Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2

Liang Liu, Xiaolin Li, Luping Du, Xi Zhang

PDF(5476 KB)
PDF(5476 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 62304. DOI: 10.1007/s11467-023-1320-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2

Author information +
History +

Abstract

The two-dimensional (2D) bulk photovoltaic effect (BPVE) is a cornerstone for future highly efficient 2D solar cells and optoelectronics. The ferromagnetic semiconductor 2H-FeCl2 is shown to realize a new type of BPVE in which spatial inversion (P), time reversal (T), and space−time reversal (PT) symmetries are broken (PT-broken). Using density functional theory and perturbation theory, we show that 2H-FeCl2 exhibits giant photocurrents, photo-spin-currents, and photo-orbital-currents under illumination by linearly polarized light. The injection-like and shift-like photocurrents coexist and propagate in different directions. The material also demonstrates substantial photoconductance, photo-spin-conductance, and photo-orbital-conductance, with magnitudes up to 4650 (nm·μA/V2), 4620 [nm·μA/V2 /(2e)], and 6450 (nm·μA/V2 /e), respectively. Furthermore, the injection-currents, shift-spin-currents, and shift-orbital-currents can be readily switched via rotating the magnetizations of 2H-FeCl2. These results demonstrate the superior performance and intriguing control of a new type of BPVE in 2H-FeCl2.

Graphical abstract

Keywords

2D ferromagnetism / bulk photovoltaic effects / photo-spin-currents / photo-orbital-currents / nonlinear optoelectronics

Cite this article

Download citation ▾
Liang Liu, Xiaolin Li, Luping Du, Xi Zhang. Generation and modulation of multiple 2D bulk photovoltaic effects in space-time reversal asymmetric 2H-FeCl2. Front. Phys., 2023, 18(6): 62304 https://doi.org/10.1007/s11467-023-1320-4

References

[1]
W. Kraut , R. von Baltz . Anomalous bulk photovoltaic effect in ferroelectrics: A quadratic response theory. Phys. Rev. B, 1979, 19(3): 1548
CrossRef ADS Google scholar
[2]
R. von Baltz , W. Kraut . Theory of the bulk photovoltaic effect in pure crystals. Phys. Rev. B, 1981, 23(10): 5590
CrossRef ADS Google scholar
[3]
T. Choi , S. Lee , Y. J. Choi , V. Kiryukhin , S. W. Cheong . Switchable ferroelectric diode and photovoltaic effect in BiFeO3. Science, 2009, 324(5923): 63
CrossRef ADS Google scholar
[4]
S. Y. Yang , J. Seidel , S. J. Byrnes , P. Shafer , C. H. Yang , M. D. Rossell , P. Yu , Y. H. Chu , J. F. Scott , J. W. III Ager , L. W. Martin , R. Ramesh . Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol., 2010, 5(2): 143
CrossRef ADS Google scholar
[5]
D. Daranciang , M. J. Highland , H. Wen , S. M. Young , N. C. Brandt . . Ultrafast photovoltaic response in ferroelectric nanolayers. Phys. Rev. Lett., 2012, 108(8): 087601
CrossRef ADS Google scholar
[6]
J. E. Spanier , V. M. Fridkin , A. M. Rappe , A. R. Akbashev , A. Polemi , Y. Qi , Z. Gu , S. M. Young , C. J. Hawley , D. Imbrenda , G. Xiao , A. L. Bennett-Jackson , C. L. Johnson . Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics, 2016, 10(9): 611
CrossRef ADS Google scholar
[7]
Y. Zhang , T. Holder , H. Ishizuka , F. de Juan , N. Nagaosa , C. Felser , B. Yan . Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3. Nat. Commun., 2019, 10(1): 3783
CrossRef ADS Google scholar
[8]
Y. Li , J. Fu , X. Mao , C. Chen , H. Liu , M. Gong , H. Zeng . Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
CrossRef ADS Google scholar
[9]
H. Xu , H. Wang , J. Zhou , J. Li . Pure spin photocurrent in non-centrosymmetric crystals: Bulk spin photovoltaic effect. Nat. Commun., 2021, 12(1): 4330
CrossRef ADS Google scholar
[10]
H. Zeng , Y. Wen , L. Yin , R. Cheng , H. Wang , C. Liu , J. He . Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53603
CrossRef ADS Google scholar
[11]
A. M. Glass , D. von der Linde , T. J. Negran . High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett., 1974, 25(4): 233
CrossRef ADS Google scholar
[12]
G. Dalba , Y. Soldo , F. Rocca , V. M. Fridkin , P. Sainctavit . Giant bulk photovoltaic effect under linearly polarized X-ray synchrotron radiation. Phys. Rev. Lett., 1995, 74(6): 988
CrossRef ADS Google scholar
[13]
D. Xiao , M. C. Chang , Q. Niu . Berry phase effects on electronic properties. Rev. Mod. Phys., 2010, 82(3): 1959
CrossRef ADS Google scholar
[14]
R. Yu , W. Zhang , H. J. Zhang , S. C. Zhang , X. Dai , Z. Fang . Quantized anomalous Hall effect in magnetic topological insulators. Science, 2010, 329(5987): 61
CrossRef ADS Google scholar
[15]
M. Nakamura , S. Horiuchi , F. Kagawa , N. Ogawa , T. Kurumaji , Y. Tokura , M. Kawasaki . Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun., 2017, 8(1): 281
CrossRef ADS Google scholar
[16]
Y. J. Zhang , T. Ideue , M. Onga , F. Qin , R. Suzuki , A. Zak , R. Tenne , J. H. Smet , Y. Iwasa . Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes. Nature, 2019, 570(7761): 349
CrossRef ADS Google scholar
[17]
Y.DongM.M. YangM.YoshiiS.MatsuokaS.KitamuraT.HasegawaN.OgawaT.MorimotoT.IdeueY.Iwasa, Giant bulk piezophotovoltaic effect in 3R-MoS2, Nat. Nanotechnol. 18(1), 36 (2022)
[18]
D. Zhong , K. L. Seyler , X. Linpeng , R. Cheng , N. Sivadas , B. Huang , E. Schmidgall , T. Taniguchi , K. Watanabe , M. A. McGuire , W. Yao , D. Xiao , K. M. C. Fu , X. Xu . Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv., 2017, 3(5): e1603113
CrossRef ADS Google scholar
[19]
K. L. Seyler , D. Zhong , B. Huang , X. Linpeng , N. P. Wilson , T. Taniguchi , K. Watanabe , W. Yao , D. Xiao , M. A. McGuire , K. M. C. Fu , X. Xu . Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett., 2018, 18(6): 3823
CrossRef ADS Google scholar
[20]
S. Zhao , X. Li , B. Dong , H. Wang , H. Wang , Y. Zhang , Z. Han , H. Zhang . Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: Status and challenges. Rep. Prog. Phys., 2021, 84(2): 026401
CrossRef ADS Google scholar
[21]
G. Wang , X. Marie , B. L. Liu , T. Amand , C. Robert , F. Cadiz , P. Renucci , B. Urbaszek . Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett., 2016, 117(18): 187401
CrossRef ADS Google scholar
[22]
R. Schmidt , A. Arora , G. Plechinger , P. Nagler , A. Granados del Águila , M. V. Ballottin , P. C. M. Christianen , S. Michaelis de Vasconcellos , C. Schüller , T. Korn , R. Bratschitsch . Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett., 2016, 117(7): 077402
CrossRef ADS Google scholar
[23]
Y. Li , J. Ludwig , T. Low , A. Chernikov , X. Cui , G. Arefe , Y. D. Kim , A. M. van der Zande , A. Rigosi , H. M. Hill , S. H. Kim , J. Hone , Z. Li , D. Smirnov , T. F. Heinz . Valley splitting and polarization by the Zeeman effect in monolayer MoSe2. Phys. Rev. Lett., 2014, 113(26): 266804
CrossRef ADS Google scholar
[24]
A. Srivastava , M. Sidler , A. V. Allain , D. S. Lembke , A. Kis , A. Imamoğlu . Valley Zeeman effect in elementary optical excitations of monolayer WSe2. Nat. Phys., 2015, 11(2): 141
CrossRef ADS Google scholar
[25]
G. Aivazian , Z. Gong , A. M. Jones , R. L. Chu , J. Yan , D. G. Mandrus , C. Zhang , D. Cobden , W. Yao , X. Xu . Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys., 2015, 11(2): 148
CrossRef ADS Google scholar
[26]
D. MacNeill , C. Heikes , K. F. Mak , Z. Anderson , A. Kormányos , V. Zólyomi , J. Park , D. C. Ralph . Breaking of valley degeneracy by magnetic field in monolayer MoSe2. Phys. Rev. Lett., 2015, 114(3): 037401
CrossRef ADS Google scholar
[27]
C. Gong , L. Li , Z. Li , H. Ji , A. Stern , Y. Xia , T. Cao , W. Bao , C. Wang , Y. Wang , Z. Q. Qiu , R. J. Cava , S. G. Louie , J. Xia , X. Zhang . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef ADS Google scholar
[28]
B. Huang , G. Clark , E. Navarro-Moratalla , D. R. Klein , R. Cheng , K. L. Seyler , D. Zhong , E. Schmidgall , M. A. McGuire , D. H. Cobden , W. Yao , D. Xiao , P. Jarillo-Herrero , X. Xu . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[29]
K. S. Burch , D. Mandrus , J. G. Park . Magnetism in two-dimensional van der Waals materials. Nature, 2018, 563(7729): 47
CrossRef ADS Google scholar
[30]
L.LiuS.ChenZ.LinX.Zhang, A symmetry-breaking phase in two-dimensional FeTe2 with ferromagnetism above room temperature, J. Phys. Chem. Lett. 11(18), 7893 (2020)
[31]
Y. Deng , Y. Yu , Y. Song , J. Zhang , N. Z. Wang , Z. Sun , Y. Yi , Y. Z. Wu , S. Wu , J. Zhu , J. Wang , X. H. Chen , Y. Zhang . Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
CrossRef ADS Google scholar
[32]
C. Huang , J. Feng , F. Wu , D. Ahmed , B. Huang , H. Xiang , K. Deng , E. Kan . Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Am. Chem. Soc., 2018, 140(36): 11519
CrossRef ADS Google scholar
[33]
S. Zheng , C. Huang , T. Yu , M. Xu , S. Zhang , H. Xu , Y. Liu , E. Kan , Y. Wang , G. Yang . High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy. J. Phys. Chem. Lett., 2019, 10(11): 2733
CrossRef ADS Google scholar
[34]
H. Wang , X. Qian . Electrically and magnetically switchable nonlinear photocurrent in PT-symmetric magnetic topological quantum materials. npj Comput. Mater., 2020, 6: 199
CrossRef ADS Google scholar
[35]
L. Liu , W. Liu , B. Cheng , B. Cui , J. Hu . Switchable giant bulk photocurrents and photo-spin-currents in monolayer PT-symmetric antiferromagnet MnPSe3. J. Phys. Chem. Lett., 2023, 14(2): 370
CrossRef ADS Google scholar
[36]
J. Jiang , Z. Chen , Y. Hu , Y. Xiang , L. Zhang , Y. Wang , G. C. Wang , J. Shi . Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol., 2021, 16(8): 894
CrossRef ADS Google scholar
[37]
C. Zhang , P. Guo , J. Zhou . Tailoring bulk photovoltaic effects in magnetic sliding ferroelectric materials. Nano Lett., 2022, 22(23): 9297
CrossRef ADS Google scholar
[38]
G.KresseJ.Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B 48(17), 13115 (1993)
[39]
G. Kresse , J. Furthmuller . Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6(1): 15
CrossRef ADS Google scholar
[40]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[41]
H. J. Monkhorst , J. D. Pack . Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[42]
C. Franchini , R. Kovacik , M. Marsman , S. S. Murthy , J. He , C. Ederer , G. Kresse . Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: An efficient route to construct ab initio tight-binding parameters for eg perovskites. J. Phys.: Cond. Matter, 2012, 24: 235602
CrossRef ADS Google scholar
[43]
G. Pizzi , V. Vitale , R. Arita , S. Blügel , F. Freimuth . . Wannier90 as a community code: New features and applications. J. Phys.: Conden. Matter, 2020, 32: 165902
CrossRef ADS Google scholar
[44]
A. A. Mostofi , J. R. Yates , G. Pizzi , Y. S. Lee , I. Souza , D. Vanderbilt , N. Marzari . An updated version of Wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun., 2014, 185(8): 2309
CrossRef ADS Google scholar
[45]
A. R. Beal , H. P. Hughes . Kramers−Kronig analysis of the reflectivity spectra of 2H-MoS2, 2H-MoSe2 and 2H-MoTe2. J. Phys. C, 1979, 12(5): 881
CrossRef ADS Google scholar
[46]
A. Splendiani , L. Sun , Y. Zhang , T. Li , J. Kim , C. Y. Chim , G. Galli , F. Wang . Emerging photoluminescence in monolayer MoS2. Nano Lett., 2010, 10(4): 1271
CrossRef ADS Google scholar
[47]
Y. Li , H. Wang , L. Xie , Y. Liang , G. Hong , H. Dai . MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc., 2011, 133(19): 7296
CrossRef ADS Google scholar
[48]
C. Huang , S. Wu , A. M. Sanchez , J. J. P. Peters , R. Beanland , J. S. Ross , P. Rivera , W. Yao , D. H. Cobden , X. Xu . Lateral heterojunctions within monolayer MoSe2–WSe2 semiconductors. Nat. Mater., 2014, 13(12): 1096
CrossRef ADS Google scholar
[49]
X. Wang , Y. Gong , G. Shi , W. L. Chow , K. Keyshar , G. Ye , R. Vajtai , J. Lou , Z. Liu , E. Ringe , B. K. Tay , P. M. Ajayan . Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano, 2014, 8(5): 5125
CrossRef ADS Google scholar
[50]
C. Ruppert , O. B. Aslan , T. F. Heinz . Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett., 2014, 14(11): 6231
CrossRef ADS Google scholar
[51]
L. Liu , Z. Lin , J. Hu , X. Zhang . Full quantum search for high Tc two-dimensional van der Waals ferromagnetic semiconductors. Nanoscale, 2021, 13(17): 8137
CrossRef ADS Google scholar
[52]
X. Mu , J. Zhou . Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials. npj Comput. Mater., 2021, 7: 61
CrossRef ADS Google scholar
[53]
X. Zhu , Y. Chen , Z. Liu , Y. Han , Z. Qiao . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2022, 18(2): 23302
CrossRef ADS Google scholar
[54]
G. Zheng , S. Qu , W. Zhou , F. Ouyang . Janus monolayer TaNF: A new ferrovalley material with large valley splitting and tunable magnetic properties. Front. Phys., 2023, 18(5): 53302
CrossRef ADS Google scholar
[55]
J.Ibañez-AzpirozS.S. TsirkinI.Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation, Phys. Rev. B 97(24), 245143 (2018)
[56]
H. Watanabe , Y. Yanase . Chiral photocurrent in parity-violating magnet and enhanced response in topological antiferromagnet. Phys. Rev. X, 2021, 11(1): 011001
CrossRef ADS Google scholar
[57]
D. Go , D. Jo , C. Kim , H. W. Lee . Intrinsic spin and orbital Hall effects from orbital texture. Phys. Rev. Lett., 2018, 121(8): 086602
CrossRef ADS Google scholar
[58]
T. P. Cysne , M. Costa , L. M. Canonico , M. B. Nardelli , R. B. Muniz , T. G. Rappoport . Disentangling orbital and valley Hall effects in bilayers of transition metal dichalcogenides. Phys. Rev. Lett., 2021, 126(5): 056601
CrossRef ADS Google scholar
[59]
H. Wang , C. Zhang , F. Rana . Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2. Nano Lett., 2015, 15(12): 8204
CrossRef ADS Google scholar
[60]
D.LuL.LiuY.MaK.YangH.Wu, A unique electronic state in a ferromagnetic semiconductor FeCl2 monolayer, J. Mater. Chem. C 10(20), 8009 (2022)

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52275565 and 62075139), the Natural Science Foundation of Shandong Province (No. ZR2022QA019), the Natural Science Foundation of Guangdong (No. 2022A1515011667), the Youth Talent Fund of Guangdong Province (No. 2023A1515030292), Shenzhen Foundation Research Key Project (No. JCYJ20200109114244249), and Shenzhen Science and Technology Innovation Commission (No. RCJC20200714114435063).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5476 KB)

Accesses

Citations

Detail

Sections
Recommended

/