Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators
Huawei Fan, Ya Wang, Xingang Wang
Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators
Whereas topological symmetries have been recognized as crucially important to the exploration of synchronization patterns in complex networks of coupled dynamical oscillators, the identification of the symmetries in large-size complex networks remains as a challenge. Additionally, even though the topological symmetries of a complex network are known, it is still not clear how the system dynamics is transited among different synchronization patterns with respect to the coupling strength of the oscillators. We propose here the framework of eigenvector-based analysis to identify the synchronization patterns in the general complex networks and, incorporating the conventional method of eigenvalue-based analysis, investigate the emergence and transition of the cluster synchronization states. We are able to argue and demonstrate that, without a prior knowledge of the network symmetries, the method is able to predict not only all the cluster synchronization states observable in the network, but also the critical couplings where the states become stable and the sequence of these states in the process of synchronization transition. The efficacy and generality of the proposed method are verified by different network models of coupled chaotic oscillators, including artificial networks of perfect symmetries and empirical networks of non-perfect symmetries. The new framework paves a way to the investigation of synchronization patterns in large-size, general complex networks.
cluster synchronization / complex networks / network symmetry / coupled oscillators
[1] |
Y.Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
|
[2] |
A.T. Winfree, Timing of Biological Clocks, W H Freeman & Co, 1987
|
[3] |
A.S. PikovskyM.G. RosenblumJ.Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001
|
[4] |
S.Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion, New York, 2003
|
[5] |
L. M. Pecora , T. L. Carroll . Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 1998, 80(10): 2109
CrossRef
ADS
Google scholar
|
[6] |
G. Hu , J. Z. Yang , W. Liu . Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Phys. Rev. E, 1998, 58(4): 4440
CrossRef
ADS
Google scholar
|
[7] |
L. Huang , Q. Chen , Y. C. Lai , L. M. Pecora . Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E, 2009, 80(3): 036204
CrossRef
ADS
Google scholar
|
[8] |
J. A. Acebrón , L. L. Bonilla , C. J. Pérez Vicente , F. Ritort , R. Spigler . The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137
CrossRef
ADS
Google scholar
|
[9] |
E. Ott , T. M. Antonsen . Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 2008, 18(3): 037113
CrossRef
ADS
Google scholar
|
[10] |
K.Kaneko, Theory and Application of Coupled Map Lattice, Wiley, Chichester, 1993
|
[11] |
D. J. Watts , S. H. Strogatz . Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440
CrossRef
ADS
Google scholar
|
[12] |
A. L. Barabási , R. Albert . Emergence of scaling in random networks. Science, 1999, 286(5439): 509
CrossRef
ADS
Google scholar
|
[13] |
M.E. J. Newman, Networks: An Introduction, Oxford University Press, 2010
|
[14] |
S. Boccaletti , V. Latora , Y. Moreno , M. Chavez , D. U. Hwang . Complex networks: Structure and dynamics. Phys. Rep., 2006, 424(4−5): 175
CrossRef
ADS
Google scholar
|
[15] |
A. Arenas , A. Diaz-Guilera , J. Kurths , Y. Moreno , C. S. Zhou . Synchronization in complex networks. Phys. Rep., 2008, 469(3): 93
CrossRef
ADS
Google scholar
|
[16] |
T. Wu , X. Zhang , Z. Liu . Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
CrossRef
ADS
Google scholar
|
[17] |
X. Wang , G. Chen . Synchronization in small-world dynamical networks. Int. J. Bifurcat. Chaos, 2002, 12(1): 187
CrossRef
ADS
Google scholar
|
[18] |
M. Barahona , L. M. Pecora . Synchronization in small-world systems. Phys. Rev. Lett., 2002, 89(5): 054101
CrossRef
ADS
Google scholar
|
[19] |
T. Nishikawa , A. E. Motter , Y. C. Lai , F. C. Hoppensteadt . Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize. Phys. Rev. Lett., 2003, 91(1): 014101
CrossRef
ADS
Google scholar
|
[20] |
A. Arenas , A. Díaz-Guilera , C. J. Pérez-Vicente . Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, 96(11): 114102
CrossRef
ADS
Google scholar
|
[21] |
D. Hansel , G. Mato , C. Meunier . Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 1993, 48(5): 3470
CrossRef
ADS
Google scholar
|
[22] |
M. Hasler , Yu. Maistrenko , O. Popovych . Simple example of partial synchronization of chaotic systems. Phys. Rev. E, 1998, 58(5): 6843
CrossRef
ADS
Google scholar
|
[23] |
Y. Zhang , G. Hu , H. A. Cerdeira , S. Chen , T. Braun , Y. Yao . Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. Phys. Rev. E, 2001, 63(2): 026211
CrossRef
ADS
Google scholar
|
[24] |
A. Pikovsky , O. Popovych , Yu. Maistrenko . Resolving clusters in chaotic ensembles of globally coupled identical oscillators. Phys. Rev. Lett., 2001, 87(4): 044102
CrossRef
ADS
Google scholar
|
[25] |
I. A. Heisler , T. Braun , Y. Zhang , G. Hu , H. A. Cerdeira . Experimental investigation of partial synchronization in coupled chaotic oscillators. Chaos, 2003, 13(1): 185
CrossRef
ADS
Google scholar
|
[26] |
C. R. S. Williams , T. E. Murphy , R. Roy , F. Sorrentino , T. Dahms , E. Schöll . Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett., 2013, 110(6): 064104
CrossRef
ADS
Google scholar
|
[27] |
J. Zhang , Y. Z. Yu , X. G. Wang . Synchronization of coupled metronomes on two layers. Front. Phys., 2017, 12(6): 120508
CrossRef
ADS
Google scholar
|
[28] |
M. M. Norton , N. Tompkins , B. Blanc , M. C. Cambria , J. Held , S. Fraden . Dynamics of reaction-diffusion oscillators in star and other networks with cyclic symmetries exhibiting multiple clusters. Phys. Rev. Lett., 2019, 123(14): 148301
CrossRef
ADS
Google scholar
|
[29] |
H. Fan , L. W. Kong , X. G. Wang , A. Hastings , Y. C. Lai . Synchronization within synchronization: Transients and intermittency in ecological networks. Natl. Sci. Rev., 2021, 8(10): nwaa269
CrossRef
ADS
Google scholar
|
[30] |
E. Rodriguez , N. George , J. P. Lachaux , J. Martinerie , B. Renault , F. J. Varela . Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 1999, 397(6718): 430
CrossRef
ADS
Google scholar
|
[31] |
S. Kitsunai , W. Cho , C. Sano , S. Saetia , Z. Qin , Y. Koike , M. Frasca , N. Yoshimura , L. Minati . Generation of diverse insect-like gait patterns using networks of coupled Rössler systems. Chaos, 2020, 30(12): 123132
CrossRef
ADS
Google scholar
|
[32] |
J. F. Heagy , L. M. Pecora , T. L. Carroll . Short wavelength bifurcations and size instabilities in coupled oscillator systems. Phys. Rev. Lett., 1995, 774(21): 4185
CrossRef
ADS
Google scholar
|
[33] |
L. M. Pecora . Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E, 1998, 58(1): 347
CrossRef
ADS
Google scholar
|
[34] |
B. Ao , Z. G. Zheng . Partial synchronization on complex networks. Europhys. Lett., 2006, 74(2): 229
CrossRef
ADS
Google scholar
|
[35] |
F. Sorrentino , E. Ott . Network synchronization of groups. Phys. Rev. E, 2007, 76(5): 056114
CrossRef
ADS
Google scholar
|
[36] |
C. Fu , Z. Deng , L. Huang , X. G. Wang . Topological control of synchronous patterns in systems of networked chaotic oscillators. Phys. Rev. E, 2013, 87(3): 032909
CrossRef
ADS
Google scholar
|
[37] |
C. Fu , W. Lin , L. Huang , X. G. Wang . Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization. Phys. Rev. E, 2014, 89(5): 052908
CrossRef
ADS
Google scholar
|
[38] |
L. M. Pecora , F. Sorrentino , A. M. Hagerstrom , T. E. Murphy , R. Roy . Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun., 2014, 5(1): 4079
CrossRef
ADS
Google scholar
|
[39] |
M. T. Schaub , N. O’Clery , Y. N. Billeh , J. C. Delvenne , R. Lambiotte , M. Barahona . Graph partitions and cluster synchronization in networks of oscillators. Chaos, 2016, 26(9): 094821
CrossRef
ADS
Google scholar
|
[40] |
F. Sorrentino , L. M. Pecora , A. M. Hagerstrom , T. E. Murphy , R. Roy . Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv., 2016, 2(4): e1501737
CrossRef
ADS
Google scholar
|
[41] |
J. D. Hart , Y. Zhang , R. Roy , A. E. Motter . Topological control of synchronization pattern: Trading symmetry for stability. Phys. Rev. Lett., 2019, 122(5): 058301
CrossRef
ADS
Google scholar
|
[42] |
D. M. Abrams , L. M. Pecora , A. E. Motter . Introduction to focus issue: Patterns of network synchronization. Chaos, 2016, 26(9): 094601
CrossRef
ADS
Google scholar
|
[43] |
M. Golubitsky , I. Stewart . Recent advances in symmetric and network dynamics. Chaos, 2015, 25(9): 097612
CrossRef
ADS
Google scholar
|
[44] |
W. Lin , H. Fan , Y. Wang , H. Ying , X. G. Wang . Controlling synchronous patterns in complex networks. Phys. Rev. E, 2016, 93(4): 042209
CrossRef
ADS
Google scholar
|
[45] |
W. Lin , H. Li , H. Ying , X. G. Wang . Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators. Phys. Rev. E, 2016, 94(6): 062303
CrossRef
ADS
Google scholar
|
[46] |
T. Nishikawa , A. E. Motter . Network-complement transitions, symmetries, and cluster synchronization. Chaos, 2016, 26(9): 094818
CrossRef
ADS
Google scholar
|
[47] |
Y. Cho , T. Nishikawa , A. E. Motter . Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett., 2017, 119(8): 084101
CrossRef
ADS
Google scholar
|
[48] |
B. Cao , Y. F. Wang , L. Wang , Y. Z. Yu , X. G. Wang . Cluster synchronization in complex network of coupled chaotic circuits: An experimental study. Front. Phys., 2018, 13(5): 130505
CrossRef
ADS
Google scholar
|
[49] |
Y. F. Wang , L. Wang , H. Fan , X. G. Wang . Cluster synchronization in networked nonidentical chaotic oscillators. Chaos, 2019, 29(9): 093118
CrossRef
ADS
Google scholar
|
[50] |
L. Wang , Y. Guo , Y. Wang , H. Fan , X. G. Wang . Pinning control of cluster synchronization in regular networks. Phys. Rev. Res., 2020, 2(2): 023084
CrossRef
ADS
Google scholar
|
[51] |
Y. Long , Z. Zhai , M. Tang , Y. Liu , Y. C. Lai . Structural position vectors and symmetries in complex networks. Chaos, 2022, 32(9): 093132
CrossRef
ADS
Google scholar
|
[52] |
D. M. Cardoso , C. Delorme , P. Rama . Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Combin., 2007, 28(3): 665
CrossRef
ADS
Google scholar
|
[53] |
M. A. D. Aguiar , A. P. S. Dias , M. Golubitsky , M. C. A. Leite . Bifurcations from regular quotient networks: A first insight. Physica D, 2009, 238(2): 137
CrossRef
ADS
Google scholar
|
[54] |
N. O’Clery , Y. Yuan , G. B. Stan , M. Barahona . Observability and coarse graining of consensus dynamics through the external equitable partition. Phys. Rev. E, 2013, 88(4): 042805
CrossRef
ADS
Google scholar
|
[55] |
D. Irving , F. Sorrentino . Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices. Phys. Rev. E, 2012, 86(5): 056102
CrossRef
ADS
Google scholar
|
[56] |
Y. Zhang , A. E. Motter . Symmetry-independent stability analysis of synchronization patterns. SIAM Rev., 2020, 86: 056102
|
[57] |
Y. Zhang , A. E. Motter . Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys., 2021, 4(1): 195
CrossRef
ADS
Google scholar
|
[58] |
S. Panahi , N. Amaya , I. Klickstein , G. Novello , F. Sorrentino . Failure of the simultaneous block diagonalization technique applied to complete and cluster synchronization of random networks. Phys. Rev. E, 2022, 105(1): 014313
CrossRef
ADS
Google scholar
|
[59] |
M.GolubitskyI.StewartD.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
|
[60] |
C. Zhou , L. Zemanová , G. Zamora , C. C. Hilgetag , J. Kurths . Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett., 2006, 97(23): 238103
CrossRef
ADS
Google scholar
|
[61] |
C. Zhou , L. Zemanová , G. Zamora-López , C. C. Hilgetag , J. Kurths . Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys., 2007, 9(6): 178
CrossRef
ADS
Google scholar
|
[62] |
R. Wang , P. Lin , M. Liu , Y. Wu , T. Zhou , C. Zhou . Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys. Rev. Lett., 2019, 123(3): 038301
CrossRef
ADS
Google scholar
|
[63] |
S. Huo , C. Tian , M. Zheng , S. Guan , C. Zhou , Z. Liu . Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Natl. Sci. Rev., 2020, 8(1): nwaa125
CrossRef
ADS
Google scholar
|
[64] |
M. E. J. Newman . Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577
CrossRef
ADS
Google scholar
|
[65] |
L. Huang , K. Park , Y. C. Lai , L. Yang , K. Yang . Abnormal synchronization in complex clustered networks. Phys. Rev. Lett., 2006, 97(16): 164101
CrossRef
ADS
Google scholar
|
[66] |
X. G. Wang , L. Huang , Y. C. Lai , C. H. Lai . Optimization of synchronization in gradient clustered networks. Phys. Rev. E, 2007, 76(5): 056113
CrossRef
ADS
Google scholar
|
[67] |
E. N. Lorenz . Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20(2): 130
CrossRef
ADS
Google scholar
|
[68] |
J. L. Hindmarsh , R. M. Rose . A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, 1984, 221(1222): 87
CrossRef
ADS
Google scholar
|
[69] |
A. E. Motter , C. S. Zhou , J. Kurths . Enhancing complex-network synchronization. Europhys. Lett., 2005, 69(3): 334
CrossRef
ADS
Google scholar
|
[70] |
X. G. Wang , Y. C. Lai , C. H. Lai . Enhancing synchronization based on complex gradient networks. Phys. Rev. E, 2007, 75(5): 056205
CrossRef
ADS
Google scholar
|
[71] |
J. W. Scannell , G. A. P. C. Burns , C. C. Hilgetag , M. A. O’Neil , M. P. Young . The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex, 1999, 9(3): 277
CrossRef
ADS
Google scholar
|
[72] |
P. Hagmann , L. Cammoun , X. Gigandet , R. Meuli , C. J. Honey , V. J. Wedeen , O. Sporns . Mapping the structural core of human cerebral cortex. PLoS Biol., 2008, 6(7): e157
CrossRef
ADS
Google scholar
|
[73] |
C. J. Honey , O. Sporns , L. Cammoun , X. Gigandet , J. P. Thiran , R. Meuli , P. Hagmann . Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6): 2035
CrossRef
ADS
Google scholar
|
[74] |
C. Fu , H. Zhang , M. Zhan , X. Wang . Synchronous patterns in complex systems. Phys. Rev. E, 2012, 85(6): 066208
CrossRef
ADS
Google scholar
|
[75] |
W. Poel , A. Zakharova , E. Schöll . Partial synchronization and partial amplitude death in mesoscale network motifs. Phys. Rev. E, 2015, 91(2): 022915
CrossRef
ADS
Google scholar
|
[76] |
P. Khanra , S. Ghosh , K. Alfaro-Bittner , P. Kundu , S. Boccaletti , C. Hens , P. Pal . Identifying symmetries and predicting cluster synchronization in complex networks. Chaos Solitons Fractals, 2022, 155: 111703
CrossRef
ADS
Google scholar
|
[77] |
F. B. Denton , S. J. Parke , T. Tao , X. Zhang . Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra. Bull. Am. Math. Soc., 2022, 59(1): 31
CrossRef
ADS
Google scholar
|
[78] |
Y. Wang , D. Zhang , L. Wang , Q. Li , H. Cao , X. G. Wang . Cluster synchronization induced by manifold deformation. Chaos, 2022, 32(9): 093139
CrossRef
ADS
Google scholar
|
[79] |
J. Ma . Biophysical neurons, energy, and synapse controllability: A review. J. Zhejiang Univ. – Sci. A, 2023, 24: 109
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |