Measurement of interacting quantum phases: A band mapping scheme

Qi Huang, Zijie Zhu, Yifei Wang, Libo Liang, Qinpei Zheng, Xuzong Chen

PDF(6575 KB)
PDF(6575 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52307. DOI: 10.1007/s11467-023-1326-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Measurement of interacting quantum phases: A band mapping scheme

Author information +
History +

Abstract

Band mapping is widely used in various scenarios of cold atom physics to measure the quasi-momentum distribution and band population. However, conventional methods fail in strongly interacting systems. Here we propose and experimentally realize a novel scheme of band mapping that can accurately measure the quasi-momentum of interacting many-body systems. Through an anisotropic control in turning down the three-dimensional optical lattice, we can eliminate the effect of interactions on the band mapping process. Then, based on a precise measurement of the quasi-momentum distribution, we introduce the incoherent fraction as a physical quantity that can quantify the degree of incoherence of quantum many-body states. This method enables precise measurement of processes such as the superfluid to Mott insulator phase transition. Additionally, by analyzing the spatial correlation derived from the quasi-momentum of superfluid-Mott insulator phase transitions, we obtain results consistent with the incoherent fraction. Our scheme broadens the scope of band mapping and provides a method for studying quantum many-body problems.

Graphical abstract

Keywords

ultracold physics / Mott insulator / superfluid / band mapping

Cite this article

Download citation ▾
Qi Huang, Zijie Zhu, Yifei Wang, Libo Liang, Qinpei Zheng, Xuzong Chen. Measurement of interacting quantum phases: A band mapping scheme. Front. Phys., 2023, 18(5): 52307 https://doi.org/10.1007/s11467-023-1326-y

References

[1]
M. Greiner, I. Bloch, O. Mandel, T. W. Hänsch, T. Esslinger. Exploring phase coherence in a 2D lattice of Bose–Einstein condensates. Phys. Rev. Lett., 2001, 87(16): 160405
CrossRef ADS Google scholar
[2]
M. Köhl, H. Moritz, T. Stöferle, K. Günter, T. Esslinger. Fermionic atoms in a three dimensional optical lattice: Observing Fermi surfaces, dynamics, and interactions. Phys. Rev. Lett., 2005, 94(8): 080403
CrossRef ADS Google scholar
[3]
U. Schneider, L. Hackermuller, S. Will, T. Best, I. Bloch, T. A. Costi, R. Helmes, D. Rasch, A. Rosch. Metallic and insulating phases of repulsively interacting fermions in a 3D optical lattice. Science, 2008, 322(5907): 1520
CrossRef ADS Google scholar
[4]
Z. A. Geiger, K. M. Fujiwara, K. Singh, R. Senaratne, S. V. Rajagopal, M. Lipatov, T. Shimasaki, R. Driben, V. V. Konotop, T. Meier, D. M. Weld. Observation and uses of position−space Bloch oscillations in an ultracold gas. Phys. Rev. Lett., 2018, 120(21): 213201
CrossRef ADS Google scholar
[5]
M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro, B. Paredes, I. Bloch. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
CrossRef ADS Google scholar
[6]
C. J. Kennedy, W. C. Burton, W. C. Chung, W. Ketterle. Observation of Bose–Einstein condensation in a strong synthetic magnetic field. Nat. Phys., 2015, 11(10): 859
CrossRef ADS Google scholar
[7]
J. H. Kang, J. H. Han, Y. I. Shin. Realization of a cross-linked chiral ladder with neutral fermions in a 1D optical lattice by orbital–momentum coupling. Phys. Rev. Lett., 2018, 121(15): 150403
CrossRef ADS Google scholar
[8]
C. D. Brown, S. W. Chang, M. N. Schwarz, T. H. Leung, V. Kozii, A. Avdoshkin, J. E. Moore, D. Stamper-Kurn. Direct geometric probe of singularities in band structure. Science, 2022, 377(6612): 1319
CrossRef ADS Google scholar
[9]
Q. Huang, R. Yao, L. Liang, S. Wang, Q. Zheng, D. Li, W. Xiong, X. Zhou, W. Chen, X. Chen, J. Hu. Observation of many-body quantum phase transitions beyond the Kibble–Zurek mechanism. Phys. Rev. Lett., 2021, 127(20): 200601
CrossRef ADS Google scholar
[10]
L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, T. Esslinger. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature, 2012, 483(7389): 302
CrossRef ADS Google scholar
[11]
X. J. Liu, K. T. Law, T. K. Ng, P. A. Lee. Detecting topological phases in cold atoms. Phys. Rev. Lett., 2013, 111(12): 120402
CrossRef ADS Google scholar
[12]
G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, T. Esslinger. Experimental realization of the topological Haldane model with ultracold fermions. Nature, 2014, 515(7526): 237
CrossRef ADS Google scholar
[13]
M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T. Barreiro, S. Nascimbène, N. Cooper, I. Bloch, N. Goldman. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys., 2015, 11(2): 162
CrossRef ADS Google scholar
[14]
Z. Wu, L. Zhang, W. Sun, X. T. Xu, B. Z. Wang, S. C. Ji, Y. Deng, S. Chen, X. J. Liu, J. W. Pan. Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
CrossRef ADS Google scholar
[15]
B. Song, L. Zhang, C. He, T. F. J. Poon, E. Hajiyev, S. Zhang, X. J. Liu, G. B. Jo. Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
CrossRef ADS Google scholar
[16]
L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N. Fläschner, K. Sengstock, N. Goldman, C. Weitenberg. Measuring quantized circular dichroism in ultracold topological matter. Nat. Phys., 2019, 15(5): 449
CrossRef ADS Google scholar
[17]
Z. Y. Wang, X. C. Cheng, B. Z. Wang, J. Y. Zhang, Y. H. Lu, C. R. Yi, S. Niu, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin–orbit coupling. Science, 2021, 372(6539): 271
CrossRef ADS Google scholar
[18]
T. Li, L. Duca, M. Reitter, F. Grusdt, E. Demler, M. Endres, M. Schleier-Smith, I. Bloch, U. Schneider. Bloch state tomography using Wilson lines. Science, 2016, 352(6289): 1094
CrossRef ADS Google scholar
[19]
W. Sun, C. R. Yi, B. Z. Wang, W. W. Zhang, B. C. Sanders, X. T. Xu, Z. Y. Wang, J. Schmiedmayer, Y. Deng, X. J. Liu, S. Chen, J. W. Pan. Uncover topology by quantum quench dynamics. Phys. Rev. Lett., 2018, 121(25): 250403
CrossRef ADS Google scholar
[20]
L. Zhang, L. Zhang, X. J. Liu. Unified theory to characterize floquet topological phases by quench dynamics. Phys. Rev. Lett., 2020, 125(18): 183001
CrossRef ADS Google scholar
[21]
J. Heinze, S. Götze, J. Krauser, B. Hundt, N. Fläschner, D. S. Lühmann, C. Becker, K. Sengstock. Multiband spectroscopy of ultracold fermions: Observation of reduced tunneling in attractive Bose–Fermi mixtures. Phys. Rev. Lett., 2011, 107(13): 135303
CrossRef ADS Google scholar
[22]
J. Heinze, J. Krauser, N. Fläschner, B. Hundt, S. Götze, A. Itin, L. Mathey, K. Sengstock, C. Becker. Intrinsic photoconductivity of ultracold fermions in optical lattices. Phys. Rev. Lett., 2013, 110(8): 085302
CrossRef ADS Google scholar
[23]
C. Repellin, N. Goldman. Detecting fractional Chern insulators through circular dichroism. Phys. Rev. Lett., 2019, 122(16): 166801
CrossRef ADS Google scholar
[24]
S. Nakajima, N. Takei, K. Sakuma, Y. Kuno, P. Marra, Y. Takahashi. Competition and interplay between topology and quasi-periodic disorder in thouless pumping of ultracold atoms. Nat. Phys., 2021, 17(7): 844
CrossRef ADS Google scholar
[25]
B. S. Rem, N. Käming, M. Tarnowski, L. Asteria, N. Fläschner, C. Becker, K. Sengstock, C. Weitenberg. Identifying quantum phase transitions using artificial neural networks on experimental data. Nat. Phys., 2019, 15(9): 917
CrossRef ADS Google scholar
[26]
K. Singh, C. J. Fujiwara, Z. A. Geiger, E. Q. Simmons, M. Lipatov, A. Cao, P. Dotti, S. V. Rajagopal, R. Senaratne, T. Shimasaki, M. Heyl, A. Eckardt, D. M. Weld. Quantifying and controlling prethermal nonergodicity in interacting floquet matter. Phys. Rev. X, 2019, 9(4): 041021
CrossRef ADS Google scholar
[27]
K. Wintersperger, C. Braun, F. N. Ünal, A. Eckardt, M. D. Liberto, N. Goldman, I. Bloch, M. Aidelsburger. Realization of an anomalous floquet topological system with ultracold atoms. Nat. Phys., 2020, 16(10): 1058
CrossRef ADS Google scholar
[28]
S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers, A. Widera, T. Müller, I. Bloch. Direct observation of second-order atom tunnelling. Nature, 2007, 448(7157): 1029
CrossRef ADS Google scholar
[29]
D. Greif, T. Uehlinger, G. Jotzu, L. Tarruell, T. Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, 340(6138): 1307
CrossRef ADS Google scholar
[30]
P. Hauke, M. Lewenstein, A. Eckardt. Tomography of band insulators from quench dynamics. Phys. Rev. Lett., 2014, 113(4): 045303
CrossRef ADS Google scholar
[31]
S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, Y. Takahashi. Coherent driving and freezing of bosonic matter wave in an optical Lieb lattice. Sci. Adv., 2015, 1(10): e1500854
CrossRef ADS Google scholar
[32]
M. Lohse, C. Schweizer, H. M. Price, O. Zilberberg, I. Bloch. Exploring 4D quantum hall physics with a 2D topological charge pump. Nature, 2018, 553(7686): 55
CrossRef ADS Google scholar
[33]
M. Tarnowski, F. N. Ünal, N. Fläschner, B. S. Rem, A. Eckardt, K. Sengstock, C. Weitenberg. Measuring topology from dynamics by obtaining the Chern number from a linking number. Nat. Commun., 2019, 10(1): 1728
CrossRef ADS Google scholar
[34]
S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi. Spatial adiabatic passage of massive quantum particles in an optical Lieb lattice. Nat. Commun., 2020, 11(1): 257
CrossRef ADS Google scholar
[35]
P. T. Brown, E. Guardado-Sanchez, B. M. Spar, E. W. Huang, T. P. Devereaux, W. S. Bakr. Angle-resolved photoemission spectroscopy of a Fermi–Hubbard system. Nat. Phys., 2020, 16(1): 26
CrossRef ADS Google scholar
[36]
S. S. Natu, D. C. McKay, B. DeMarco, E. J. Mueller. Evolution of condensate fraction during rapid lattice ramps. Phys. Rev. A, 2012, 85(6): 061601
CrossRef ADS Google scholar
[37]
M. P. Fisher, P. B. Weichman, G. Grinstein, D. S. Fisher. Boson localization and the superfluid–insulator transition. Phys. Rev. B, 1989, 40(1): 546
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

We are grateful to Xiong-Jun Liu for his valuable discussions and constructive comments, as well as his critical reading of our manuscript. We also thank Xinchi Zhou for helpful comments. This work was supported by the National Key Research and Development Program of China (No. 2021YFA1400900).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6575 KB)

Accesses

Citations

Detail

Sections
Recommended

/