Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators

Huawei Fan, Ya Wang, Xingang Wang

PDF(7558 KB)
PDF(7558 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 45302. DOI: 10.1007/s11467-023-1324-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators

Author information +
History +

Abstract

Whereas topological symmetries have been recognized as crucially important to the exploration of synchronization patterns in complex networks of coupled dynamical oscillators, the identification of the symmetries in large-size complex networks remains as a challenge. Additionally, even though the topological symmetries of a complex network are known, it is still not clear how the system dynamics is transited among different synchronization patterns with respect to the coupling strength of the oscillators. We propose here the framework of eigenvector-based analysis to identify the synchronization patterns in the general complex networks and, incorporating the conventional method of eigenvalue-based analysis, investigate the emergence and transition of the cluster synchronization states. We are able to argue and demonstrate that, without a prior knowledge of the network symmetries, the method is able to predict not only all the cluster synchronization states observable in the network, but also the critical couplings where the states become stable and the sequence of these states in the process of synchronization transition. The efficacy and generality of the proposed method are verified by different network models of coupled chaotic oscillators, including artificial networks of perfect symmetries and empirical networks of non-perfect symmetries. The new framework paves a way to the investigation of synchronization patterns in large-size, general complex networks.

Graphical abstract

Keywords

cluster synchronization / complex networks / network symmetry / coupled oscillators

Cite this article

Download citation ▾
Huawei Fan, Ya Wang, Xingang Wang. Eigenvector-based analysis of cluster synchronization in general complex networks of coupled chaotic oscillators. Front. Phys., 2023, 18(4): 45302 https://doi.org/10.1007/s11467-023-1324-0

References

[1]
Y.Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
[2]
A.T. Winfree, Timing of Biological Clocks, W H Freeman & Co, 1987
[3]
A.S. PikovskyM.G. RosenblumJ.Kurths, Synchronization: A Universal Concept in Nonlinear Science, Cambridge University Press, Cambridge, 2001
[4]
S.Strogatz, Sync: The Emerging Science of Spontaneous Order, Hyperion, New York, 2003
[5]
L. M. Pecora , T. L. Carroll . Master stability functions for synchronized coupled systems. Phys. Rev. Lett., 1998, 80(10): 2109
CrossRef ADS Google scholar
[6]
G. Hu , J. Z. Yang , W. Liu . Instability and controllability of linearly coupled oscillators: Eigenvalue analysis. Phys. Rev. E, 1998, 58(4): 4440
CrossRef ADS Google scholar
[7]
L. Huang , Q. Chen , Y. C. Lai , L. M. Pecora . Generic behavior of master-stability functions in coupled nonlinear dynamical systems. Phys. Rev. E, 2009, 80(3): 036204
CrossRef ADS Google scholar
[8]
J. A. Acebrón , L. L. Bonilla , C. J. Pérez Vicente , F. Ritort , R. Spigler . The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys., 2005, 77(1): 137
CrossRef ADS Google scholar
[9]
E. Ott , T. M. Antonsen . Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 2008, 18(3): 037113
CrossRef ADS Google scholar
[10]
K.Kaneko, Theory and Application of Coupled Map Lattice, Wiley, Chichester, 1993
[11]
D. J. Watts , S. H. Strogatz . Collective dynamics of “small-world” networks. Nature, 1998, 393(6684): 440
CrossRef ADS Google scholar
[12]
A. L. Barabási , R. Albert . Emergence of scaling in random networks. Science, 1999, 286(5439): 509
CrossRef ADS Google scholar
[13]
M.E. J. Newman, Networks: An Introduction, Oxford University Press, 2010
[14]
S. Boccaletti , V. Latora , Y. Moreno , M. Chavez , D. U. Hwang . Complex networks: Structure and dynamics. Phys. Rep., 2006, 424(4−5): 175
CrossRef ADS Google scholar
[15]
A. Arenas , A. Diaz-Guilera , J. Kurths , Y. Moreno , C. S. Zhou . Synchronization in complex networks. Phys. Rep., 2008, 469(3): 93
CrossRef ADS Google scholar
[16]
T. Wu , X. Zhang , Z. Liu . Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
CrossRef ADS Google scholar
[17]
X. Wang , G. Chen . Synchronization in small-world dynamical networks. Int. J. Bifurcat. Chaos, 2002, 12(1): 187
CrossRef ADS Google scholar
[18]
M. Barahona , L. M. Pecora . Synchronization in small-world systems. Phys. Rev. Lett., 2002, 89(5): 054101
CrossRef ADS Google scholar
[19]
T. Nishikawa , A. E. Motter , Y. C. Lai , F. C. Hoppensteadt . Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize. Phys. Rev. Lett., 2003, 91(1): 014101
CrossRef ADS Google scholar
[20]
A. Arenas , A. Díaz-Guilera , C. J. Pérez-Vicente . Synchronization reveals topological scales in complex networks. Phys. Rev. Lett., 2006, 96(11): 114102
CrossRef ADS Google scholar
[21]
D. Hansel , G. Mato , C. Meunier . Clustering and slow switching in globally coupled phase oscillators. Phys. Rev. E, 1993, 48(5): 3470
CrossRef ADS Google scholar
[22]
M. Hasler , Yu. Maistrenko , O. Popovych . Simple example of partial synchronization of chaotic systems. Phys. Rev. E, 1998, 58(5): 6843
CrossRef ADS Google scholar
[23]
Y. Zhang , G. Hu , H. A. Cerdeira , S. Chen , T. Braun , Y. Yao . Partial synchronization and spontaneous spatial ordering in coupled chaotic systems. Phys. Rev. E, 2001, 63(2): 026211
CrossRef ADS Google scholar
[24]
A. Pikovsky , O. Popovych , Yu. Maistrenko . Resolving clusters in chaotic ensembles of globally coupled identical oscillators. Phys. Rev. Lett., 2001, 87(4): 044102
CrossRef ADS Google scholar
[25]
I. A. Heisler , T. Braun , Y. Zhang , G. Hu , H. A. Cerdeira . Experimental investigation of partial synchronization in coupled chaotic oscillators. Chaos, 2003, 13(1): 185
CrossRef ADS Google scholar
[26]
C. R. S. Williams , T. E. Murphy , R. Roy , F. Sorrentino , T. Dahms , E. Schöll . Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators. Phys. Rev. Lett., 2013, 110(6): 064104
CrossRef ADS Google scholar
[27]
J. Zhang , Y. Z. Yu , X. G. Wang . Synchronization of coupled metronomes on two layers. Front. Phys., 2017, 12(6): 120508
CrossRef ADS Google scholar
[28]
M. M. Norton , N. Tompkins , B. Blanc , M. C. Cambria , J. Held , S. Fraden . Dynamics of reaction-diffusion oscillators in star and other networks with cyclic symmetries exhibiting multiple clusters. Phys. Rev. Lett., 2019, 123(14): 148301
CrossRef ADS Google scholar
[29]
H. Fan , L. W. Kong , X. G. Wang , A. Hastings , Y. C. Lai . Synchronization within synchronization: Transients and intermittency in ecological networks. Natl. Sci. Rev., 2021, 8(10): nwaa269
CrossRef ADS Google scholar
[30]
E. Rodriguez , N. George , J. P. Lachaux , J. Martinerie , B. Renault , F. J. Varela . Perception’s shadow: Long-distance synchronization of human brain activity. Nature, 1999, 397(6718): 430
CrossRef ADS Google scholar
[31]
S. Kitsunai , W. Cho , C. Sano , S. Saetia , Z. Qin , Y. Koike , M. Frasca , N. Yoshimura , L. Minati . Generation of diverse insect-like gait patterns using networks of coupled Rössler systems. Chaos, 2020, 30(12): 123132
CrossRef ADS Google scholar
[32]
J. F. Heagy , L. M. Pecora , T. L. Carroll . Short wavelength bifurcations and size instabilities in coupled oscillator systems. Phys. Rev. Lett., 1995, 774(21): 4185
CrossRef ADS Google scholar
[33]
L. M. Pecora . Synchronization conditions and desynchronizing patterns in coupled limit-cycle and chaotic systems. Phys. Rev. E, 1998, 58(1): 347
CrossRef ADS Google scholar
[34]
B. Ao , Z. G. Zheng . Partial synchronization on complex networks. Europhys. Lett., 2006, 74(2): 229
CrossRef ADS Google scholar
[35]
F. Sorrentino , E. Ott . Network synchronization of groups. Phys. Rev. E, 2007, 76(5): 056114
CrossRef ADS Google scholar
[36]
C. Fu , Z. Deng , L. Huang , X. G. Wang . Topological control of synchronous patterns in systems of networked chaotic oscillators. Phys. Rev. E, 2013, 87(3): 032909
CrossRef ADS Google scholar
[37]
C. Fu , W. Lin , L. Huang , X. G. Wang . Synchronization transition in networked chaotic oscillators: The viewpoint from partial synchronization. Phys. Rev. E, 2014, 89(5): 052908
CrossRef ADS Google scholar
[38]
L. M. Pecora , F. Sorrentino , A. M. Hagerstrom , T. E. Murphy , R. Roy . Cluster synchronization and isolated desynchronization in complex networks with symmetries. Nat. Commun., 2014, 5(1): 4079
CrossRef ADS Google scholar
[39]
M. T. Schaub , N. O’Clery , Y. N. Billeh , J. C. Delvenne , R. Lambiotte , M. Barahona . Graph partitions and cluster synchronization in networks of oscillators. Chaos, 2016, 26(9): 094821
CrossRef ADS Google scholar
[40]
F. Sorrentino , L. M. Pecora , A. M. Hagerstrom , T. E. Murphy , R. Roy . Complete characterization of the stability of cluster synchronization in complex dynamical networks. Sci. Adv., 2016, 2(4): e1501737
CrossRef ADS Google scholar
[41]
J. D. Hart , Y. Zhang , R. Roy , A. E. Motter . Topological control of synchronization pattern: Trading symmetry for stability. Phys. Rev. Lett., 2019, 122(5): 058301
CrossRef ADS Google scholar
[42]
D. M. Abrams , L. M. Pecora , A. E. Motter . Introduction to focus issue: Patterns of network synchronization. Chaos, 2016, 26(9): 094601
CrossRef ADS Google scholar
[43]
M. Golubitsky , I. Stewart . Recent advances in symmetric and network dynamics. Chaos, 2015, 25(9): 097612
CrossRef ADS Google scholar
[44]
W. Lin , H. Fan , Y. Wang , H. Ying , X. G. Wang . Controlling synchronous patterns in complex networks. Phys. Rev. E, 2016, 93(4): 042209
CrossRef ADS Google scholar
[45]
W. Lin , H. Li , H. Ying , X. G. Wang . Inducing isolated-desynchronization states in complex network of coupled chaotic oscillators. Phys. Rev. E, 2016, 94(6): 062303
CrossRef ADS Google scholar
[46]
T. Nishikawa , A. E. Motter . Network-complement transitions, symmetries, and cluster synchronization. Chaos, 2016, 26(9): 094818
CrossRef ADS Google scholar
[47]
Y. Cho , T. Nishikawa , A. E. Motter . Stable chimeras and independently synchronizable clusters. Phys. Rev. Lett., 2017, 119(8): 084101
CrossRef ADS Google scholar
[48]
B. Cao , Y. F. Wang , L. Wang , Y. Z. Yu , X. G. Wang . Cluster synchronization in complex network of coupled chaotic circuits: An experimental study. Front. Phys., 2018, 13(5): 130505
CrossRef ADS Google scholar
[49]
Y. F. Wang , L. Wang , H. Fan , X. G. Wang . Cluster synchronization in networked nonidentical chaotic oscillators. Chaos, 2019, 29(9): 093118
CrossRef ADS Google scholar
[50]
L. Wang , Y. Guo , Y. Wang , H. Fan , X. G. Wang . Pinning control of cluster synchronization in regular networks. Phys. Rev. Res., 2020, 2(2): 023084
CrossRef ADS Google scholar
[51]
Y. Long , Z. Zhai , M. Tang , Y. Liu , Y. C. Lai . Structural position vectors and symmetries in complex networks. Chaos, 2022, 32(9): 093132
CrossRef ADS Google scholar
[52]
D. M. Cardoso , C. Delorme , P. Rama . Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Combin., 2007, 28(3): 665
CrossRef ADS Google scholar
[53]
M. A. D. Aguiar , A. P. S. Dias , M. Golubitsky , M. C. A. Leite . Bifurcations from regular quotient networks: A first insight. Physica D, 2009, 238(2): 137
CrossRef ADS Google scholar
[54]
N. O’Clery , Y. Yuan , G. B. Stan , M. Barahona . Observability and coarse graining of consensus dynamics through the external equitable partition. Phys. Rev. E, 2013, 88(4): 042805
CrossRef ADS Google scholar
[55]
D. Irving , F. Sorrentino . Synchronization of dynamical hypernetworks: Dimensionality reduction through simultaneous block-diagonalization of matrices. Phys. Rev. E, 2012, 86(5): 056102
CrossRef ADS Google scholar
[56]
Y. Zhang , A. E. Motter . Symmetry-independent stability analysis of synchronization patterns. SIAM Rev., 2020, 86: 056102
[57]
Y. Zhang , A. E. Motter . Unified treatment of synchronization patterns in generalized networks with higher-order, multilayer, and temporal interactions. Commun. Phys., 2021, 4(1): 195
CrossRef ADS Google scholar
[58]
S. Panahi , N. Amaya , I. Klickstein , G. Novello , F. Sorrentino . Failure of the simultaneous block diagonalization technique applied to complete and cluster synchronization of random networks. Phys. Rev. E, 2022, 105(1): 014313
CrossRef ADS Google scholar
[59]
M.GolubitskyI.StewartD.G. Schaeffer, Singularities and Groups in Bifurcation Theory, Springer-Verlag, 1985
[60]
C. Zhou , L. Zemanová , G. Zamora , C. C. Hilgetag , J. Kurths . Hierarchical organization unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett., 2006, 97(23): 238103
CrossRef ADS Google scholar
[61]
C. Zhou , L. Zemanová , G. Zamora-López , C. C. Hilgetag , J. Kurths . Structure-function relationship in complex brain networks expressed by hierarchical synchronization. New J. Phys., 2007, 9(6): 178
CrossRef ADS Google scholar
[62]
R. Wang , P. Lin , M. Liu , Y. Wu , T. Zhou , C. Zhou . Hierarchical connectome modes and critical state jointly maximize human brain functional diversity. Phys. Rev. Lett., 2019, 123(3): 038301
CrossRef ADS Google scholar
[63]
S. Huo , C. Tian , M. Zheng , S. Guan , C. Zhou , Z. Liu . Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Natl. Sci. Rev., 2020, 8(1): nwaa125
CrossRef ADS Google scholar
[64]
M. E. J. Newman . Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA, 2006, 103(23): 8577
CrossRef ADS Google scholar
[65]
L. Huang , K. Park , Y. C. Lai , L. Yang , K. Yang . Abnormal synchronization in complex clustered networks. Phys. Rev. Lett., 2006, 97(16): 164101
CrossRef ADS Google scholar
[66]
X. G. Wang , L. Huang , Y. C. Lai , C. H. Lai . Optimization of synchronization in gradient clustered networks. Phys. Rev. E, 2007, 76(5): 056113
CrossRef ADS Google scholar
[67]
E. N. Lorenz . Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20(2): 130
CrossRef ADS Google scholar
[68]
J. L. Hindmarsh , R. M. Rose . A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B, 1984, 221(1222): 87
CrossRef ADS Google scholar
[69]
A. E. Motter , C. S. Zhou , J. Kurths . Enhancing complex-network synchronization. Europhys. Lett., 2005, 69(3): 334
CrossRef ADS Google scholar
[70]
X. G. Wang , Y. C. Lai , C. H. Lai . Enhancing synchronization based on complex gradient networks. Phys. Rev. E, 2007, 75(5): 056205
CrossRef ADS Google scholar
[71]
J. W. Scannell , G. A. P. C. Burns , C. C. Hilgetag , M. A. O’Neil , M. P. Young . The connectional organization of the cortico-thalamic system of the cat. Cereb. Cortex, 1999, 9(3): 277
CrossRef ADS Google scholar
[72]
P. Hagmann , L. Cammoun , X. Gigandet , R. Meuli , C. J. Honey , V. J. Wedeen , O. Sporns . Mapping the structural core of human cerebral cortex. PLoS Biol., 2008, 6(7): e157
CrossRef ADS Google scholar
[73]
C. J. Honey , O. Sporns , L. Cammoun , X. Gigandet , J. P. Thiran , R. Meuli , P. Hagmann . Predicting human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. USA, 2009, 106(6): 2035
CrossRef ADS Google scholar
[74]
C. Fu , H. Zhang , M. Zhan , X. Wang . Synchronous patterns in complex systems. Phys. Rev. E, 2012, 85(6): 066208
CrossRef ADS Google scholar
[75]
W. Poel , A. Zakharova , E. Schöll . Partial synchronization and partial amplitude death in mesoscale network motifs. Phys. Rev. E, 2015, 91(2): 022915
CrossRef ADS Google scholar
[76]
P. Khanra , S. Ghosh , K. Alfaro-Bittner , P. Kundu , S. Boccaletti , C. Hens , P. Pal . Identifying symmetries and predicting cluster synchronization in complex networks. Chaos Solitons Fractals, 2022, 155: 111703
CrossRef ADS Google scholar
[77]
F. B. Denton , S. J. Parke , T. Tao , X. Zhang . Eigenvectors from eigenvalues: A survey of a basic identity in linear algebra. Bull. Am. Math. Soc., 2022, 59(1): 31
CrossRef ADS Google scholar
[78]
Y. Wang , D. Zhang , L. Wang , Q. Li , H. Cao , X. G. Wang . Cluster synchronization induced by manifold deformation. Chaos, 2022, 32(9): 093139
CrossRef ADS Google scholar
[79]
J. Ma . Biophysical neurons, energy, and synapse controllability: A review. J. Zhejiang Univ. – Sci. A, 2023, 24: 109
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 12105165 and 12275165. X.G.W. was also supported by the Fundamental Research Funds for the Central Universities under Grant No. GK202202003.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7558 KB)

Accesses

Citations

Detail

Sections
Recommended

/