Dynamical-corrected nonadiabatic geometric quantum computation
Cheng-Yun Ding, Li Chen, Li-Hua Zhang, Zheng-Yuan Xue
Dynamical-corrected nonadiabatic geometric quantum computation
Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop geometric scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop geometric and two-loop composite-pulse geometric strategies, in terms of resisting the systematic error, i.e., error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
geometric phases / dynamical-corrected gates / fault-tolerant quantum computation
[1] |
P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput., 1997, 26(5): 1484
CrossRef
ADS
Google scholar
|
[2] |
L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett., 1997, 79(2): 325
CrossRef
ADS
Google scholar
|
[3] |
D. G. Cory, A. F. Fahmy, T. F. Havel. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 1997, 94(5): 1634
CrossRef
ADS
Google scholar
|
[4] |
N. A. Gershenfeld, I. L. Chuang. Bulk spin-resonance quantum computation. Science, 1997, 275(5298): 350
CrossRef
ADS
Google scholar
|
[5] |
J. I. Cirac, P. Zoller. Quantum computations with cold trapped ions. Phys. Rev. Lett., 1995, 74(20): 4091
CrossRef
ADS
Google scholar
|
[6] |
N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, B. Lanyon. Observation of entangled states of a fully controlled 20-qubit system. Phys. Rev. X, 2018, 8(2): 021012
CrossRef
ADS
Google scholar
|
[7] |
L. M. Duan, B. Wang, H. J. Kimble. Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A, 2005, 72(3): 032333
CrossRef
ADS
Google scholar
|
[8] |
L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, M. Saffman. Demonstration of a neutral atom controlled-NOT quantum gate. Phys. Rev. Lett., 2010, 104(1): 010503
CrossRef
ADS
Google scholar
|
[9] |
E.KnillR. LaflammeG.J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
|
[10] |
X.L. WangY. H. LuoH.L. HuangM.C. ChenZ.E. Su C.LiuC. ChenW.LiY.Q. FangX.Jiang J.ZhangL. LiN.L. LiuC.Y. LuJ.W. Pan, 18-qubit entanglement with six photons’ three degrees of freedom, Phys. Rev. Lett. 120(26), 260502 (2018)
|
[11] |
H. S. Zhong, H. Wang, Y. H. Deng, M. C. Chen, L. C. Peng, Y. H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X. Y. Yang, W. J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N. L. Liu, C. Y. Lu, J. W. Pan. Quantum computational advantage using photons. Science, 2020, 370(6523): 1460
CrossRef
ADS
Google scholar
|
[12] |
Q. P. Su, Y. Zhang, L. Bin, C. P. Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
CrossRef
ADS
Google scholar
|
[13] |
A. Shnirman, G. Schön, Z. Hermon. Quantum manipulations of small Josephson junctions. Phys. Rev. Lett., 1997, 79(12): 2371
CrossRef
ADS
Google scholar
|
[14] |
Y. Makhlin, G. Scöhn, A. Shnirman. Josephson-junction qubits with controlled couplings. Nature, 1999, 398(6725): 305
CrossRef
ADS
Google scholar
|
[15] |
Y. Nakamura, Y. A. Pashkin, J. Tsai. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 1999, 398(6730): 786
CrossRef
ADS
Google scholar
|
[16] |
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, R. J. Schoelkopf. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 2007, 76(4): 042319
CrossRef
ADS
Google scholar
|
[17] |
M. H. Devoret, R. J. Schoelkopf. Superconducting circuits for quantum information: an outlook. Science, 2013, 339(6124): 1169
CrossRef
ADS
Google scholar
|
[18] |
F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin.
CrossRef
ADS
Google scholar
|
[19] |
Y. Wu, W. S. Bao, S. Cao, F. Chen, M. C. Chen.
CrossRef
ADS
Google scholar
|
[20] |
A. Ekert, M. Ericsson, P. Hayden, H. Inamori, J. A. Jones, D. K. Oi, V. Vedral. Geometric quantum computation. J. Mod. Opt., 2000, 47(14−15): 2501
CrossRef
ADS
Google scholar
|
[21] |
P. Zanardi, M. Rasetti. Holonomic quantum computation. Phys. Lett. A, 1999, 264(2-3): 94
CrossRef
ADS
Google scholar
|
[22] |
M. V. Berry. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A, 1984, 392(1802): 45
CrossRef
ADS
Google scholar
|
[23] |
F. Wilczek, A. Zee. Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett., 1984, 52(24): 2111
CrossRef
ADS
Google scholar
|
[24] |
Y. Aharonov, J. Anandan. Phase change during a cyclic quantum evolution. Phys. Rev. Lett., 1987, 58(16): 1593
CrossRef
ADS
Google scholar
|
[25] |
J. Anandan. Non-adiabatic non-Abelian geometric phase. Phys. Lett. A, 1988, 133(4-5): 171
CrossRef
ADS
Google scholar
|
[26] |
G. De Chiara, G. M. Palma. Berry phase for a spin 1/2 particle in a classical fluctuating field. Phys. Rev. Lett., 2003, 91(9): 090404
CrossRef
ADS
Google scholar
|
[27] |
P. Solinas, P. Zanardi, N. Zanghì. Robustness of non-Abelian holonomic quantum gates against parametric noise. Phys. Rev. A, 2004, 70(4): 042316
CrossRef
ADS
Google scholar
|
[28] |
S. L. Zhu, Z. D. Wang, P. Zanardi. Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett., 2005, 94(10): 100502
CrossRef
ADS
Google scholar
|
[29] |
S. Filipp, J. Klepp, Y. Hasegawa, C. Plonka-Spehr, U. Schmidt, P. Geltenbort, H. Rauch. Experimental demonstration of the stability of Berry’s phase for a spin-1/2 particle. Phys. Rev. Lett., 2009, 102(3): 030404
CrossRef
ADS
Google scholar
|
[30] |
J. T. Thomas, M. Lababidi, M. Tian. Robustness of single qubit geometric gate against systematic error. Phys. Rev. A, 2011, 84(4): 042335
CrossRef
ADS
Google scholar
|
[31] |
P. Solinas, M. Sassetti, P. Truini, N. Zanghì. On the stability of quantum holonomic gates. New J. Phys., 2012, 14(9): 093006
CrossRef
ADS
Google scholar
|
[32] |
M. Johansson, E. Sjöqvist, L. M. Andersson, M. Ericsson, B. Hessmo, K. Singh, D. M. Tong. Robustness of nonadiabatic holonomic gates. Phys. Rev. A, 2012, 86(6): 062322
CrossRef
ADS
Google scholar
|
[33] |
S. Berger, M. Pechal, A. A. Abdumalikov, C. Eichler, L. Steffen, A. Fedorov, A. Wallraff, S. Filipp. Exploring the effect of noise on the Berry phase. Phys. Rev. A, 2013, 87(6): 060303
CrossRef
ADS
Google scholar
|
[34] |
D. M. Tong, K. Singh, L. C. Kwek, C. H. Oh. Quantitative conditions do not guarantee the validity of the adiabatic approximation. Phys. Rev. Lett., 2005, 95(11): 110407
CrossRef
ADS
Google scholar
|
[35] |
D. M. Tong. Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett., 2010, 104(12): 120401
CrossRef
ADS
Google scholar
|
[36] |
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, D. J. Wineland. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature, 2003, 422(6930): 412
CrossRef
ADS
Google scholar
|
[37] |
C. Song, S. B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, H. Wang. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat. Commun., 2017, 8(1): 1061
CrossRef
ADS
Google scholar
|
[38] |
Y. Xu, Z. Hua, T. Chen, X. Pan, X. Li, J. Han, W. Cai, Y. Ma, H. Wang, Y. P. Song, Z. Y. Xue, L. Sun. Experimental implementation of universal nonadiabatic geometric quantum gates in a superconducting circuit. Phys. Rev. Lett., 2020, 124(23): 230503
CrossRef
ADS
Google scholar
|
[39] |
P. Zhao, Z. Dong, Z. Zhang, G. Guo, D. Tong, Y. Yin. Experimental realization of nonadiabatic geometric gates with a superconducting Xmon qubit. Sci. China Phys. Mech. Astron., 2021, 64(5): 250362
CrossRef
ADS
Google scholar
|
[40] |
E. Sjöqvist, D. M. Tong, L. Mauritz Andersson, B. Hessmo, M. Johansson, K. Singh. Non-adiabatic holonomic quantum computation. New J. Phys., 2012, 14(10): 103035
CrossRef
ADS
Google scholar
|
[41] |
G. F. Xu, J. Zhang, D. M. Tong, E. Sjöqvist, L. C. Kwek. Nonadiabatic holonomic quantum computation in decoherence-free subspaces. Phys. Rev. Lett., 2012, 109(17): 170501
CrossRef
ADS
Google scholar
|
[42] |
P. Z. Zhao, X. D. Cui, G. F. Xu, E. Sjöqvist, D. M. Tong. Rydberg-atom-based scheme of nonadiabatic geometric quantum computation. Phys. Rev. A, 2017, 96(5): 052316
CrossRef
ADS
Google scholar
|
[43] |
T. Chen, Z. Y. Xue. Nonadiabatic geometric quantum computation with parametrically tunable coupling. Phys. Rev. Appl., 2018, 10(5): 054051
CrossRef
ADS
Google scholar
|
[44] |
C. Zhang, T. Chen, S. Li, X. Wang, Z. Y. Xue. High fidelity geometric gate for silicon-based spin qubits. Phys. Rev. A, 2020, 101(5): 052302
CrossRef
ADS
Google scholar
|
[45] |
J. Zhou, S. Li, G. Z. Pan, G. Zhang, T. Chen, Z. Y. Xue. Nonadiabatic geometric quantum gates that are insensitive to qubit-frequency drifts. Phys. Rev. A, 2021, 103(3): 032609
CrossRef
ADS
Google scholar
|
[46] |
T. Chen, Z. Y. Xue. High-fidelity and robust geometric quantum gates that outperform dynamical ones. Phys. Rev. Appl., 2020, 14(6): 064009
CrossRef
ADS
Google scholar
|
[47] |
K. Z. Li, P. Z. Zhao, D. M. Tong. Approach to realizing nonadiabatic geometric gates with prescribed evolution paths. Phys. Rev. Res., 2020, 2(2): 023295
CrossRef
ADS
Google scholar
|
[48] |
L. N. Ji, C. Y. Ding, T. Chen, Z. Y. Xue. Noncyclic geometric quantum gates with smooth paths via invariant-based shortcuts. Adv. Quantum Technol., 2021, 4(6): 2100019
CrossRef
ADS
Google scholar
|
[49] |
S. Li, J. Xue, T. Chen, Z. Y. Xue. High-fidelity geometric quantum gates with short paths on superconducting circuits. Adv. Quantum Technol., 2021, 4(5): 2000140
CrossRef
ADS
Google scholar
|
[50] |
C. Y. Ding, Y. Liang, K. Z. Yu, Z. Y. Xue. Nonadiabatic geometric quantum computation with shortened path on superconducting circuits. Appl. Phys. Lett., 2021, 119(18): 184001
CrossRef
ADS
Google scholar
|
[51] |
C. Y. Ding, L. N. Ji, T. Chen, Z. Y. Xue. Path-optimized nonadiabatic geometric quantum computation on superconducting qubits. Quantum Sci. Technol., 2022, 7(1): 015012
CrossRef
ADS
Google scholar
|
[52] |
T. Chen, P. Shen, Z. Y. Xue. Robust and fast holonomic quantum gates with encoding on superconducting circuits. Phys. Rev. Appl., 2020, 14(3): 034038
CrossRef
ADS
Google scholar
|
[53] |
T. Chen, Z. Y. Xue, Z. Wang. Error-tolerant geometric quantum control for logical qubits with minimal resources. Phys. Rev. Appl., 2022, 18(1): 014062
CrossRef
ADS
Google scholar
|
[54] |
Y. Liang, P. Shen, T. Chen, Z. Y. Xue. Composite short-path nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2022, 17(3): 034015
CrossRef
ADS
Google scholar
|
[55] |
Y. Ota, Y. Kondo. Composite pulses in NMR as nonadiabatic geometric quantum gates. Phys. Rev. A, 2009, 80(2): 024302
CrossRef
ADS
Google scholar
|
[56] |
B. T. Torosov, N. V. Vitanov. High-fidelity error-resilient composite phase gates. Phys. Rev. A, 2014, 90(1): 012341
CrossRef
ADS
Google scholar
|
[57] |
S. S. Ivanov, N. V. Vitanov. Composite two-qubit gates. Phys. Rev. A, 2015, 92(2): 022333
CrossRef
ADS
Google scholar
|
[58] |
G. F. Xu, P. Z. Zhao, T. H. Xing, E. Sjöqvist, D. M. Tong. Composite nonadiabatic holonomic quantum computation. Phys. Rev. A, 2017, 95(3): 032311
CrossRef
ADS
Google scholar
|
[59] |
B. B. Liu, F. Q. Guo, L. L. Yan, S. Zhang, M. Feng, S. L. Su. Realization of Deutsch–Jozsa algorithm in rydberg atoms by composite nonadiabatic holonomic quantum computation with strong robustness against systematic errors. Adv. Quantum Technol., 2021, 4(11): 2100093
CrossRef
ADS
Google scholar
|
[60] |
L. Viola, E. Knill, S. Lloyd. Dynamical decoupling of open quantum systems. Phys. Rev. Lett., 1999, 82(12): 2417
CrossRef
ADS
Google scholar
|
[61] |
G. Xu, G. Long. Protecting geometric gates by dynamical decoupling. Phys. Rev. A, 2014, 90(2): 022323
CrossRef
ADS
Google scholar
|
[62] |
X. Wu, P. Z. Zhao. Universal nonadiabatic geometric gates protected by dynamical decoupling. Phys. Rev. A, 2020, 102(3): 032627
CrossRef
ADS
Google scholar
|
[63] |
Z. Zhu, T. Chen, X. Yang, J. Bian, Z. Y. Xue, X. Peng. Single-loop and composite-loop realization of nonadiabatic holonomic quantum gates in a decoherence-free subspace. Phys. Rev. Appl., 2019, 12(2): 024024
CrossRef
ADS
Google scholar
|
[64] |
K. Khodjasteh, L. Viola. Dynamically error-corrected gates for universal quantum computation. Phys. Rev. Lett., 2009, 102(8): 080501
CrossRef
ADS
Google scholar
|
[65] |
X. Rong, J. Geng, F. Shi, Y. Liu, K. Xu, W. Ma, F. Kong, Z. Jiang, Y. Wu, J. Du. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nat. Commun., 2015, 6(1): 8748
CrossRef
ADS
Google scholar
|
[66] |
S. Li, Z. Y. Xue. Dynamically corrected nonadiabatic holonomic quantum gates. Phys. Rev. Appl., 2021, 16(4): 044005
CrossRef
ADS
Google scholar
|
[67] |
D. A. Lidar, I. L. Chuang, K. B. Whaley. Decoherence-free subspaces for quantum computation. Phys. Rev. Lett., 1998, 81(12): 2594
CrossRef
ADS
Google scholar
|
[68] |
P. G. Kwiat, A. J. Berglund, J. B. Altepeter, A. G. White. Experimental verification of decoherence-free subspaces. Science, 2000, 290(5491): 498
CrossRef
ADS
Google scholar
|
[69] |
G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 1976, 48(2): 119
CrossRef
ADS
Google scholar
|
[70] |
M. J. Liang, Z. Y. Xue. Robust nonadiabatic geometric quantum computation by dynamical correction. Phys. Rev. A, 2022, 106(1): 012603
CrossRef
ADS
Google scholar
|
[71] |
M. R. Yun, F. Q. Guo, L. L. Yan, E. Liang, Y. Zhang, S. L. Su, C. X. Shan, Y. Jia. Parallel-path implementation of nonadiabatic geometric quantum gates in a decoherence-free subspace with nitrogen-vacancy centers. Phys. Rev. A, 2022, 105(1): 012611
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |