Measurement of interacting quantum phases: A band mapping scheme
Qi Huang, Zijie Zhu, Yifei Wang, Libo Liang, Qinpei Zheng, Xuzong Chen
Measurement of interacting quantum phases: A band mapping scheme
Band mapping is widely used in various scenarios of cold atom physics to measure the quasi-momentum distribution and band population. However, conventional methods fail in strongly interacting systems. Here we propose and experimentally realize a novel scheme of band mapping that can accurately measure the quasi-momentum of interacting many-body systems. Through an anisotropic control in turning down the three-dimensional optical lattice, we can eliminate the effect of interactions on the band mapping process. Then, based on a precise measurement of the quasi-momentum distribution, we introduce the incoherent fraction as a physical quantity that can quantify the degree of incoherence of quantum many-body states. This method enables precise measurement of processes such as the superfluid to Mott insulator phase transition. Additionally, by analyzing the spatial correlation derived from the quasi-momentum of superfluid-Mott insulator phase transitions, we obtain results consistent with the incoherent fraction. Our scheme broadens the scope of band mapping and provides a method for studying quantum many-body problems.
ultracold physics / Mott insulator / superfluid / band mapping
[1] |
M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett., 2001, 87(16): 160405
CrossRef
ADS
Google scholar
|
[2] |
M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger. Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett., 2005, 94(8): 080403
CrossRef
ADS
Google scholar
|
[3] |
U. Schneider, L. Hackermuller, S. Will, T. Best, I. Bloch, T. A. Costi, R. Helmes, D. Rasch, A. Rosch. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science, 2008, 322(5907): 1520
CrossRef
ADS
Google scholar
|
[4] |
Z. A. Geiger, K. M. Fujiwara, K. Singh, R. Senaratne, S. V. Rajagopal, M. Lipatov, T. Shimasaki, R. Driben, V. V. Konotop, T. Meier, D. M. Weld. Observation and uses of position−space Bloch oscillations in an ultracold gas. Phys. Rev. Lett., 2018, 120(21): 213201
CrossRef
ADS
Google scholar
|
[5] |
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
CrossRef
ADS
Google scholar
|
[6] |
C. J. Kennedy, W. C. Burton, W. C. Chung, W. Ketterle. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys., 2015, 11(10): 859
CrossRef
ADS
Google scholar
|
[7] |
J. H. Kang, J. H. Han, Y. I. Shin. Realization of a cross-linked chiral ladder with neutral fermions in a 1D optical lattice by orbital–momentum coupling. Phys. Rev. Lett., 2018, 121(15): 150403
CrossRef
ADS
Google scholar
|
[8] |
C. D. Brown, S. W. Chang, M. N. Schwarz, T. H. Leung, V. Kozii, A. Avdoshkin, J. E. Moore, D. Stamper-Kurn. Direct geometric probe of singularities in band structure. Science, 2022, 377(6612): 1319
CrossRef
ADS
Google scholar
|
[9] |
Q. Huang, R. Yao, L. Liang, S. Wang, Q. Zheng, D. Li, W. Xiong, X. Zhou, W. Chen, X. Chen, J. Hu. Observation of many-body quantum phase transitions beyond the Kibble–Zurek mechanism. Phys. Rev. Lett., 2021, 127(20): 200601
CrossRef
ADS
Google scholar
|
[10] |
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302
CrossRef
ADS
Google scholar
|
[11] |
X. J. Liu, K. T. Law, T. K. Ng, P. A. Lee. Detecting topological phases in cold atoms. Phys. Rev. Lett., 2013, 111(12): 120402
CrossRef
ADS
Google scholar
|
[12] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515(7526): 237
CrossRef
ADS
Google scholar
|
[13] |
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. Cooper, I. Bloch, N. Goldman. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 2015, 11(2): 162
CrossRef
ADS
Google scholar
|
[14] |
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
CrossRef
ADS
Google scholar
|
[15] |
B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, G. B. Jo. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
CrossRef
ADS
Google scholar
|
[16] |
L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N. Fläschner, K. Sengstock, N. Goldman, C. Weitenberg. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys., 2019, 15(5): 449
CrossRef
ADS
Google scholar
|
[17] |
Z. Y. Wang, X. C. Cheng, B. Z. Wang, J. Y. Zhang, Y. H. Lu, C. R. Yi, S. Niu, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
CrossRef
ADS
Google scholar
|
[18] |
T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M. Schleier-Smith, I. Bloch, U. Schneider. Bloch state tomography using Wilson lines. Science, 2016, 352(6289): 1094
CrossRef
ADS
Google scholar
|
[19] |
W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
CrossRef
ADS
Google scholar
|
[20] |
L. Zhang, L. Zhang, X. J. Liu. Unified theory to characterize floquet topological phases by quench dynamics. Phys. Rev. Lett., 2020, 125(18): 183001
CrossRef
ADS
Google scholar
|
[21] |
J. Heinze, S. Götze, J. Krauser, B. Hundt, N. Fläschner, D. S. Lühmann, C. Becker, K. Sengstock. Multiband spectroscopy of ultracold fermions: Observation of reduced tunneling in attractive Bose–Fermi mixtures. Phys. Rev. Lett., 2011, 107(13): 135303
CrossRef
ADS
Google scholar
|
[22] |
J. Heinze, J. Krauser, N. Fläschner, B. Hundt, S. Götze, A. Itin, L. Mathey, K. Sengstock, C. Becker. Intrinsic photoconductivity of ultracold fermions in optical lattices. Phys. Rev. Lett., 2013, 110(8): 085302
CrossRef
ADS
Google scholar
|
[23] |
C. Repellin, N. Goldman. Detecting fractional Chern insulators through circular dichroism. Phys. Rev. Lett., 2019, 122(16): 166801
CrossRef
ADS
Google scholar
|
[24] |
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, Y. Takahashi. Competition and interplay between topology and quasi-periodic disorder in thouless pumping of ultracold atoms. Nat. Phys., 2021, 17(7): 844
CrossRef
ADS
Google scholar
|
[25] |
B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, C. Weitenberg. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
CrossRef
ADS
Google scholar
|
[26] |
K. Singh, C. J. Fujiwara, Z. A. Geiger, E. Q. Simmons, M. Lipatov, A. Cao, P. Dotti, S. V. Rajagopal, R. Senaratne, T. Shimasaki, M. Heyl, A. Eckardt, D. M. Weld. Quantifying and controlling prethermal nonergodicity in interacting floquet matter. Phys. Rev. X, 2019, 9(4): 041021
CrossRef
ADS
Google scholar
|
[27] |
K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D. Liberto, N. Goldman, I. Bloch, M. Aidelsburger. Realization of an anomalous floquet topological system with ultracold atoms. Nat. Phys., 2020, 16(10): 1058
CrossRef
ADS
Google scholar
|
[28] |
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I. Bloch. Direct observation of second-order atom tunnelling. Nature, 2007, 448(7157): 1029
CrossRef
ADS
Google scholar
|
[29] |
D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, T. Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, 340(6138): 1307
CrossRef
ADS
Google scholar
|
[30] |
P. Hauke, M. Lewenstein, A. Eckardt. Tomography of band insulators from quench dynamics. Phys. Rev. Lett., 2014, 113(4): 045303
CrossRef
ADS
Google scholar
|
[31] |
S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, Y. Takahashi. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
CrossRef
ADS
Google scholar
|
[32] |
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, I. Bloch. Exploring 4D quantum hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
CrossRef
ADS
Google scholar
|
[33] |
M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock, C. Weitenberg. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
CrossRef
ADS
Google scholar
|
[34] |
S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi. Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice. Nat. Commun., 2020, 11(1): 257
CrossRef
ADS
Google scholar
|
[35] |
P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang, T. P. Devereaux, W. S. Bakr. Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system. Nat. Phys., 2020, 16(1): 26
CrossRef
ADS
Google scholar
|
[36] |
S. S. Natu, D. C. McKay, B. DeMarco, E. J. Mueller. Evolution of condensate fraction during rapid lattice ramps. Phys. Rev. A, 2012, 85(6): 061601
CrossRef
ADS
Google scholar
|
[37] |
M. P. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher. Boson localization and the superfluid–insulator transition. Phys. Rev. B, 1989, 40(1): 546
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |