Dynamical-corrected nonadiabatic geometric quantum computation

Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue

PDF(4758 KB)
PDF(4758 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 61304. DOI: 10.1007/s11467-023-1322-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Dynamical-corrected nonadiabatic geometric quantum computation

Author information +
History +

Abstract

Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., σ x error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the σ z error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.

Graphical abstract

Keywords

geometric phases / dynamical-corrected gates / fault-tolerant quantum computation

Cite this article

Download citation ▾
Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue. Dynamical-corrected nonadiabatic geometric quantum computation. Front. Phys., 2023, 18(6): 61304 https://doi.org/10.1007/s11467-023-1322-2

References

[1]
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 1997, 26(5): 1484
CrossRef ADS Google scholar
[2]
L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
CrossRef ADS Google scholar
[3]
D. G. Cory, A. F. Fahmy, T. F. Havel. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5): 1634
CrossRef ADS Google scholar
[4]
N. A. Gershenfeld, I. L. Chuang. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
CrossRef ADS Google scholar
[5]
J. I. Cirac, P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
CrossRef ADS Google scholar
[6]
N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, B. Lanyon. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X, 2018, 8(2): 021012
CrossRef ADS Google scholar
[7]
L. M. Duan, B. Wang, H. J. Kimble. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A, 2005, 72(3): 032333
CrossRef ADS Google scholar
[8]
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, M. Saffman. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
CrossRef ADS Google scholar
[9]
E.KnillR. LaflammeG.J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
[10]
X.L. WangY. H. LuoH.L. HuangM.C. ChenZ.E. Su C.LiuC. ChenW.LiY.Q. FangX.Jiang J.ZhangL. LiN.L. LiuC.Y. LuJ.W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
[11]
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, J. W. Pan. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef ADS Google scholar
[12]
Q. P. Su, Y. Zhang, L. Bin, C. P. Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
CrossRef ADS Google scholar
[13]
A. Shnirman, G. Schön, Z. Hermon. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett., 1997, 79(12): 2371
CrossRef ADS Google scholar
[14]
Y. Makhlin, G. Scöhn, A. Shnirman. Josephson-junction qubits with controlled couplings. Nature, 1999, 398(6725): 305
CrossRef ADS Google scholar
[15]
Y. Nakamura, Y. A. Pashkin, J. Tsai. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398(6730): 786
CrossRef ADS Google scholar
[16]
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef ADS Google scholar
[17]
M. H. Devoret, R. J. Schoelkopf. Superconducting circuits for quantum information: an outlook. Science, 2013, 339(6124): 1169
CrossRef ADS Google scholar
[18]
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin. . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
CrossRef ADS Google scholar
[19]
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen. . Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
CrossRef ADS Google scholar
[20]
A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. Oi, V. Vedral. Geometric quantum computation. J. Mod. Opt., 2000, 47(14−15): 2501
CrossRef ADS Google scholar
[21]
P. Zanardi, M. Rasetti. Holonomic quantum computation. Phys. Lett. A, 1999, 264(2-3): 94
CrossRef ADS Google scholar
[22]
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
CrossRef ADS Google scholar
[23]
F. Wilczek, A. Zee. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 1984, 52(24): 2111
CrossRef ADS Google scholar
[24]
Y. Aharonov, J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 1987, 58(16): 1593
CrossRef ADS Google scholar
[25]
J. Anandan. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A, 1988, 133(4-5): 171
CrossRef ADS Google scholar
[26]
G. De Chiara, G. M. Palma. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett., 2003, 91(9): 090404
CrossRef ADS Google scholar
[27]
P. Solinas, P. Zanardi, N. Zanghì. Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A, 2004, 70(4): 042316
CrossRef ADS Google scholar
[28]
S. L. Zhu, Z. D. Wang, P. Zanardi. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett., 2005, 94(10): 100502
CrossRef ADS Google scholar
[29]
S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, H. Rauch. Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett., 2009, 102(3): 030404
CrossRef ADS Google scholar
[30]
J. T. Thomas, M. Lababidi, M. Tian. Robustness of single qubit geometric gate against systematic error. Phys. Rev. A, 2011, 84(4): 042335
CrossRef ADS Google scholar
[31]
P. Solinas, M. Sassetti, P. Truini, N. Zanghì. On the stability of quantum holonomic gates. New J. Phys., 2012, 14(9): 093006
CrossRef ADS Google scholar
[32]
M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, D. M. Tong. Robustness of nonadiabatic holonomic gates. Phys. Rev. A, 2012, 86(6): 062322
CrossRef ADS Google scholar
[33]
S. Berger, M. Pechal, A. A. Abdumalikov, C. Eichler, L. Steffen, A. Fedorov, A. Wallraff, S. Filipp. Exploring the effect of noise on the Berry phase. Phys. Rev. A, 2013, 87(6): 060303
CrossRef ADS Google scholar
[34]
D. M. Tong, K. Singh, L. C. Kwek, C. H. Oh. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys. Rev. Lett., 2005, 95(11): 110407
CrossRef ADS Google scholar
[35]
D. M. Tong. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett., 2010, 104(12): 120401
CrossRef ADS Google scholar
[36]
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, D. J. Wineland. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 2003, 422(6930): 412
CrossRef ADS Google scholar
[37]
C. Song, S. B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun., 2017, 8(1): 1061
CrossRef ADS Google scholar
[38]
Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, L. Sun. Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett., 2020, 124(23): 230503
CrossRef ADS Google scholar
[39]
P. Zhao, Z. Dong, Z. Zhang, G. Guo, D. Tong, Y. Yin. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron., 2021, 64(5): 250362
CrossRef ADS Google scholar
[40]
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, K. Singh. Non-adiabatic holonomic quantum computation. New J. Phys., 2012, 14(10): 103035
CrossRef ADS Google scholar
[41]
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett., 2012, 109(17): 170501
CrossRef ADS Google scholar
[42]
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, D. M. Tong. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A, 2017, 96(5): 052316
CrossRef ADS Google scholar
[43]
T. Chen, Z. Y. Xue. Nonadiabatic geometric quantum computation with parametrically tunable coupling. Phys. Rev. Appl., 2018, 10(5): 054051
CrossRef ADS Google scholar
[44]
C. Zhang, T. Chen, S. Li, X. Wang, Z. Y. Xue. High fidelity geometric gate for silicon-based spin qubits. Phys. Rev. A, 2020, 101(5): 052302
CrossRef ADS Google scholar
[45]
J. Zhou, S. Li, G. Z. Pan, G. Zhang, T. Chen, Z. Y. Xue. Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts. Phys. Rev. A, 2021, 103(3): 032609
CrossRef ADS Google scholar
[46]
T. Chen, Z. Y. Xue. High-fidelity and robust geometric quantum gates that outperform dynamical ones. Phys. Rev. Appl., 2020, 14(6): 064009
CrossRef ADS Google scholar
[47]
K. Z. Li, P. Z. Zhao, D. M. Tong. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths. Phys. Rev. Res., 2020, 2(2): 023295
CrossRef ADS Google scholar
[48]
L. N. Ji, C. Y. Ding, T. Chen, Z. Y. Xue. Noncyclic geometric quantum gates with smooth paths via invariant-based shortcuts. Adv. Quantum Technol., 2021, 4(6): 2100019
CrossRef ADS Google scholar
[49]
S. Li, J. Xue, T. Chen, Z. Y. Xue. High-fidelity geometric quantum gates with short paths on superconducting circuits. Adv. Quantum Technol., 2021, 4(5): 2000140
CrossRef ADS Google scholar
[50]
C. Y. Ding, Y. Liang, K. Z. Yu, Z. Y. Xue. Nonadiabatic geometric quantum computation with shortened path on superconducting circuits. Appl. Phys. Lett., 2021, 119(18): 184001
CrossRef ADS Google scholar
[51]
C. Y. Ding, L. N. Ji, T. Chen, Z. Y. Xue. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits. Quantum Sci. Technol., 2022, 7(1): 015012
CrossRef ADS Google scholar
[52]
T. Chen, P. Shen, Z. Y. Xue. Robust and fast holonomic quantum gates with encoding on superconducting circuits. Phys. Rev. Appl., 2020, 14(3): 034038
CrossRef ADS Google scholar
[53]
T. Chen, Z. Y. Xue, Z. Wang. Error-tolerant geometric quantum control for logical qubits with minimal resources. Phys. Rev. Appl., 2022, 18(1): 014062
CrossRef ADS Google scholar
[54]
Y. Liang, P. Shen, T. Chen, Z. Y. Xue. Composite short-path nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2022, 17(3): 034015
CrossRef ADS Google scholar
[55]
Y. Ota, Y. Kondo. Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A, 2009, 80(2): 024302
CrossRef ADS Google scholar
[56]
B. T. Torosov, N. V. Vitanov. High-fidelity error-resilient composite phase gates. Phys. Rev. A, 2014, 90(1): 012341
CrossRef ADS Google scholar
[57]
S. S. Ivanov, N. V. Vitanov. Composite two-qubit gates. Phys. Rev. A, 2015, 92(2): 022333
CrossRef ADS Google scholar
[58]
G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, D. M. Tong. Composite nonadiabatic holonomic quantum computation. Phys. Rev. A, 2017, 95(3): 032311
CrossRef ADS Google scholar
[59]
B. B. Liu, F. Q. Guo, L. L. Yan, S. Zhang, M. Feng, S. L. Su. Realization of Deutsch–Jozsa algorithm in rydberg atoms by composite nonadiabatic holonomic quantum computation with strong robustness against systematic errors. Adv. Quantum Technol., 2021, 4(11): 2100093
CrossRef ADS Google scholar
[60]
L. Viola, E. Knill, S. Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 1999, 82(12): 2417
CrossRef ADS Google scholar
[61]
G. Xu, G. Long. Protecting geometric gates by dynamical decoupling. Phys. Rev. A, 2014, 90(2): 022323
CrossRef ADS Google scholar
[62]
X. Wu, P. Z. Zhao. Universal nonadiabatic geometric gates protected by dynamical decoupling. Phys. Rev. A, 2020, 102(3): 032627
CrossRef ADS Google scholar
[63]
Z. Zhu, T. Chen, X. Yang, J. Bian, Z. Y. Xue, X. Peng. Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace. Phys. Rev. Appl., 2019, 12(2): 024024
CrossRef ADS Google scholar
[64]
K. Khodjasteh, L. Viola. Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett., 2009, 102(8): 080501
CrossRef ADS Google scholar
[65]
X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu, J. Du. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun., 2015, 6(1): 8748
CrossRef ADS Google scholar
[66]
S. Li, Z. Y. Xue. Dynamically corrected nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2021, 16(4): 044005
CrossRef ADS Google scholar
[67]
D. A. Lidar, I. L. Chuang, K. B. Whaley. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 1998, 81(12): 2594
CrossRef ADS Google scholar
[68]
P. G. Kwiat, A. J. Berglund, J. B. Altepeter, A. G. White. Experimental verification of decoherence-free subspaces. Science, 2000, 290(5491): 498
CrossRef ADS Google scholar
[69]
G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 1976, 48(2): 119
CrossRef ADS Google scholar
[70]
M. J. Liang, Z. Y. Xue. Robust nonadiabatic geometric quantum computation by dynamical correction. Phys. Rev. A, 2022, 106(1): 012603
CrossRef ADS Google scholar
[71]
M. R. Yun, F. Q. Guo, L. L. Yan, E. Liang, Y. Zhang, S. L. Su, C. X. Shan, Y. Jia. Parallel-path implementation of nonadiabatic geometric quantum gates in a decoherence-free subspace with nitrogen-vacancy centers. Phys. Rev. A, 2022, 105(1): 012611
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030326001), the National Natural Science Foundation of China (Grant No. 12275090), Guangdong Provincial Key Laboratory (Grant No. 2020B1212060066), the Quality Engineering Project of the Education Department of Anhui Province (No.2021cyxy046), the key Scientific Research Foundation of Anhui Provincial Education Department (KJ2021A0649), Outstanding Young Talents in College of Anhui Province (Grant No. gxyq2022059), and the High-Level Talent Scientific Research Starting foundation (Grant No. 2020rcjj14).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4758 KB)

Accesses

Citations

Detail

Sections
Recommended

/