
Measurement of interacting quantum phases: A band mapping scheme
Qi Huang, Zijie Zhu, Yifei Wang, Libo Liang, Qinpei Zheng, Xuzong Chen
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52307.
Measurement of interacting quantum phases: A band mapping scheme
Band mapping is widely used in various scenarios of cold atom physics to measure the quasi-momentum distribution and band population. However, conventional methods fail in strongly interacting systems. Here we propose and experimentally realize a novel scheme of band mapping that can accurately measure the quasi-momentum of interacting many-body systems. Through an anisotropic control in turning down the three-dimensional optical lattice, we can eliminate the effect of interactions on the band mapping process. Then, based on a precise measurement of the quasi-momentum distribution, we introduce the incoherent fraction as a physical quantity that can quantify the degree of incoherence of quantum many-body states. This method enables precise measurement of processes such as the superfluid to Mott insulator phase transition. Additionally, by analyzing the spatial correlation derived from the quasi-momentum of superfluid-Mott insulator phase transitions, we obtain results consistent with the incoherent fraction. Our scheme broadens the scope of band mapping and provides a method for studying quantum many-body problems.
ultracold physics / Mott insulator / superfluid / band mapping
Fig.1 Sketch of experiment setup, time sequence, and images for band mapping. (a) A schematic diagram of the experimental system. (b) The temporal sequence of the lattice potential along the x, y, and z directions. The potential along the x and y directions is ramped down to zero within 2 ms, while the potential along the z direction is abruptly quenched to zero. (c) We obtained band mapping images with our method at three different lattice depths corresponding to the superfluid regime, the critical point of phase transition, and the deep Mott insulator regime. |
Fig.2 Quasi-momentum distribution from two methods. (a) Integration graphs of (c) along the |
Fig.3 Incoherent fraction and correlation. (a) Band mapping images reveal the quasi-momentum distribution at various lattice depths, showing a transition from SF to MI as indicated by the diminishing peak and the increasing plateau. (b) Lattice depth dependence of the incoherent fraction. The inset depicts the method for extracting the incoherent fraction from the quasi-momentum distribution. (c) Correlation versus space distance at different lattice depths. The gray area has errors due to inhomogeneous optical lattice. |
Fig.4 Transformation of momentum distribution between different Brillouin zones. (a) The momentum distribution in an optical lattice with a potential depth of |
[1] |
M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett., 2001, 87(16): 160405
CrossRef
ADS
Google scholar
|
[2] |
M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger. Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett., 2005, 94(8): 080403
CrossRef
ADS
Google scholar
|
[3] |
U. Schneider, L. Hackermuller, S. Will, T. Best, I. Bloch, T. A. Costi, R. Helmes, D. Rasch, A. Rosch. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science, 2008, 322(5907): 1520
CrossRef
ADS
Google scholar
|
[4] |
Z. A. Geiger, K. M. Fujiwara, K. Singh, R. Senaratne, S. V. Rajagopal, M. Lipatov, T. Shimasaki, R. Driben, V. V. Konotop, T. Meier, D. M. Weld. Observation and uses of position−space Bloch oscillations in an ultracold gas. Phys. Rev. Lett., 2018, 120(21): 213201
CrossRef
ADS
Google scholar
|
[5] |
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
CrossRef
ADS
Google scholar
|
[6] |
C. J. Kennedy, W. C. Burton, W. C. Chung, W. Ketterle. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys., 2015, 11(10): 859
CrossRef
ADS
Google scholar
|
[7] |
J. H. Kang, J. H. Han, Y. I. Shin. Realization of a cross-linked chiral ladder with neutral fermions in a 1D optical lattice by orbital–momentum coupling. Phys. Rev. Lett., 2018, 121(15): 150403
CrossRef
ADS
Google scholar
|
[8] |
C. D. Brown, S. W. Chang, M. N. Schwarz, T. H. Leung, V. Kozii, A. Avdoshkin, J. E. Moore, D. Stamper-Kurn. Direct geometric probe of singularities in band structure. Science, 2022, 377(6612): 1319
CrossRef
ADS
Google scholar
|
[9] |
Q. Huang, R. Yao, L. Liang, S. Wang, Q. Zheng, D. Li, W. Xiong, X. Zhou, W. Chen, X. Chen, J. Hu. Observation of many-body quantum phase transitions beyond the Kibble–Zurek mechanism. Phys. Rev. Lett., 2021, 127(20): 200601
CrossRef
ADS
Google scholar
|
[10] |
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302
CrossRef
ADS
Google scholar
|
[11] |
X. J. Liu, K. T. Law, T. K. Ng, P. A. Lee. Detecting topological phases in cold atoms. Phys. Rev. Lett., 2013, 111(12): 120402
CrossRef
ADS
Google scholar
|
[12] |
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515(7526): 237
CrossRef
ADS
Google scholar
|
[13] |
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. Cooper, I. Bloch, N. Goldman. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 2015, 11(2): 162
CrossRef
ADS
Google scholar
|
[14] |
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
CrossRef
ADS
Google scholar
|
[15] |
B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, G. B. Jo. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
CrossRef
ADS
Google scholar
|
[16] |
L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N. Fläschner, K. Sengstock, N. Goldman, C. Weitenberg. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys., 2019, 15(5): 449
CrossRef
ADS
Google scholar
|
[17] |
Z. Y. Wang, X. C. Cheng, B. Z. Wang, J. Y. Zhang, Y. H. Lu, C. R. Yi, S. Niu, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
CrossRef
ADS
Google scholar
|
[18] |
T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M. Schleier-Smith, I. Bloch, U. Schneider. Bloch state tomography using Wilson lines. Science, 2016, 352(6289): 1094
CrossRef
ADS
Google scholar
|
[19] |
W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
CrossRef
ADS
Google scholar
|
[20] |
L. Zhang, L. Zhang, X. J. Liu. Unified theory to characterize floquet topological phases by quench dynamics. Phys. Rev. Lett., 2020, 125(18): 183001
CrossRef
ADS
Google scholar
|
[21] |
J. Heinze, S. Götze, J. Krauser, B. Hundt, N. Fläschner, D. S. Lühmann, C. Becker, K. Sengstock. Multiband spectroscopy of ultracold fermions: Observation of reduced tunneling in attractive Bose–Fermi mixtures. Phys. Rev. Lett., 2011, 107(13): 135303
CrossRef
ADS
Google scholar
|
[22] |
J. Heinze, J. Krauser, N. Fläschner, B. Hundt, S. Götze, A. Itin, L. Mathey, K. Sengstock, C. Becker. Intrinsic photoconductivity of ultracold fermions in optical lattices. Phys. Rev. Lett., 2013, 110(8): 085302
CrossRef
ADS
Google scholar
|
[23] |
C. Repellin, N. Goldman. Detecting fractional Chern insulators through circular dichroism. Phys. Rev. Lett., 2019, 122(16): 166801
CrossRef
ADS
Google scholar
|
[24] |
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, Y. Takahashi. Competition and interplay between topology and quasi-periodic disorder in thouless pumping of ultracold atoms. Nat. Phys., 2021, 17(7): 844
CrossRef
ADS
Google scholar
|
[25] |
B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, C. Weitenberg. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
CrossRef
ADS
Google scholar
|
[26] |
K. Singh, C. J. Fujiwara, Z. A. Geiger, E. Q. Simmons, M. Lipatov, A. Cao, P. Dotti, S. V. Rajagopal, R. Senaratne, T. Shimasaki, M. Heyl, A. Eckardt, D. M. Weld. Quantifying and controlling prethermal nonergodicity in interacting floquet matter. Phys. Rev. X, 2019, 9(4): 041021
CrossRef
ADS
Google scholar
|
[27] |
K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D. Liberto, N. Goldman, I. Bloch, M. Aidelsburger. Realization of an anomalous floquet topological system with ultracold atoms. Nat. Phys., 2020, 16(10): 1058
CrossRef
ADS
Google scholar
|
[28] |
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I. Bloch. Direct observation of second-order atom tunnelling. Nature, 2007, 448(7157): 1029
CrossRef
ADS
Google scholar
|
[29] |
D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, T. Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, 340(6138): 1307
CrossRef
ADS
Google scholar
|
[30] |
P. Hauke, M. Lewenstein, A. Eckardt. Tomography of band insulators from quench dynamics. Phys. Rev. Lett., 2014, 113(4): 045303
CrossRef
ADS
Google scholar
|
[31] |
S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, Y. Takahashi. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
CrossRef
ADS
Google scholar
|
[32] |
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, I. Bloch. Exploring 4D quantum hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
CrossRef
ADS
Google scholar
|
[33] |
M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock, C. Weitenberg. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
CrossRef
ADS
Google scholar
|
[34] |
S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi. Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice. Nat. Commun., 2020, 11(1): 257
CrossRef
ADS
Google scholar
|
[35] |
P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang, T. P. Devereaux, W. S. Bakr. Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system. Nat. Phys., 2020, 16(1): 26
CrossRef
ADS
Google scholar
|
[36] |
S. S. Natu, D. C. McKay, B. DeMarco, E. J. Mueller. Evolution of condensate fraction during rapid lattice ramps. Phys. Rev. A, 2012, 85(6): 061601
CrossRef
ADS
Google scholar
|
[37] |
M. P. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher. Boson localization and the superfluid–insulator transition. Phys. Rev. B, 1989, 40(1): 546
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |