Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures
Hao Zhang, Mohsin Ijaz, Richard J. Blaikie
Recent review of surface plasmons and plasmonic hot electron effects in metallic nanostructures
Plasmonic resonators are widely used for the manipulation of light on subwavelength scales through the near-field electromagnetic wave produced by the collective oscillation of free electrons within metallic systems, well known as the surface plasmon (SP). The non-radiative decay of the surface plasmon can excite a plasmonic hot electron. This review article systematically describes the excitation progress and basic properities of SPs and plasmonic hot electrons according to recent publications. The extraction mechanism of plasmonic hot electrons via Schottky conjunction to an adjacent semiconductor is also illustrated. Also, a calculation model of hot electron density is given, where the efficiency of hot-electron excitation, transport and extraction is discussed. We believe that plasmonic hot electrons have a huge potential in the future development of optoelectronic systems and devices.
surface plasmon / plasmonic hot electrons / plasmonic resonators / electron−electron scattering / Schottky conjunctions / nanophotonics
[1] |
P. Törmä, W. L. Barnes. Strong coupling between surface plasmon polaritons and emitters: A review. Rep. Prog. Phys., 2015, 78(1): 013901
CrossRef
ADS
Google scholar
|
[2] |
Z. K. Zhou, J. Liu, Y. Bao, L. Wu, C. E. Png, X. H. Wang, C. W. Qiu. Quantum plasmonics get applied. Prog. Quantum Electron., 2019, 65: 1
CrossRef
ADS
Google scholar
|
[3] |
J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, M. L. Brongersma. Plasmonics for extreme light concentration and manipulation. Nat. Mater., 2010, 9(3): 193
CrossRef
ADS
Google scholar
|
[4] |
P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, A. Boltasseva. Searching for better plasmonic materials. Laser Photonics Rev., 2010, 4(6): 795
CrossRef
ADS
Google scholar
|
[5] |
M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, Y. Xia. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev., 2011, 111(6): 3669
CrossRef
ADS
Google scholar
|
[6] |
T. Iqbal, M. U. Farooq, M. Ijaz, S. Afsheen, M. Rizwan, M. B. Tahir. Optimization of 1D silver grating devices for extraordinary optical transmission. Plasmonics, 2019, 14(5): 1099
CrossRef
ADS
Google scholar
|
[7] |
M. Zafar, M. Ijaz, T. Iqbal. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. Chem. Pap., 2021, 75(6): 2277
CrossRef
ADS
Google scholar
|
[8] |
Y. He, K. Laugesen, D. Kamp, S. A. Sultan, L. B. Oddershede, L. Jauffred. Effects and side effects of plasmonic photothermal therapy in brain tissue. Cancer Nanotechnol., 2019, 10(1): 8
CrossRef
ADS
Google scholar
|
[9] |
R. Lu, J. Ni, S. Yin, Y. Ji. Responsive plasmonic nanomaterials for advanced cancer diagnostics. Front. Chem., 2021, 9: 652287
CrossRef
ADS
Google scholar
|
[10] |
R. G. Sobral-Filho, A. M. Brito-Silva, M. Isabelle, A. Jirasek, J. J. Lum, A. G. Brolo. Plasmonic labeling of subcellular compartments in cancer cells: Multiplexing with fine-tuned gold and silver nanoshells. Chem. Sci. (Camb.), 2017, 8(4): 3038
CrossRef
ADS
Google scholar
|
[11] |
S. Ezendam, M. Herran, L. Nan, C. Gruber, Y. Kang, F. Gröbmeyer, R. Lin, J. Gargiulo, A. Sousa-Castillo, E. Cortés. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett., 2022, 7(2): 778
CrossRef
ADS
Google scholar
|
[12] |
Y. H. Jang, Y. J. Jang, S. Kim, L. N. Quan, K. Chung, D. H. Kim. Plasmonic solar cells: From rational design to mechanism overview. Chem. Rev., 2016, 116(24): 14982
CrossRef
ADS
Google scholar
|
[13] |
M. Ijaz, A. Shoukat, A. Ayub, H. Tabassum, H. Naseer, R. Tanveer, A. Islam, T. Iqbal. Perovskite solar cells: Importance, challenges, and plasmonic enhancement. Int. J. Green Energy, 2020, 17(15): 1022
CrossRef
ADS
Google scholar
|
[14] |
T. Iqbal, M. Ijaz, M. Javaid, M. Rafique, K. N. Riaz, M. B. Tahir, G. Nabi, M. Abrar, S. Afsheen. An optimal Au grating structure for light absorption in amorphous silicon thin film solar cell. Plasmonics, 2019, 14(1): 147
CrossRef
ADS
Google scholar
|
[15] |
H. Zhang, F. Liu, R. J. Blaikie, B. Ding, M. Qiu. Bifacial omnidirectional and band-tunable light absorption in free-standing core-shell resonators. Appl. Phys. Lett., 2022, 120(18): 181110
CrossRef
ADS
Google scholar
|
[16] |
Y. J. Lu, T. L. Shen, K. N. Peng, P. J. Cheng, S. W. Chang, M. Y. Lu, C. W. Chu, T. F. Guo, H. A. Atwater. Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics, 2021, 8(1): 335
CrossRef
ADS
Google scholar
|
[17] |
L. Gu, K. Wen, Q. Peng, W. Huang, J. Wang. Surface-plasmon-enhanced perovskite light-emitting diodes. Small, 2020, 16(30): 2001861
CrossRef
ADS
Google scholar
|
[18] |
J. A. Huang, L. B. Luo. Low-dimensional plasmonic photodetectors: Recent progress and future opportunities. Adv. Opt. Mater., 2018, 6(8): 1701282
CrossRef
ADS
Google scholar
|
[19] |
A.M. ShrivastavU.CvelbarI.Abdulhalim, A comprehensive review on plasmonic-based biosensors used in viral diagnostics, Commun. Biol. 4(1), 70 (2021)
|
[20] |
J. Xavier, S. Vincent, F. Meder, F. Vollmer. Advances in optoplasmonic sensors- combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics, 2018, 7(1): 1
CrossRef
ADS
Google scholar
|
[21] |
S. Afsheen, T. Iqbal, M. Aftab, A. Bashir, A. Tehseen, M. Y. Khan, M. Ijaz. Modeling of 1D Au plasmonic grating as efficient gas sensor. Mater. Res. Express, 2019, 6(12): 126203
CrossRef
ADS
Google scholar
|
[22] |
S. Afsheen, M. Munir, M. Isa Khan, T. Iqbal, M. Abrar, M. B. Tahir, J. U. Rehman, K. N. Riaz, M. Ijaz, G. Nabi. Efficient biosensing through 1D silver nanostructured devices using plasmonic effect. Nanotechnology, 2018, 29(38): 385501
CrossRef
ADS
Google scholar
|
[23] |
T. Iqbal, S. Noureen, S. Afsheen, M. Y. Khan, M. Ijaz. Rectangular and sinusoidal Au-grating as plasmonic sensor: A comparative study. Opt. Mater., 2020, 99: 109530
CrossRef
ADS
Google scholar
|
[24] |
M. Ijaz, M. Aftab, S. Afsheen, T. Iqbal. Novel Au nano-grating for detection of water in various electrolytes. Appl. Nanosci., 2020, 10(11): 4029
CrossRef
ADS
Google scholar
|
[25] |
S. Zhang, G. C. Li, Y. Chen, X. Zhu, S. D. Liu, D. Y. Lei, H. Duan. Pronounced Fano resonance in single gold split nanodisks with 15 nm split gaps for intensive second harmonic generation. ACS Nano, 2016, 10(12): 11105
CrossRef
ADS
Google scholar
|
[26] |
M. S. Verma, M. Chandra. Second harmonic generation-based nonlinear plasmonic RI-sensing in solution: The pivotal role of the particle size. Phys. Chem. Chem. Phys., 2021, 23(45): 25565
CrossRef
ADS
Google scholar
|
[27] |
A. Alù, N. Engheta. Plasmonic and metamaterial cloaking: Physical mechanisms and potentials. J. Opt. A, 2008, 10(9): 093002
CrossRef
ADS
Google scholar
|
[28] |
H. Xu. Surface-enhanced Raman scattering beyond plasmonics. Front. Phys., 2022, 17(2): 23601
CrossRef
ADS
Google scholar
|
[29] |
L. Lan, Y. Gao, X. Fan, M. Li, Q. Hao, T. Qiu. The origin of ultrasensitive SERS sensing beyond plasmonics. Front. Phys., 2021, 16(4): 43300
CrossRef
ADS
Google scholar
|
[30] |
L. Shi, B. Iwan, R. Nicolas, Q. Ripault, J. R. C. Andrade, S. Han, H. Kim, W. Boutu, D. Franz, T. Heidenblut, C. Reinhardt, B. Bastiaens, T. Nagy, I. Babushkin, U. Morgner, S. W. Kim, G. Steinmeyer, H. Merdji, M. Kovacev. Self-optimization of plasmonic nanoantennas in strong femtosecond fields. Optica, 2017, 4(9): 1038
CrossRef
ADS
Google scholar
|
[31] |
L. Shi, J. R. C. Andrade, A. Tajalli, J. Geng, J. Yi, T. Heidenblut, F. B. Segerink, I. Babushkin, M. Kholodtsova, H. Merdji, B. Bastiaens, U. Morgner, M. Kovacev. Generating ultrabroadband deep-UV radiation and sub-10 nm gap by hybrid-morphology gold antennas. Nano Lett., 2019, 19(7): 4779
CrossRef
ADS
Google scholar
|
[32] |
L. Shi, J. R. C. Andrade, J. Yi, M. Marinskas, C. Reinhardt, E. Almeida, U. Morgner, M. Kovacev. Nanoscale broadband deep-ultraviolet light source from plasmonic nanoholes. ACS Photonics, 2019, 6(4): 858
CrossRef
ADS
Google scholar
|
[33] |
M. Hentschel, T. Utikal, H. Giessen, M. Lippitz. Quantitative modeling of the third harmonic emission spectrum of plasmonic nanoantennas. Nano Lett., 2012, 12(7): 3778
CrossRef
ADS
Google scholar
|
[34] |
J. Geng, W. Yan, L. Shi, M. Qiu. Surface plasmons interference nanogratings: Wafer-scale laser direct structuring in seconds. Light Sci. Appl., 2022, 11(1): 189
CrossRef
ADS
Google scholar
|
[35] |
L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. Wang, S. Juodkazis, H. B. Sun. Plasmonic nano-printing: Large-area nanoscale energy deposition for efficient surface texturing. Light Sci. Appl., 2017, 6(12): e17112
CrossRef
ADS
Google scholar
|
[36] |
T. Zou, B. Zhao, W. Xin, Y. Wang, B. Wang, X. Zheng, H. Xie, Z. Zhang, J. Yang, C. Guo. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci. Appl., 2020, 9(1): 69
CrossRef
ADS
Google scholar
|
[37] |
W. L. Barnes. Surface plasmon-polariton length scales: A route to sub-wavelength optics. J. Opt. A, 2006, 8(4): S87
CrossRef
ADS
Google scholar
|
[38] |
B. Ding, C. Hrelescu, N. Arnold, G. Isic, T. A. Klar. Spectral and directional reshaping of fluorescence in large area self-assembled plasmonic-photonic crystals. Nano Lett., 2013, 13(2): 378
CrossRef
ADS
Google scholar
|
[39] |
A. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt., 1998, 37(22): 5271
CrossRef
ADS
Google scholar
|
[40] |
M. I. Markovic, A. D. Rakic. Determination of the reflection coefficients of laser light of wavelengths λ ∈ (0.22 μm, 200 μm) from the surface of aluminum using the Lorentz−Drude model. Appl. Opt., 1990, 29(24): 3479
CrossRef
ADS
Google scholar
|
[41] |
J. A. Scholl, A. L. Koh, J. A. Dionne. Quantum plasmon resonances of individual metallic nanoparticles. Nature, 2012, 483(7390): 421
CrossRef
ADS
Google scholar
|
[42] |
A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 2005, 408(3−4): 131
CrossRef
ADS
Google scholar
|
[43] |
T. Iqbal, S. Afsheen. Coupling efficiency of surface plasmon polaritons for 1D plasmonic gratings: Role of under- and over-milling. Plasmonics, 2016, 11(5): 1247
CrossRef
ADS
Google scholar
|
[44] |
S.KasaniK. CurtinN.Wu, A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications, Nanophotonics 8(12), 2065 (2019)
|
[45] |
A. Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(4): 398
CrossRef
ADS
Google scholar
|
[46] |
E. Kretschmann, H. Raether. Radiative decay of non-radiative surface plasmons excited by light. Zeitschrift für Naturforschung A Phys. Sci., 1968, 23: 2135
CrossRef
ADS
Google scholar
|
[47] |
T. Iqbal, Z. Ashfaq, S. Afsheen, M. Ijaz, M. Y. Khan, M. Rafique, G. Nabi. Surface-enhanced Raman scattering (SERS) on 1D nano-gratings. Plasmonics, 2020, 15(4): 1053
CrossRef
ADS
Google scholar
|
[48] |
S. Vempati, T. Iqbal, S. Afsheen. Non-universal behavior of leaky surface waves in a one dimensional asymmetric plasmonic grating. J. Appl. Phys., 2015, 118(4): 043103
CrossRef
ADS
Google scholar
|
[49] |
G. Vecchi, V. Giannini, J. Gómez Rivas. Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys. Rev. Lett., 2009, 102(14): 146807
CrossRef
ADS
Google scholar
|
[50] |
S.L. Chang, Multiple Diffraction of X-Rays in Crystals, Springer Series in Solid-State Sciences (SSSOL, Volume 50), Springer Berlin Heidelberg, 1984
|
[51] |
S. C. Kitson, W. L. Barnes, J. R. Sambles. Surface-plasmon energy gaps and photoluminescence. Phys. Rev. B, 1995, 52(15): 11441
CrossRef
ADS
Google scholar
|
[52] |
T. Iqbal, H. Tabassum, S. Afsheen, M. Ijaz. Novel exposed and buried Au plasmonic grating as efficient sensors. Waves Random Complex Media, 2022, 32(4): 1571
CrossRef
ADS
Google scholar
|
[53] |
S. Afsheen, A. Ahmad, T. Iqbal, M. Ijaz, A. Bashir. Optimizing the sensing efficiency of plasmonic based gas sensor. Plasmonics, 2021, 16(2): 541
CrossRef
ADS
Google scholar
|
[54] |
M. Javaid, T. Iqbal. Plasmonic bandgap in 1D metallic nanostructured devices. Plasmonics, 2016, 11(1): 167
CrossRef
ADS
Google scholar
|
[55] |
P. Wang, D. J. Hu, Y. F. Xiao, L. Pang. Suppression of metal grating to surface plasma radiation. Acta Phys. Sin., 2015, 64(8): 087301
CrossRef
ADS
Google scholar
|
[56] |
B. Wang, P. Yu, W. Wang, X. Zhang, H. C. Kuo, H. Xu, Z. M. Wang. High‐Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater., 2021, 9(7): 2001520
CrossRef
ADS
Google scholar
|
[57] |
S. Sun, H. T. Chen, W. J. Zheng, G. Y. Guo. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express, 2013, 21(12): 14591
CrossRef
ADS
Google scholar
|
[58] |
H.Raether, Surface-Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, 1988
|
[59] |
K. A. Willets, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007, 58(1): 267
CrossRef
ADS
Google scholar
|
[60] |
W. Zhang, M. Caldarola, X. Lu, M. Orrit. Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics, 2018, 5(7): 2960
CrossRef
ADS
Google scholar
|
[61] |
J. Wen, H. Wang, W. Wang, Z. Deng, C. Zhuang, Y. Zhang, F. Liu, J. She, J. Chen, H. Chen, S. Deng, N. Xu. Room-temperature strong light−matter interaction with active control in single plasmonic nanorod coupled with two-dimensional atomic crystals. Nano Lett., 2017, 17(8): 4689
CrossRef
ADS
Google scholar
|
[62] |
T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, P. N. Bartlett. Localized and delocalized plasmons in metallic nanovoids. Phys. Rev. B, 2006, 74(24): 245415
CrossRef
ADS
Google scholar
|
[63] |
C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J. P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J. J. Greffet, P. Senellart, A. Maitre. Controlling spontaneous emission with plasmonic optical patch antennas. Nano Lett., 2013, 13(4): 1516
CrossRef
ADS
Google scholar
|
[64] |
A. Agrawal, I. Kriegel, D. J. Milliron. Shape-dependent field enhancement and plasmon resonance of oxide nanocrystals. J. Phys. Chem. C, 2015, 119(11): 6227
CrossRef
ADS
Google scholar
|
[65] |
V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev., 2018, 118(12): 5912
CrossRef
ADS
Google scholar
|
[66] |
M. Ijaz. Plasmonic hot electrons: Potential candidates for improved photocatalytic hydrogen production. Int. J. Hydrogen Energy, 2023, 48(26): 9609
CrossRef
ADS
Google scholar
|
[67] |
I. Boettcher, J. M. Pawlowski, S. Diehl. Ultracold atoms and the functional renormalization group. Nucl. Phys. B Proc. Suppl., 2012, 228: 63
CrossRef
ADS
Google scholar
|
[68] |
H. Hertz. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann. Phys., 1887, 267(8): 983
CrossRef
ADS
Google scholar
|
[69] |
A.Einstein, Über einen die Erzeugung und verwandlung des lichtes betreffenden heuristischen gesichtspunkt, Ann. Phys. 322(6), 132 (1905)
|
[70] |
M. L. Brongersma, N. J. Halas, P. Nordlander. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol., 2015, 10(1): 25
CrossRef
ADS
Google scholar
|
[71] |
Y.DubiY. Sivan, “Hot” electrons in metallic nanostructures-non-thermal carriers or heating? Light Sci. Appl. 8(1), 89 (2019)
|
[72] |
C. Clavero. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics, 2014, 8(2): 95
CrossRef
ADS
Google scholar
|
[73] |
C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett., 2002, 88(7): 077402
CrossRef
ADS
Google scholar
|
[74] |
J. B. Khurgin. Hot carriers generated by plasmons: Where are they generated and where do they go from there. Faraday Discuss., 2019, 214: 35
CrossRef
ADS
Google scholar
|
[75] |
J. B. Khurgin. Fundamental limits of hot carrier injection from metal in nanoplasmonics. Nanophotonics, 2020, 9(2): 453
CrossRef
ADS
Google scholar
|
[76] |
R. Sundararaman, P. Narang, A. S. Jermyn, III Goddard, H. A. Atwater. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun., 2014, 5(1): 5788
CrossRef
ADS
Google scholar
|
[77] |
M. M. Dujardin, M. L. Theye. Investigation of the optical properties of Ag by means of thin semi-transparent films. J. Phys. Chem. Solids, 1971, 32(9): 2033
CrossRef
ADS
Google scholar
|
[78] |
A. A. Maznev, O. B. Wright. Demystifying umklapp vs normal scattering in lattice thermal conductivity. Am. J. Phys., 2014, 82(11): 1062
CrossRef
ADS
Google scholar
|
[79] |
G. R. Parkins, W. E. Lawrence, R. W. Christy, Intraband optical conductivity σ(ω, T) of Cu. Ag, and Au: Contribution from electron-electron scattering. Phys. Rev. B, 1981, 23(12): 6408
CrossRef
ADS
Google scholar
|
[80] |
U.KreibigM. Vollmer, Optical Properties of Metal Clusters, Vol. 25, Springer Berlin Heidelberg, 1995
|
[81] |
L. Landau. On the vibrations of the electronic plasma. Yad. Fiz., 1946, 10: 25
CrossRef
ADS
Google scholar
|
[82] |
A. V. Uskov, I. E. Protsenko, N. A. Mortensen, E. P. O’Reilly. Broadening of plasmonic resonance due to electron collisions with nanoparticle boundary: A quantum mechanical consideration. Plasmonics, 2014, 9(1): 185
CrossRef
ADS
Google scholar
|
[83] |
J. B. Khurgin. Ultimate limit of field confinement by surface plasmon polaritons. Faraday Discuss., 2015, 178: 109
CrossRef
ADS
Google scholar
|
[84] |
J. Khurgin, W. Y. Tsai, D. P. Tsai, G. Sun. Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics, 2017, 4(11): 2871
CrossRef
ADS
Google scholar
|
[85] |
K. Watanabe, D. Menzel, N. Nilius, H. J. Freund. Photochemistry on metal nanoparticles. Chem. Rev., 2006, 106(10): 4301
CrossRef
ADS
Google scholar
|
[86] |
N. S. Mueller, B. G. M. Vieira, D. Höing, F. Schulz, E. B. Barros, H. Lange, S. Reich. Direct optical excitation of dark plasmons for hot electron generation. Faraday Discuss., 2019, 214: 159
CrossRef
ADS
Google scholar
|
[87] |
H. Inouye, K. Tanaka, I. Tanahashi, K. Hirao. Ultrafast dynamics of nonequilibrium electrons in a gold nanoparticle system. Phys. Rev. B, 1998, 57(18): 11334
CrossRef
ADS
Google scholar
|
[88] |
J.M. Ziman, Electrons and phonons: The theory of transport phenomena in solids, Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, 2001
|
[89] |
J. B. Khurgin, U. Levy. Generating hot carriers in plasmonic nanoparticles: When quantization does matter. ACS Photonics, 2020, 7(3): 547
CrossRef
ADS
Google scholar
|
[90] |
T. P. White, K. R. Catchpole. Plasmon-enhanced internal photoemission for photovoltaics: Theoretical efficiency limits. Appl. Phys. Lett., 2012, 101(7): 073905
CrossRef
ADS
Google scholar
|
[91] |
J. Kadlec. Theory of internal photoemission in sandwich structures. Phys. Rep., 1976, 26(2): 69
CrossRef
ADS
Google scholar
|
[92] |
D. A. Kovacs, J. Winter, S. Meyer, A. Wucher, D. Diesing. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B, 2007, 76(23): 235408
CrossRef
ADS
Google scholar
|
[93] |
S. V. Pepper. Optical analysis of photoemission. J. Opt. Soc. Am., 1970, 60(6): 805
CrossRef
ADS
Google scholar
|
[94] |
K. Reuter, U. Hohenester, P. L. de Andres, F. J. García-Vidal, F. Flores, K. Heinz, P. Kocevar. Electron energy relaxation times from ballistic-electron-emission spectroscopy. Phys. Rev. B, 2000, 61(7): 4522
CrossRef
ADS
Google scholar
|
[95] |
C. Scales, P. Berini. Thin-film Schottky barrier photodetector models. IEEE J. Quantum Electron., 2010, 46(5): 633
CrossRef
ADS
Google scholar
|
[96] |
S. Afsheen, T. Iqbal, S. Akram, A. Bashir, A. Tehseen, M. Rafique, M. Shakil, M. Y. Khan, M. Ijaz. Surface plasmon based 1D-grating device for efficient sensing using noble metals. Opt. Quantum Electron., 2020, 52(2): 64
CrossRef
ADS
Google scholar
|
[97] |
T. Iqbal, A. Bashir, M. Shakil, S. Afsheen, A. Tehseen, M. Ijaz, K. N. Riaz. Investigation of plasmonic bandgap for 1D exposed and buried metallic gratings. Plasmonics, 2019, 14(2): 493
CrossRef
ADS
Google scholar
|
[98] |
Y. Takahashi, T. Tatsuma. Solid state photovoltaic cells based on localized surface plasmon-induced charge separation. Appl. Phys. Lett., 2011, 99(18): 182110
CrossRef
ADS
Google scholar
|
[99] |
C. Qiu, H. Zhang, C. Tian, X. Jin, Q. Song, L. Xu, M. Ijaz, R. J. Blaikie, Q. Xu. Breaking bandgap limitation: Improved photosensitization in plasmonic-based CsPbBr3 photodetectors via hot-electron injection. Appl. Phys. Lett., 2023, 122(24): 243502
CrossRef
ADS
Google scholar
|
[100] |
M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas. Photodetection with active optical antennas. Science, 2011, 332(6030): 702
CrossRef
ADS
Google scholar
|
[101] |
A. Di Bartolomeo. Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys. Rep., 2016, 606: 1
CrossRef
ADS
Google scholar
|
[102] |
S.S. Li, Semiconductor Physical Electronics, New York, Springer, 2006
|
[103] |
Y. Huan, S. M. Sun, C. J. Gu, W. J. Liu, S. J. Ding, H. Y. Yu, C. T. Xia, D. W. Zhang. Recent advances in β-Ga2O3–metal contacts. Nanoscale Res. Lett., 2018, 13(1): 246
CrossRef
ADS
Google scholar
|
[104] |
S.J. Fonash, Solar Cell Device Physics, Elsevier, 2010
|
/
〈 | 〉 |