Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices

Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang

PDF(7970 KB)
PDF(7970 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 61302. DOI: 10.1007/s11467-023-1319-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices

Author information +
History +

Abstract

Motivated by recent realizations of two-dimensional (2D) superconducting-qubit lattices, we propose a protocol to simulate Hofstadter butterfly with synthetic gauge fields in superconducting circuits. Based on the existing 2D superconducting-qubit lattices, we construct a generalized Hofstadter model on zigzag lattices, which has a fractal energy spectrum similar to the original Hofstadter butterfly. By periodically modulating the resonant frequencies of qubits, we engineer a synthetic gauge field to mimic the generalized Hofstadter Hamiltonian. A spectroscopic method is used to demonstrate the Hofstadter butterfly from the time evolutions of experimental observables. We numerically simulate the dynamics of the system with realistic parameters, and the results show a butterfly spectrum clearly. Our proposal provides a promising way to realize the Hofstadter butterfly on the latest 2D superconducting-qubit lattices and will stimulate the quantum simulation of novel properties induced by magnetic fields in superconducting circuits.

Graphical abstract

Keywords

quantum simulation / superconducting circuits / superconducting qubit / quantum computation

Cite this article

Download citation ▾
Wei Feng, Dexi Shao, Guo-Qiang Zhang, Qi-Ping Su, Jun-Xiang Zhang, Chui-Ping Yang. Quantum simulation of Hofstadter butterfly with synthetic gauge fields on two-dimensional superconducting-qubit lattices. Front. Phys., 2023, 18(6): 61302 https://doi.org/10.1007/s11467-023-1319-x

References

[1]
R.P. Feynman, Simulating physics with computers, Int. J. Theor. Phys. 21(6−7), 467 (1982)
[2]
I. M. Georgescu , S. Ashhab , F. Nori . Quantum simulation. Rev. Mod. Phys., 2014, 86(1): 153
CrossRef ADS Google scholar
[3]
I. Buluta , F. Nori . Quantum simulators. Science, 2009, 326(5949): 108
CrossRef ADS Google scholar
[4]
S. Somaroo , C. H. Tseng , T. F. Havel , R. Laflamme , D. G. Cory . Quantum simulations on a quantum computer. Phys. Rev. Lett., 1999, 82(26): 5381
CrossRef ADS Google scholar
[5]
J. Simon , W. S. Bakr , R. Ma , M. E. Tai , P. M. Preiss , M. Greiner . Quantum simulation of antiferromagnetic spin chains in an optical lattice. Nature, 2011, 472(7343): 307
CrossRef ADS Google scholar
[6]
I. Bloch , J. Dalibard , S. Nascimbene . Quantum simulations with ultracold quantum gases. Nat. Phys., 2012, 8(4): 267
CrossRef ADS Google scholar
[7]
K. Kim , M. S. Chang , S. Korenblit , R. Islam , E. E. Edwards , J. K. Freericks , G. D. Lin , L. M. Duan , C. Monroe . Quantum simulation of frustrated Ising spins with trapped ions. Nature, 2010, 465(7298): 590
CrossRef ADS Google scholar
[8]
D. R. Hofstadter . Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B, 1976, 14(6): 2239
CrossRef ADS Google scholar
[9]
C. R. Dean , L. Wang , P. Maher , C. Forsythe , F. Ghahari , Y. Gao , J. Katoch , M. Ishigami , P. Moon , M. Koshino , T. Taniguchi , K. Watanabe , K. L. Shepard , J. Hone , P. Kim . Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature, 2013, 497(7451): 598
CrossRef ADS Google scholar
[10]
L. A. Ponomarenko , R. V. Gorbachev , G. L. Yu , D. C. Elias , R. Jalil , A. A. Patel , A. Mishchenko , A. S. Mayorov , C. R. Woods , J. R. Wallbank , M. Mucha-Kruczynski , B. A. Piot , M. Potemski , I. V. Grigorieva , K. S. Novoselov , F. Guinea , V. I. Fal’ko , A. K. Geim . Cloning of Dirac fermions in graphene superlattices. Nature, 2013, 497(7451): 594
CrossRef ADS Google scholar
[11]
B. Hunt , J. D. Sanchez-Yamagishi , A. F. Young , M. Yankowitz , B. J. LeRoy , K. Watanabe , T. Taniguchi , P. Moon , M. Koshino , P. Jarillo-Herrero , R. C. Ashoori . Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science, 2013, 340(6139): 1427
CrossRef ADS Google scholar
[12]
Q. S. Wu , J. Liu , Y. Guan , O. V. Yazyev . Landau levels as a probe for band topology in graphene moiré superlattices. Phys. Rev. Lett., 2021, 126(5): 056401
CrossRef ADS Google scholar
[13]
A. V. Rozhkov , A. O. Sboychakov , A. L. Rakhmanov , F. Nori . Electronic properties of graphene-based bilayer systems. Phys. Rep., 2016, 648: 1
CrossRef ADS Google scholar
[14]
J. Dalibard , F. Gerbier , G. Juzeliunas , P. Öhberg . Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 2011, 83(4): 1523
CrossRef ADS Google scholar
[15]
V. Galitski , I. B. Spielman . Spin‒orbit coupling in quantum gases. Nature, 2013, 494(7435): 49
CrossRef ADS Google scholar
[16]
F. Gerbier , J. Dalibard . Gauge fields for ultracold atoms in optical superlattices. New J. Phys., 2010, 12(3): 033007
CrossRef ADS Google scholar
[17]
J. Cho , D. G. Angelakis , S. Bose . Fractional quantum Hall state in coupled cavities. Phys. Rev. Lett., 2008, 101(24): 246809
CrossRef ADS Google scholar
[18]
R. O. Umucalılar , I. Carusotto . Artificial gauge field for photons in coupled cavity arrays. Phys. Rev. A, 2011, 84(4): 043804
CrossRef ADS Google scholar
[19]
P. Roushan , C. Neill , A. Megrant , Y. Chen , R. Babbush , R. Barends , B. Campbell , Z. Chen , B. Chiaro , A. Dunsworth , A. Fowler , E. Jeffrey , J. Kelly , E. Lucero , J. Mutus , P. J. J. O’Malley , M. Neeley , C. Quintana , D. Sank , A. Vainsencher , J. Wenner , T. White , E. Kapit , H. Neven , J. Martinis . Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys., 2017, 13(2): 146
CrossRef ADS Google scholar
[20]
J. Koch , A. A. Houck , K. L. Hur , S. M. Girvin . Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A, 2010, 82(4): 043811
CrossRef ADS Google scholar
[21]
A. Nunnenkamp , J. Koch , S. M. Girvin . Synthetic gauge fields and homodyne transmission in Jaynes‒Cummings lattices. New J. Phys., 2011, 13(9): 095008
CrossRef ADS Google scholar
[22]
D. Marcos , P. Rabl , E. Rico , P. Zoller . Superconducting circuits for quantum simulation of dynamical gauge fields. Phys. Rev. Lett., 2013, 111(11): 110504
CrossRef ADS Google scholar
[23]
Y. P. Wang , W. L. Yang , Y. Hu , Z. Y. Xue , Y. Wu . Detecting topological phases of microwave photons in a circuit quantum electrodynamics lattice. npj Quantum Inf., 2016, 2(1): 16015
CrossRef ADS Google scholar
[24]
Z. H. Yang , Y. P. Wang , Z. Y. Xue , W. L. Yang , Y. Hu , J. H. Gao , Y. Wu . Circuit quantum electrodynamics simulator of flat band physics in a Lieb lattice. Phys. Rev. A, 2016, 93(6): 062319
CrossRef ADS Google scholar
[25]
H. Alaeian , C. W. S. Chang , M. V. Moghaddam , C. M. Wilson , E. Solano , E. Rico . Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder. Phys. Rev. A, 2019, 99(5): 053834
CrossRef ADS Google scholar
[26]
Y. J. Zhao , X. W. Xu , H. Wang , Y. X. Liu , W. M. Liu . Vortex‒Meissner phase transition induced by a two-tone-drive-engineered artificial gauge potential in the fermionic ladder constructed by superconducting qubit circuits. Phys. Rev. A, 2020, 102(5): 053722
CrossRef ADS Google scholar
[27]
X. Guan , Y. L. Feng , Z. Y. Xue , G. Chen , S. T. Jia . Synthetic gauge field and chiral physics on two-leg superconducting circuits. Phys. Rev. A, 2020, 102(3): 032610
CrossRef ADS Google scholar
[28]
D. Jaksch , P. Zoller . Creation of effective magnetic fields in optical lattices: The Hofstadter butterfly for cold neutral atoms. New J. Phys., 2003, 5: 56
CrossRef ADS Google scholar
[29]
T. Graß , C. Muschik , A. Celi , R. W. Chhajlany , M. Lewenstein . Synthetic magnetic fluxes and topological order in one-dimensional spin systems. Phys. Rev. A, 2015, 91(6): 063612
CrossRef ADS Google scholar
[30]
R. Banerjee , T. C. H. Liew , O. Kyriienko . Realization of Hofstadter’s butterfly and a one-way edge mode in a polaritonic system. Phys. Rev. B, 2018, 98(7): 075412
CrossRef ADS Google scholar
[31]
M. Aidelsburger , M. Atala , M. Lohse , J. T. Barreiro , B. Paredes , I. Bloch . Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185301
CrossRef ADS Google scholar
[32]
H. Miyake , G. A. Siviloglou , C. J. Kennedy , W. C. Burton , W. Ketterle . Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett., 2013, 111(18): 185302
CrossRef ADS Google scholar
[33]
J. Q. You , F. Nori . Atomic physics and quantum optics using superconducting circuits. Nature, 2011, 474(7353): 589
CrossRef ADS Google scholar
[34]
X.GuA.F. KockumA.MiranowiczY.LiuF.Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
[35]
J. Clarke , F. K. Wilhelm . Superconducting quantum bits. Nature, 2008, 453(7198): 1031
CrossRef ADS Google scholar
[36]
P. J. J. O’Malley , R. Babbush , I. D. Kivlichan , J. Romero , J. R. McClean . . Scalable quantum simulation of molecular energies. Phys. Rev. X, 2016, 6(3): 031007
CrossRef ADS Google scholar
[37]
K. Xu , J. J. Chen , Y. Zeng , Y. R. Zhang , C. Song , W. Liu , Q. Guo , P. Zhang , D. Xu , H. Deng , K. Huang , H. Wang , X. Zhu , D. Zheng , H. Fan . Emulating many-body localization with a superconducting quantum processor. Phys. Rev. Lett., 2018, 120(5): 050507
CrossRef ADS Google scholar
[38]
W. Feng , G. Q. Zhang , Q. P. Su , J. X. Zhang , C. P. Yang . Generation of Greenberger‒Horne‒Zeilinger states on two-dimensional superconducting-qubit lattices via parallel multiqubit-gate operations. Phys. Rev. Appl., 2022, 18(6): 064036
CrossRef ADS Google scholar
[39]
Q. P. Su , Y. Zhang , L. Bin , C. P. Yang . Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics. Front. Phys., 2022, 17(5): 53505
CrossRef ADS Google scholar
[40]
T. Liu , B. Q. Guo , Y. H. Zhou , J. L. Zhao , Y. L. Fang , Q. C. Wu , C. P. Yang . Transfer of quantum entangled states between superconducting qubits and microwave field qubits. Front. Phys., 2022, 17(6): 61502
CrossRef ADS Google scholar
[41]
Q. P. Su , H. Zhang , C. P. Yang . Transferring quantum entangled states between multiple single-photonstate qubits and coherent-state qubits in circuit QED. Front. Phys., 2021, 16(6): 61501
CrossRef ADS Google scholar
[42]
T. Liu , Z. F. Zheng , Y. Zhang , Y. L. Fang , C. P. Yang . Transferring entangled states of photonic cat-state qubits in circuit QED. Front. Phys., 2020, 15(2): 21603
CrossRef ADS Google scholar
[43]
F. Arute , K. Arya , R. Babbush , D. Bacon , J. C. Bardin . . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574(7779): 505
CrossRef ADS Google scholar
[44]
M. Gong , S. Wang , C. Zha , M. C. Chen , H. L. Huang . . Quantum walks on a programmable two-dimensional 62-qubit superconducting processor. Science, 2021, 372(6545): 948
CrossRef ADS Google scholar
[45]
Y. Wu , W. S. Bao , S. Cao , F. Chen , M. C. Chen . . Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(18): 180501
CrossRef ADS Google scholar
[46]
X. Zhang , W. Jiang , J. Deng , K. Wang , J. Chen , P. Zhang , W. Ren , H. Dong , S. Xu , Y. Gao , F. Jin , X. Zhu , Q. Guo , H. Li , C. Song , A. V. Gorshkov , T. Iadecola , F. Liu , Z. X. Gong , Z. Wang , D. L. Deng , H. Wang . Digital quantum simulation of Floquet symmetry protected topological phases. Nature, 2022, 607(7919): 468
CrossRef ADS Google scholar
[47]
W. Ren , W. Li , S. Xu , K. Wang , W. Jiang , F. Jin , X. Zhu , J. Chen , Z. Song , P. Zhang , H. Dong , X. Zhang , J. Deng , Y. Gao , C. Zhang , Y. Wu , B. Zhang , Q. Guo , H. Li , Z. Wang , J. Biamonte , C. Song , D. L. Deng , H. Wang . Experimental quantum adversarial learning with programmable superconducting qubits. Nat. Comput. Sci., 2022, 2(11): 711
CrossRef ADS Google scholar
[48]
W. Liu , W. Feng , W. Ren , D. W. Wang , H. Wang . Synthesizing three-body interaction of spin chirality with superconducting qubits. Appl. Phys. Lett., 2020, 116(11): 114001
CrossRef ADS Google scholar
[49]
W. Ren , W. Liu , C. Song , H. Li , Q. Guo , Z. Wang , D. Zheng , G. S. Agarwal , M. O. Scully , S. Y. Zhu , H. Wang , D. W. Wang . Simultaneous excitation of two noninteracting atoms with time-frequency correlated photon pairs in a superconducting circuit. Phys. Rev. Lett., 2020, 125(13): 133601
CrossRef ADS Google scholar
[50]
Q. Guo , C. Cheng , H. Li , S. Xu , P. Zhang , Z. Wang , C. Song , W. Liu , W. Ren , H. Dong , R. Mondaini , H. Wang . Stark many-body localization on a superconducting quantum processor. Phys. Rev. Lett., 2021, 127(24): 240502
CrossRef ADS Google scholar
[51]
Y. Ye , Z. Y. Ge , Y. Wu , S. Wang , M. Gong , Y. R. Zhang , Q. Zhu , R. Yang , S. Li , F. Liang , J. Lin , Y. Xu , C. Guo , L. Sun , C. Cheng , N. Ma , Z. Y. Meng , H. Deng , H. Rong , C. Y. Lu , C. Z. Peng , H. Fan , X. Zhu , J. W. Pan . Propagation and localization of collective excitations on a 24-qubit superconducting processor. Phys. Rev. Lett., 2019, 123(5): 050502
CrossRef ADS Google scholar
[52]
A. J. Kollár , M. Fitzpatrick , A. A. Houck . Hyperbolic lattices in circuit quantum electrodynamics. Nature, 2019, 571(7763): 45
CrossRef ADS Google scholar
[53]
P. G. Harper . Single band motion of conduction electrons in a uniform magnetic field. Proc. Phys. Soc. A, 1955, 68(10): 874
CrossRef ADS Google scholar
[54]
K. K. Das , J. Christ . Realizing the Harper model with ultracold atoms in a ring lattice. Phys. Rev. A, 2019, 99(1): 013604
CrossRef ADS Google scholar
[55]
P. Roushan , C. Neill , J. Tangpanitanon , V. M. Bastidas , A. Megrant , R. Barends , Y. Chen , Z. Chen , B. Chiaro , A. Dunsworth , A. Fowler , B. Foxen , M. Giustina , E. Jeffrey , J. Kelly , E. Lucero , J. Mutus , M. Neeley , C. Quintana , D. Sank , A. Vainsencher , J. Wenner , T. White , H. Neven , D. G. Angelakis , J. Martinis . Spectroscopic signatures of localization with interacting photons in superconducting qubits. Science, 2017, 358(6367): 1175
CrossRef ADS Google scholar
[56]
F. Beaudoin , M. P. da Silva , Z. Dutton , A. Blais . First-order sidebands in circuit QED using qubit frequency modulation. Phys. Rev. A, 2012, 86(2): 022305
CrossRef ADS Google scholar
[57]
J.D. StrandM.WareF.BeaudoinT.A. OhkiB.R. JohnsonA.BlaisB.L. T. Plourde, First-order sideband transitions with flux-driven asymmetric transmon qubits, Phys. Rev. B 87, 220505(R) (2013)
[58]
X. Li , Y. Ma , J. Han , T. Chen , Y. Xu , W. Cai , H. Wang , Y. P. Song , Z. Y. Xue , Z. Q. Yin , L. Sun . Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings. Phys. Rev. Appl., 2018, 10(5): 054009
CrossRef ADS Google scholar
[59]
C. Senko , J. Smith , P. Richerme , A. Lee , W. C. Campbell , C. Monroe . Coherent imaging spectroscopy of a quantum many-body spin system. Science, 2014, 345(6195): 430
CrossRef ADS Google scholar
[60]
P. Jurcevic , P. Hauke , C. Maier , C. Hempel , B. P. Lanyon , R. Blatt , C. F. Roos . Spectroscopy of interacting quasiparticles in trapped ions. Phys. Rev. Lett., 2015, 115(10): 100501
CrossRef ADS Google scholar
[61]
J. R. Johansson , P. D. Nation , F. Nori . QuTiP: An open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2012, 183(8): 1760
CrossRef ADS Google scholar
[62]
J. R. Johansson , P. D. Nation , F. Nori . QuTiP2: A Python framework for the dynamics of open quantum systems. Comput. Phys. Commun., 2013, 184(4): 1234
CrossRef ADS Google scholar
[63]
D. W. Wang , C. Song , W. Feng , H. Cai , D. Xu , H. Deng , H. Li , D. Zheng , X. Zhu , H. Wang , S. Y. Zhu , M. O. Scully . Synthesis of antisymmetric spin exchange interaction and chiral spin clusters in superconducting circuits. Nat. Phys., 2019, 15(4): 382
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12204139, U20A2076, 12204138, 12205069, 11774076, and U21A20436) and the Key-Area Research and Development Program of Guangdong Province (Grant No. 2018B030326001).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(7970 KB)

Accesses

Citations

Detail

Sections
Recommended

/