The factorization-assisted topological-amplitude approach and its applications

Qin Qin, Chao Wang, Di Wang, Si-Hong Zhou

PDF(4158 KB)
PDF(4158 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 64602. DOI: 10.1007/s11467-023-1321-3
TOPICAL REVIEW
TOPICAL REVIEW

The factorization-assisted topological-amplitude approach and its applications

Author information +
History +

Abstract

Heavy meson decays provide an important platform for studies of both QCD and electroweak dynamics, which may contain some portals to understanding of nonperturbative QCD and physics beyond the Standard Model. The factorization-assisted topological-amplitude approach was proposed to study two-body non-leptonic D meson decays, where a promising QCD inspired approach from first principles is still missing. It was also applied to B meson decays whose subleading power contributions are difficult to calculate. By factorizing topological amplitudes into short distance Wilson coefficients and long distance hadronic matrix elements either to be calculated or to be parameterized, it provides an effective framework to extract information of nonperturbative dynamics involved. With important flavor SU(3) breaking effects taken into account, the data of the decay branching ratios (and also CP asymmetries in B decays) can be fitted well. The extracted amplitudes were further applied to make predictions for other observables, such as CP asymmetries in D decays, mixing parameters in the D0D¯0 system. By this review, we will describe the formulation of the factorization-assisted topological-amplitude approach and summarize its applications in D and B meson decays and highlight some of its achievements.

Graphical abstract

Keywords

heavy meson decay / factorization-assisted topological-amplitude approach / SU(3) breaking

Cite this article

Download citation ▾
Qin Qin, Chao Wang, Di Wang, Si-Hong Zhou. The factorization-assisted topological-amplitude approach and its applications. Front. Phys., 2023, 18(6): 64602 https://doi.org/10.1007/s11467-023-1321-3

References

[1]
R. L. Workman , . [Particle Data Group] . . Review of Particle Physics. Prog. Theor. Exp. Phys., 2022, 2022: 083C01
CrossRef ADS Google scholar
[2]
R. Aaij , . [LHCb] . . Observation of CP violation in charm decays. Phys. Rev. Lett., 2019, 122(21): 211803
CrossRef ADS Google scholar
[3]
M.BenekeG.BuchallaM.NeubertC.T. Sachrajda, QCD factorization for B → ππ decays: Strong phases and CP violation in the heavy quark limit, Phys. Rev. Lett. 83(10), 1914 (1999), arXiv: hep-ph/9905312
[4]
M.BenekeM.Neubert, QCD factorization for BPP and BPV decays, Nucl. Phys. B 675(1–2), 333 (2003), arXiv: hep-ph/0308039
[5]
M.BenekeG.BuchallaM.NeubertC.T. Sachrajda, QCD factorization in B→πK, ππ decays and extraction of Wolfenstein parameters, Nucl. Phys. B 606(1–2), 245 (2001), arXiv: hep-ph/0104110
[6]
Y.Y. KeumH.N. LiA.I. Sanda, Fat penguins and imaginary penguins in perturbative QCD, Phys. Lett. B 504(1–2), 6 (2001), arXiv: hep-ph/0004004
[7]
Y.Y. KeumH.N. LiA.I. Sanda, Penguin enhancement and BKπ decays in perturbative QCD, Phys. Rev. D 63(5), 054008 (2001), arXiv: hep-ph/0004173
[8]
C.D. LüK.UkaiM.Z. Yang, Branching ratio and CP violation of B → ππ decays in the perturbative QCD approach, Phys. Rev. D 63(7), 074009 (2001), arXiv: hep-ph/0004213
[9]
C.D. LüM.Z. Yang, B→πρ, πω decays in perturbative QCD approach, Eur. Phys. J. C 23(2), 275 (2002), arXiv: hep-ph/0011238
[10]
C.W. BauerD.PirjolI.W. Stewart, Proof of factorization for BDπ, Phys. Rev. Lett. 87(20), 201806 (2001), arXiv: hep-ph/0107002
[11]
C.W. BauerD.PirjolI.W. Stewart, Soft-collinear factorization in effective field theory, Phys. Rev. D 65, 054022 (2002), arXiv: hep-ph/0109045
[12]
M.BenekeA.P. ChapovskyM.DiehlT.Feldmann, Soft-collinear effective theory and heavy-to-light currents beyond leading power, Nucl. Phys. B 643(1–3), 431 (2002), arXiv: hep-ph/0206152
[13]
H.Y. ChengS.Oh, Flavor SU(3) symmetry and QCD factorization in BPP and PV decays, J. High Energy Phys. 09, 024 (2011), arXiv: 1104.4144 [hep-ph]
[14]
H.Y. ChengC.W. Chiang, SU(3) symmetry breaking and CP violation in DPP decays, Phys. Rev. D 86(1), 014014 (2012)
[15]
H.Y. ChengC.W. Chiang, Direct CP violation in two-body hadronic charmed meson decays, Phys. Rev. D 85, 034036 (2012), arXiv: 1201.0785 [hep-ph] [Erratum: Phys. Rev. D 85, 079903 (2012)]
[16]
H. Y. Cheng , C. W. Chiang . Two-body hadronic charmed meson decays. Phys. Rev. D, 2010, 81(7): 074021
CrossRef ADS Google scholar
[17]
L. L. Chau , H. Y. Cheng . Analysis of two-body decays of charm mesons using the quark-diagram scheme. Phys. Rev. D, 1987, 36(1): 137
CrossRef ADS Google scholar
[18]
L. L. Chau , H. Y. Cheng . Quark-diagram analysis of two-body charm decays. Phys. Rev. Lett., 1986, 56(16): 1655
CrossRef ADS Google scholar
[19]
H. Y. Cheng , C. W. Chiang , A. L. Kuo . Updating BPP, VP decays in the framework of flavor symmetry. Phys. Rev. D, 2015, 91(1): 014011
CrossRef ADS Google scholar
[20]
L.L. ChauH.Y. ChengW.K. SzeH.YaoB.Tseng, Charmless nonleptonic rare decays of B mesons, Phys. Rev. D 43(7), 2176 (1991) [erratum: Phys. Rev. D 58, 019902 (1998)]
[21]
H. Y. Cheng , C. W. Chiang , A. L. Kuo . Global analysis of two-body DVP decays within the framework of flavor symmetry. Phys. Rev. D, 2016, 93(11): 114010
CrossRef ADS Google scholar
[22]
T. Huber , G. Tetlalmatzi-Xolocotzi . Estimating QCD-factorization amplitudes through SU(3) symmetry in BPP decays. Eur. Phys. J. C, 2022, 82(3): 210
CrossRef ADS Google scholar
[23]
S. Müller , U. Nierste , S. Schacht . Topological amplitudes in D decays to two pseudoscalars: A global analysis with linear SU(3)F breaking. Phys. Rev. D, 2015, 92(1): 014004
CrossRef ADS Google scholar
[24]
H. Li , C. D. Lu , F. S. Yu . Branching ratios and direct CP asymmetries in DPP decays. Phys. Rev. D, 2012, 86(3): 036012
CrossRef ADS Google scholar
[25]
Q. Qin , H. Li , C. D. Lü , F. S. Yu . Branching ratios and direct CP asymmetries in DPV decays. Phys. Rev. D, 2014, 89(5): 054006
CrossRef ADS Google scholar
[26]
S. H. Zhou , Y. B. Wei , Q. Qin , Y. Li , F. S. Yu , C. D. Lu . Analysis of two-body charmed B meson decays in factorization-assisted topological-amplitude approach. Phys. Rev. D, 2015, 92(9): 094016
CrossRef ADS Google scholar
[27]
S. H. Zhou , Q. A. Zhang , W. R. Lyu , C. D. Lü . Analysis of charmless two-body B decays in factorization-assisted topological-amplitude approach. Eur. Phys. J. C, 2017, 77(2): 125
CrossRef ADS Google scholar
[28]
H. Li . Glauber gluons in annihilation amplitudes for heavy meson decays. Chin. J. Phys., 2021, 73: 649
CrossRef ADS Google scholar
[29]
H. Li , S. Mishima . Glauber gluons in spectator amplitudes for B → πM decays. Phys. Rev. D, 2014, 90(7): 074018
CrossRef ADS Google scholar
[30]
J. Beringer , . [Particle Data Group] . . Review of particle physics. Phys. Rev. D, 2012, 86(1): 010001
CrossRef ADS Google scholar
[31]
P. U. E. Onyisi , . [CLEO] . . Improved measurement of absolute hadronic branching fractions of the Ds+ meson. Phys. Rev. D, 2013, 88(3): 032009
CrossRef ADS Google scholar
[32]
M. Ablikim , . [BESIII] . . Measurement of the branching fractions of Ds+→η′X and Ds+→η′ρ+ in e+e−→Ds+Ds−. Phys. Lett. B, 2015, 750: 466
CrossRef ADS Google scholar
[33]
H.Y. JiangF.S. YuQ.QinH.LiC.D. Lü, D0−D¯0 mixing parameter y in the factorization-assisted topological-amplitude approach, Chin. Phys. C 42(6), 063101 (2018)
[34]
M. Ablikim , . [BESIII] . . Measurements of absolute branching fractions for D mesons decays into two pseudoscalar mesons. Phys. Rev. D, 2018, 97(7): 072004
CrossRef ADS Google scholar
[35]
Y. Guan , . [Belle] . . Measurement of branching fractions and CP asymmetries for Ds+→K+(η,π0) and Ds+→π+(η,π0) decays at Belle. Phys. Rev. D, 2021, 103(11): 112005
CrossRef ADS Google scholar
[36]
Y. S. Amhis , . [HFLAV] . . Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018. Eur. Phys. J. C, 2021, 81(3): 226
CrossRef ADS Google scholar
[37]
M. Saur , F. S. Yu . Charm CPV: Observation and prospects. Sci. Bull. (Beijing), 2020, 65(17): 1428
CrossRef ADS Google scholar
[38]
R. Aaij , . [LHCb] . . Evidence for CP violation in time-integrated D0hh+ decay rates. Phys. Rev. Lett., 2012, 108(11): 111602
CrossRef ADS Google scholar
[39]
H. Y. Cheng , C. W. Chiang . Revisiting CP violation in DPP and VP decays. Phys. Rev. D, 2019, 100(9): 093002
CrossRef ADS Google scholar
[40]
D. Wang . From topological amplitude to rescattering dynamics. J. High Energy Phys., 2022, 2022(3): 155
CrossRef ADS Google scholar
[41]
M.ChalaA.LenzA.V. RusovJ.Scholtz, ΔACP within the Standard Model and beyond, J. High Energy Phys. 2019(7), 161 (2019)
[42]
A. Dery , Y. Nir . Implications of the LHCb discovery of CP violation in charm decays. J. High Energy Phys., 2019, 2019(12): 104
CrossRef ADS Google scholar
[43]
L.CalibbiT.LiY.LiB.Zhu, Simple model for large CP violation in charm decays, B-physics anomalies, muon g-2, and dark matter, J. High Energy Phys. 10, 070 (2020), arXiv: 1912.02676 [hep-ph]
[44]
H.N. LiC.D. LüF.S. Yu, Implications on the first observation of charm CPV at LHCb, arXiv: 1903.10638 [hep-ph] (2019)
[45]
D.WangF.S. YuH.N. Li, CP asymmetries in charm decays into neutral kaons, Phys. Rev. Lett. 119(18), 181802 (2017)
[46]
Q. He , . [CLEO] . . Comparison of D→KS0π and D→KL0π decay rates. Phys. Rev. Lett., 2008, 100(9): 091801
CrossRef ADS Google scholar
[47]
M. Ablikim , . [BESIII] . . Measurements of absolute branching fractions of D0→KL0ϕ,KL0η,KL0ω, and KL0η′. Phys. Rev. D, 2022, 105(9): 092010
CrossRef ADS Google scholar
[48]
D.WangF.S. YuP.F. GuoH.Y. Jiang, KS0−KL0 asymmetries in D-meson decays, Phys. Rev. D 95(7), 073007 (2017)
[49]
B. Bhattacharya , J. L. Rosner . Charmed meson decays to two pseudoscalars. Phys. Rev. D, 2010, 81(1): 014026
CrossRef ADS Google scholar
[50]
D. N. Gao . Asymmetries from the interference between Cabibbo-favored and doubly-Cabibbo-suppressed D meson decays. Phys. Rev. D, 2015, 91(1): 014019
CrossRef ADS Google scholar
[51]
H. Y. Cheng , C. W. Chiang . Long-distance contributions to D0−D¯0 mixing parameters. Phys. Rev. D, 2010, 81(11): 114020
CrossRef ADS Google scholar
[52]
M. Gronau , J. L. Rosner . Revisiting D0−D¯0 mixing using U-spin. Phys. Rev. D, 2012, 86(11): 114029
CrossRef ADS Google scholar
[53]
H.N. LiH.UmeedaF.XuF.S. Yu, D meson mixing as an inverse problem, Phys. Lett. B 810, 135802 (2020)
[54]
H. Li . Dispersive analysis of neutral meson mixing. Phys. Rev. D, 2023, 107(5): 054023
CrossRef ADS Google scholar
[55]
C. Wang , S. H. Zhou , Y. Li , C. D. Lu . Global analysis of charmless B decays into two vector mesons in soft-collinear effective theory. Phys. Rev. D, 2017, 96(7): 073004
CrossRef ADS Google scholar
[56]
C.W. ChiangE.Senaha, Updated analysis of two-body charmed B meson decays, Phys. Rev. D 75(7), 074021 (2007), arXiv: hep-ph/0702007
[57]
R.H. LiC.D. LuH.Zou, B(Bs)→D(s)P,D(s)V,D(s)∗P, and D(s)∗V decays in the perturbative QCD approach, Phys. Rev. D 78(1), 014018 (2008)
[58]
H. Zou , R. H. Li , X. X. Wang , C. D. Lu . The CKM suppressed B(Bs)→D¯(s)P,D¯(s)V,D¯(s)∗P,D¯(s)∗V decays in the perturbative QCD approach. J. Phys. G, 2010, 37(1): 015002
CrossRef ADS Google scholar
[59]
J. Chai , S. Cheng , W. F. Wang . Role of Ds∗ and their contributions in BsDs hh′ decays. Phys. Rev. D, 2021, 103(9): 096016
CrossRef ADS Google scholar
[60]
M.BenekeT.Feldmann, Symmetry-breaking corrections to heavy-to-light B meson form factors at large recoil, Nucl. Phys. B 592(1–2), 3 (2001), arXiv: hep-ph/0008255
[61]
T. Huber , S. Kränkl . Two-loop master integrals for non-leptonic heavy-to-heavy decays. J. High Energy Phys., 2015, 2015(4): 140
CrossRef ADS Google scholar
[62]
G. Bell , M. Beneke , T. Huber , X. Q. Li . Two-loop current–current operator contribution to the non-leptonic QCD penguin amplitude. Phys. Lett. B, 2015, 750: 348
CrossRef ADS Google scholar
[63]
T. Huber , S. Kränkl , X. Q. Li . Two-body non-leptonic heavy-to-heavy decays at NNLO in QCD factorization. J. High Energy Phys., 2016, 2016(9): 112
CrossRef ADS Google scholar
[64]
T. Huber , J. Virto , K. K. Vos . Three-body non-leptonic heavy-to-heavy B decays at NNLO in QCD. J. High Energy Phys., 2020, 2020(11): 103
CrossRef ADS Google scholar
[65]
G.BellM.BenekeT.HuberX.Q. Li, Two-loop non-leptonic penguin amplitude in QCD factorization, J. High Energy Phys. 2020, 55 (2020), arXiv: 2002.03262 [hep-ph]
[66]
H. Li , Y. L. Shen , Y. M. Wang . Next-to-leading-order corrections to B → π form factors in kT factorization. Phys. Rev. D, 2012, 85(7): 074004
CrossRef ADS Google scholar
[67]
S.ChengY.Y. FanX.YuC.D. LüZ.J. Xiao, NLO twist-3 contributions to B → π form factors in kT factorization, Phys. Rev. D 89(9), 094004 (2014)
[68]
S. Cheng , Z. J. Xiao . Time-like pion electromagnetic form factors in kT factorization with the next-to-leading-order twist-3 contribution. Phys. Lett. B, 2015, 749: 1
CrossRef ADS Google scholar
[69]
S.ChengQ.Qin, Z → π+π, K+K: A touchstone of the perturbative QCD approach, Phys. Rev. D 99(1), 016019 (2019)
[70]
M. Beneke , V. M. Braun , Y. Ji , Y. B. Wei . Radiative leptonic decay B → γℓνℓ with subleading power corrections. J. High Energy Phys., 2018, 2018(7): 154
CrossRef ADS Google scholar
[71]
Y.M. WangY.L. Shen, Subleading power corrections to the pion−photon transition form factor in QCD, J. High Energy Phys. 2017, 37 (2017), arXiv: 1706.05680 [hep-ph]
[72]
Y. M. Wang , Y. L. Shen . Subleading-power corrections to the radiative leptonic B → γν decay in QCD. J. High Energy Phys., 2018, 2018(5): 184
CrossRef ADS Google scholar
[73]
C.D. LüY.L. ShenY.M. WangY.B. Wei, QCD calculations of B→π, K form factors with higher-twist corrections, J. High Energy Phys. 2019, 24 (2019), arXiv: 1810.00819 [hep-ph]
[74]
J. Gao , C. D. Lü , Y. L. Shen , Y. M. Wang , Y. B. Wei . Precision calculations of BV form factors from soft-collinear effective theory sum rules on the light-cone. Phys. Rev. D, 2020, 101(7): 074035
CrossRef ADS Google scholar
[75]
H.D. LiC.D. LüC.WangY.M. WangY.B. Wei, QCD calculations of radiative heavy meson decays with subleading power corrections, J. High Energy Phys. 2020, 23 (2020), arXiv: 2002.03825 [hep-ph]
[76]
Y. L. Shen , Z. T. Zou , Y. B. Wei . Subleading power corrections to the B → γν decay in the perturbative QCD approach. Phys. Rev. D, 2019, 99(1): 016004
CrossRef ADS Google scholar
[77]
Y. L. Shen , Z. T. Zou , Y. Li . Power corrections to pion transition form factor in perturbative QCD approach. Phys. Rev. D, 2019, 100(1): 016022
CrossRef ADS Google scholar
[78]
Y. L. Shen , J. Gao , C. D. Lü , Y. Miao . Power corrections to the pion transition form factor from higher-twist distribution amplitudes of a photon. Phys. Rev. D, 2019, 99(9): 096013
CrossRef ADS Google scholar
[79]
M. BenekeP. Böer, J. N. Toelstede , K. K. Vos., QED factorization of non-leptonic B decays, J. High Energy Phys. 2020, 81 (2020), arXiv: 2008.10615 [hep-ph]
[80]
M. BenekeP. Böer, G. Finauri , K. K. Vos., QED factorization of two-body non-leptonic and semi-leptonic B to charm decays, J. High Energy Phys. 2021(10), 223 (2021)
[81]
H. Y. Cheng , C. K. Chua . Revisiting charmless hadronic Bu,d decays in QCD factorization. Phys. Rev. D, 2009, 80(11): 114008
CrossRef ADS Google scholar
[82]
M.BenekeJ.RohrerD.Yang, Branching fractions, polarisation and asymmetries of BVV decays, Nucl. Phys. B 774, 64 (2007), arXiv: hep-ph/0612290
[83]
C. Wang , Q. A. Zhang , Y. Li , C. D. Lu . Charmless BsVV decays in factorization-assisted topological-amplitude approach. Eur. Phys. J. C, 2017, 77(5): 333
CrossRef ADS Google scholar
[84]
J. G. Körner , G. R. Goldstein . Quark and particle helicities in hadronic charmed particle decays. Phys. Lett. B, 1979, 89(1): 105
CrossRef ADS Google scholar
[85]
B.Aubert.[BaBar], ., Rates, polarizations, and asymmetries in charmless vector−vector B decays, arXiv: hep-ex/0303020 (2003)
[86]
K.F. Chen.[Belle], ., Measurement of branching fractions and polarization in BφK* decays, Phys. Rev. Lett. 91(20), 201801 (2003), arXiv: hep-ex/0307014
[87]
Q.QinC.WangD.WangS.H. Zhou, The factorization-assisted topological-amplitude approach and its applications, arXiv: 2111.14472 [hep-ph] (2021)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The authors would like to thank Professors Xin Liu, Zhen-Jun Xiao & Ruilin Zhu for the invitation to write a review article on the factorization-assisted topological-amplitude approach. The authors are grateful to Hsiang-Nan Li, Cai-Dian Lü and Fu-Sheng Yu for original works in innovating the FAT approach. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12005068, 12105148, 12105112, and 12105099) and the Natural Science Foundation of Jiangsu Education Committee (Grant No. 21KJB140027). A preprint has previously been published [87].

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4158 KB)

Accesses

Citations

Detail

Sections
Recommended

/