz, Richard J. Blaikie. Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures. Front. Phys., 2023, 18(6): 63602 https://doi.org/10.1007/s11467-023-1328-9

References

[1]
P. Törmä, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys., 2015, 78(1): 013901
CrossRef ADS Google scholar
[2]
Z. K. Zhou, J. Liu, Y. Bao, L. Wu, C. E. Png, X. H. Wang, C. W. Qiu. Quantum plasmonics get applied. Prog. Quantum Electron., 2019, 65: 1
CrossRef ADS Google scholar
[3]
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9(3): 193
CrossRef ADS Google scholar
[4]
P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva. Searching for better plasmonic materials. Laser Photonics Rev., 2010, 4(6): 795
CrossRef ADS Google scholar
[5]
M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
CrossRef ADS Google scholar
[6]
T. Iqbal, M. U. Farooq, M. Ijaz, S. Afsheen, M. Rizwan, M. B. Tahir. Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics, 2019, 14(5): 1099
CrossRef ADS Google scholar
[7]
M. Zafar, M. Ijaz, T. Iqbal. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap., 2021, 75(6): 2277
CrossRef ADS Google scholar
[8]
Y. He, K. Laugesen, D. Kamp, S. A. Sultan, L. B. Oddershede, L. Jauffred. Effects and side effects of plasmonic photothermal therapy in brain tissue. Cancer Nanotechnol., 2019, 10(1): 8
CrossRef ADS Google scholar
[9]
R. Lu, J. Ni, S. Yin, Y. Ji. Responsive plasmonic nanomaterials for advanced cancer diagnostics. Front. Chem., 2021, 9: 652287
CrossRef ADS Google scholar
[10]
R. G. Sobral-Filho, A. M. Brito-Silva, M. Isabelle, A. Jirasek, J. J. Lum, A. G. Brolo. Plasmonic labeling of subcellular compartments in cancer cells: Multiplexing with fine-tuned gold and silver nanoshells. Chem. Sci. (Camb.), 2017, 8(4): 3038
CrossRef ADS Google scholar
[11]
S. Ezendam, M. Herran, L. Nan, C. Gruber, Y. Kang, F. Gröbmeyer, R. Lin, J. Gargiulo, A. Sousa-Castillo, E. Cortés. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett., 2022, 7(2): 778
CrossRef ADS Google scholar
[12]
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, D. H. Kim. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev., 2016, 116(24): 14982
CrossRef ADS Google scholar
[13]
M. Ijaz, A. Shoukat, A. Ayub, H. Tabassum, H. Naseer, R. Tanveer, A. Islam, T. Iqbal. Perovskite solar cells: Importance, challenges, and plasmonic enhancement. Int. J. Green Energy, 2020, 17(15): 1022
CrossRef ADS Google scholar
[14]
T. Iqbal, M. Ijaz, M. Javaid, M. Rafique, K. N. Riaz, M. B. Tahir, G. Nabi, M. Abrar, S. Afsheen. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics, 2019, 14(1): 147
CrossRef ADS Google scholar
[15]
H. Zhang, F. Liu, R. J. Blaikie, B. Ding, M. Qiu. Bifacial omnidirectional and band-tunable light absorption in free-standing core-shell resonators. Appl. Phys. Lett., 2022, 120(18): 181110
CrossRef ADS Google scholar
[16]
Y. J. Lu, T. L. Shen, K. N. Peng, P. J. Cheng, S. W. Chang, M. Y. Lu, C. W. Chu, T. F. Guo, H. A. Atwater. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2021, 8(1): 335
CrossRef ADS Google scholar
[17]
L. Gu, K. Wen, Q. Peng, W. Huang, J. Wang. Surface-plasmon-enhanced perovskite light-emitting diodes. Small, 2020, 16(30): 2001861
CrossRef ADS Google scholar
[18]
J. A. Huang, L. B. Luo. Low-dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
CrossRef ADS Google scholar
[19]
A.M. ShrivastavU.CvelbarI.Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics, Commun. Biol. 4(1), 70 (2021)
[20]
J. Xavier, S. Vincent, F. Meder, F. Vollmer. Advances in optoplasmonic sensors- combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics, 2018, 7(1): 1
CrossRef ADS Google scholar
[21]
S. Afsheen, T. Iqbal, M. Aftab, A. Bashir, A. Tehseen, M. Y. Khan, M. Ijaz. Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater. Res. Express, 2019, 6(12): 126203
CrossRef ADS Google scholar
[22]
S. Afsheen, M. Munir, M. Isa Khan, T. Iqbal, M. Abrar, M. B. Tahir, J. U. Rehman, K. N. Riaz, M. Ijaz, G. Nabi. Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology, 2018, 29(38): 385501
CrossRef ADS Google scholar
[23]
T. Iqbal, S. Noureen, S. Afsheen, M. Y. Khan, M. Ijaz. Rectangular and sinusoidal Au-grating as plasmonic sensor: A comparative study. Opt. Mater., 2020, 99: 109530
CrossRef ADS Google scholar
[24]
M. Ijaz, M. Aftab, S. Afsheen, T. Iqbal. Novel Au nano-grating for detection of water in various electrolytes. Appl. Nanosci., 2020, 10(11): 4029
CrossRef ADS Google scholar
[25]
S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, H. Duan. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano, 2016, 10(12): 11105
CrossRef ADS Google scholar
[26]
M. S. Verma, M. Chandra. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: The pivotal role of the particle size. Phys. Chem. Chem. Phys., 2021, 23(45): 25565
CrossRef ADS Google scholar
[27]
A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A, 2008, 10(9): 093002
CrossRef ADS Google scholar
[28]
H. Xu. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
CrossRef ADS Google scholar
[29]
L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, T. Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
CrossRef ADS Google scholar
[30]
L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S. W. Kim, G. Steinmeyer, H. Merdji, M. Kovacev. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 2017, 4(9): 1038
CrossRef ADS Google scholar
[31]
L. Shi, J. R. C. Andrade, A. Tajalli, J. Geng, J. Yi, T. Heidenblut, F. B. Segerink, I. Babushkin, M. Kholodtsova, H. Merdji, B. Bastiaens, U. Morgner, M. Kovacev. Generating ultrabroadband deep-UV radiation and sub-10 nm gap by hybrid-morphology gold antennas. Nano Lett., 2019, 19(7): 4779
CrossRef ADS Google scholar
[32]
L. Shi, J. R. C. Andrade, J. Yi, M. Marinskas, C. Reinhardt, E. Almeida, U. Morgner, M. Kovacev. Nanoscale broadband deep-ultraviolet light source from plasmonic nanoholes. ACS Photonics, 2019, 6(4): 858
CrossRef ADS Google scholar
[33]
M. Hentschel, T. Utikal, H. Giessen, M. Lippitz. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett., 2012, 12(7): 3778
CrossRef ADS Google scholar
[34]
J. Geng, W. Yan, L. Shi, M. Qiu. Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds. Light Sci. Appl., 2022, 11(1): 189
CrossRef ADS Google scholar
[35]
L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, H. B. Sun. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl., 2017, 6(12): e17112
CrossRef ADS Google scholar
[36]
T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C. Guo. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl., 2020, 9(1): 69
CrossRef ADS Google scholar
[37]
W. L. Barnes. Surface plasmon-polariton length scales: A route to sub-wavelength optics. J. Opt. A, 2006, 8(4): S87
CrossRef ADS Google scholar
[38]
B. Ding, C. Hrelescu, N. Arnold, G. Isic, T. A. Klar. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett., 2013, 13(2): 378
CrossRef ADS Google scholar
[39]
A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37(22): 5271
CrossRef ADS Google scholar
[40]
M. I. Markovic, A. D. Rakic. Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz−Drude model. Appl. Opt., 1990, 29(24): 3479
CrossRef ADS Google scholar
[41]
J. A. Scholl, A. L. Koh, J. A. Dionne. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483(7390): 421
CrossRef ADS Google scholar
[42]
A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408(3−4): 131
CrossRef ADS Google scholar
[43]
T. Iqbal, S. Afsheen. Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: Role of under- and over-milling. Plasmonics, 2016, 11(5): 1247
CrossRef ADS Google scholar
[44]
S.KasaniK. CurtinN.Wu, A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications, Nanophotonics 8(12), 2065 (2019)
[45]
A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(4): 398
CrossRef ADS Google scholar
[46]
E. Kretschmann, H. Raether. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A Phys. Sci., 1968, 23: 2135
CrossRef ADS Google scholar
[47]
T. Iqbal, Z. Ashfaq, S. Afsheen, M. Ijaz, M. Y. Khan, M. Rafique, G. Nabi. Surface-enhanced Raman scattering (SERS) on 1D nano-gratings. Plasmonics, 2020, 15(4): 1053
CrossRef ADS Google scholar
[48]
S. Vempati, T. Iqbal, S. Afsheen. Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys., 2015, 118(4): 043103
CrossRef ADS Google scholar
[49]
G. Vecchi, V. Giannini, J. Gómez Rivas. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett., 2009, 102(14): 146807
CrossRef ADS Google scholar
[50]
S.L. Chang, Multiple Diffraction of X-Rays in Crystals, Springer Series in Solid-State Sciences (SSSOL, Volume 50), Springer Berlin Heidelberg, 1984
[51]
S. C. Kitson, W. L. Barnes, J. R. Sambles. Surface-plasmon energy gaps and photoluminescence. Phys. Rev. B, 1995, 52(15): 11441
CrossRef ADS Google scholar
[52]
T. Iqbal, H. Tabassum, S. Afsheen, M. Ijaz. Novel exposed and buried Au plasmonic grating as efficient sensors. Waves Random Complex Media, 2022, 32(4): 1571
CrossRef ADS Google scholar
[53]
S. Afsheen, A. Ahmad, T. Iqbal, M. Ijaz, A. Bashir. Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics, 2021, 16(2): 541
CrossRef ADS Google scholar
[54]
M. Javaid, T. Iqbal. Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics, 2016, 11(1): 167
CrossRef ADS Google scholar
[55]
P. Wang, D. J. Hu, Y. F. Xiao, L. Pang. Suppression of metal grating to surface plasma radiation. Acta Phys. Sin., 2015, 64(8): 087301
CrossRef ADS Google scholar
[56]
B. Wang, P. Yu, W. Wang, X. Zhang, H. C. Kuo, H. Xu, Z. M. Wang. High‐Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater., 2021, 9(7): 2001520
CrossRef ADS Google scholar
[57]
S. Sun, H. T. Chen, W. J. Zheng, G. Y. Guo. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express, 2013, 21(12): 14591
CrossRef ADS Google scholar
[58]
H.Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988
[59]
K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
CrossRef ADS Google scholar
[60]
W. Zhang, M. Caldarola, X. Lu, M. Orrit. Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics, 2018, 5(7): 2960
CrossRef ADS Google scholar
[61]
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, N. Xu. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 2017, 17(8): 4689
CrossRef ADS Google scholar
[62]
T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, P. N. Bartlett. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B, 2006, 74(24): 245415
CrossRef ADS Google scholar
[63]
C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, A. Maitre. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett., 2013, 13(4): 1516
CrossRef ADS Google scholar
[64]
A. Agrawal, I. Kriegel, D. J. Milliron. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
CrossRef ADS Google scholar
[65]
V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev., 2018, 118(12): 5912
CrossRef ADS Google scholar
[66]
M. Ijaz. Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2023, 48(26): 9609
CrossRef ADS Google scholar
[67]
I. Boettcher, J. M. Pawlowski, S. Diehl. Ultracold atoms and the functional renormalization group. Nucl. Phys. B Proc. Suppl., 2012, 228: 63
CrossRef ADS Google scholar
[68]
H. Hertz. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys., 1887, 267(8): 983
CrossRef ADS Google scholar
[69]
A.Einstein, Über einen die Erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys. 322(6), 132 (1905)
[70]
M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
CrossRef ADS Google scholar
[71]
Y.DubiY. Sivan, “Hot” electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8(1), 89 (2019)
[72]
C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 2014, 8(2): 95
CrossRef ADS Google scholar
[73]
C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
CrossRef ADS Google scholar
[74]
J. B. Khurgin. Hot carriers generated by plasmons: Where are they generated and where do they go from there. Faraday Discuss., 2019, 214: 35
CrossRef ADS Google scholar
[75]
J. B. Khurgin. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 2020, 9(2): 453
CrossRef ADS Google scholar
[76]
R. Sundararaman, P. Narang, A. S. Jermyn, III Goddard, H. A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
CrossRef ADS Google scholar
[77]
M. M. Dujardin, M. L. Theye. Investigation of the optical properties of Ag by means of thin semi-transparent films. J. Phys. Chem. Solids, 1971, 32(9): 2033
CrossRef ADS Google scholar
[78]
A. A. Maznev, O. B. Wright. Demystifying umklapp vs normal scattering in lattice thermal conductivity. Am. J. Phys., 2014, 82(11): 1062
CrossRef ADS Google scholar
[79]
G. R. Parkins, W. E. Lawrence, R. W. Christy, Intraband optical conductivity σ(ω, T) of Cu. Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B, 1981, 23(12): 6408
CrossRef ADS Google scholar
[80]
U.KreibigM. Vollmer, Optical Properties of Metal Clusters, Vol. 25, Springer Berlin Heidelberg, 1995
[81]
L. Landau. On the vibrations of the electronic plasma. Yad. Fiz., 1946, 10: 25
CrossRef ADS Google scholar
[82]
A. V. Uskov, I. E. Protsenko, N. A. Mortensen, E. P. O’Reilly. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration. Plasmonics, 2014, 9(1): 185
CrossRef ADS Google scholar
[83]
J. B. Khurgin. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss., 2015, 178: 109
CrossRef ADS Google scholar
[84]
J. Khurgin, W. Y. Tsai, D. P. Tsai, G. Sun. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics, 2017, 4(11): 2871
CrossRef ADS Google scholar
[85]
K. Watanabe, D. Menzel, N. Nilius, H. J. Freund. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
CrossRef ADS Google scholar
[86]
N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, S. Reich. Direct optical excitation of dark plasmons for hot electron generation. Faraday Discuss., 2019, 214: 159
CrossRef ADS Google scholar
[87]
H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 1998, 57(18): 11334
CrossRef ADS Google scholar
[88]
J.M. Ziman, Electrons and phonons: The theory of transport phenomena in solids, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001
[89]
J. B. Khurgin, U. Levy. Generating hot carriers in plasmonic nanoparticles: When quantization does matter. ACS Photonics, 2020, 7(3): 547
CrossRef ADS Google scholar
[90]
T. P. White, K. R. Catchpole. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett., 2012, 101(7): 073905
CrossRef ADS Google scholar
[91]
J. Kadlec. Theory of internal photoemission in sandwich structures. Phys. Rep., 1976, 26(2): 69
CrossRef ADS Google scholar
[92]
D. A. Kovacs, J. Winter, S. Meyer, A. Wucher, D. Diesing. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B, 2007, 76(23): 235408
CrossRef ADS Google scholar
[93]
S. V. Pepper. Optical analysis of photoemission. J. Opt. Soc. Am., 1970, 60(6): 805
CrossRef ADS Google scholar
[94]
K. Reuter, U. Hohenester, P. L. de Andres, F. J. García-Vidal, F. Flores, K. Heinz, P. Kocevar. Electron energy relaxation times from ballistic-electron-emission spectroscopy. Phys. Rev. B, 2000, 61(7): 4522
CrossRef ADS Google scholar
[95]
C. Scales, P. Berini. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
CrossRef ADS Google scholar
[96]
S. Afsheen, T. Iqbal, S. Akram, A. Bashir, A. Tehseen, M. Rafique, M. Shakil, M. Y. Khan, M. Ijaz. Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt. Quantum Electron., 2020, 52(2): 64
CrossRef ADS Google scholar
[97]
T. Iqbal, A. Bashir, M. Shakil, S. Afsheen, A. Tehseen, M. Ijaz, K. N. Riaz. Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics, 2019, 14(2): 493
CrossRef ADS Google scholar
[98]
Y. Takahashi, T. Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 2011, 99(18): 182110
CrossRef ADS Google scholar
[99]
C. Qiu, H. Zhang, C. Tian, X. Jin, Q. Song, L. Xu, M. Ijaz, R. J. Blaikie, Q. Xu. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett., 2023, 122(24): 243502
CrossRef ADS Google scholar
[100]
M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
CrossRef ADS Google scholar
[101]
A. Di Bartolomeo. Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep., 2016, 606: 1
CrossRef ADS Google scholar
[102]
S.S. Li, Semiconductor Physical Electronics, New York, Springer, 2006
[103]
Y. Huan, S. M. Sun, C. J. Gu, W. J. Liu, S. J. Ding, H. Y. Yu, C. T. Xia, D. W. Zhang. Recent advances in β-Ga2O3–metal contacts. Nanoscale Res. Lett., 2018, 13(1): 246
CrossRef ADS Google scholar
[104]
S.J. Fonash, Solar Cell Device Physics, Elsevier, 2010

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The work was supported by the Smart Ideas Fund by Ministry of Business, Innovation and Employment, New Zealand through contract UOOX1802 and the University of Otago, by means of the University of Otago Postgraduate Publishing Bursary (Doctoral).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7267 KB)

Accesses

Citations

Detail

Sections
Recommended

/