Taiji data challenge for exploring gravitational wave universe

Zhixiang Ren, Tianyu Zhao, Zhoujian Cao, Zong-Kuan Guo, Wen-Biao Han, Hong-Bo Jin, Yue-Liang Wu

PDF(8655 KB)
PDF(8655 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 64302. DOI: 10.1007/s11467-023-1318-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Taiji data challenge for exploring gravitational wave universe

Author information +
History +

Abstract

The direct observation of gravitational waves (GWs) opens a new window for exploring new physics from quanta to cosmos and provides a new tool for probing the evolution of universe. GWs detection in space covers a broad spectrum ranging over more than four orders of magnitude and enables us to study rich physical and astronomical phenomena. Taiji is a proposed space-based gravitational wave (GW) detection mission that will be launched in the 2030s. Taiji will be exposed to numerous overlapping and persistent GW signals buried in the foreground and background, posing various data analysis challenges. In order to empower potential scientific discoveries, the Mock Laser Interferometer Space Antenna (LISA) data challenge and the LISA data challenge (LDC) were developed. While LDC provides a baseline framework, the first LDC needs to be updated with more realistic simulations and adjusted detector responses for Taiji’s constellation. In this paper, we review the scientific objectives and the roadmap for Taiji, as well as the technical difficulties in data analysis and the data generation strategy, and present the associated data challenges. In contrast to LDC, we utilize second-order Keplerian orbit and second-generation time delay interferometry techniques. Additionally, we employ a new model for the extreme-mass-ratio inspiral waveform and stochastic GW background spectrum, which enables us to test general relativity and measure the non-Gaussianity of curvature perturbations. Furthermore, we present a comprehensive showcase of parameter estimation using a toy dataset. This showcase not only demonstrates the scientific potential of the Taiji data challenge (TDC) but also serves to validate the effectiveness of the pipeline. As the first data challenge for Taiji, we aim to build an open ground for data analysis related to Taiji sources and sciences. More details can be found on the official website (taiji-tdc.ictp-ap.org).

Graphical abstract

Keywords

gravitational wave / universe evolution / Taiji / data challenge

Cite this article

Download citation ▾
Zhixiang Ren, Tianyu Zhao, Zhoujian Cao, Zong-Kuan Guo, Wen-Biao Han, Hong-Bo Jin, Yue-Liang Wu. Taiji data challenge for exploring gravitational wave universe. Front. Phys., 2023, 18(6): 64302 https://doi.org/10.1007/s11467-023-1318-y

References

[1]
B. P. Abbott , . (LIGO Scientific Collaboration , Virgo Collaboration) . . Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
CrossRef ADS Google scholar
[2]
TheLIGO Scientific CollaborationtheVirgo CollaborationtheKAGRA Collaboration, ., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, arXiv: 2111.03606 (2021)
[3]
G. González , A. Viceré , L. Wen . Gravitational wave astronomy. Front. Phys., 2013, 8(6): 771
CrossRef ADS Google scholar
[4]
F. Matichard , B. Lantz , R. Mittleman , K. Mason , J. Kissel . . Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance. Class. Quantum Gravity, 2015, 32(18): 185003
CrossRef ADS Google scholar
[5]
P.Amaro-Seoane, ., Laser interferometer space antenna, arXiv: 1702.00786 (2017)
[6]
X. Gong , S. Xu , S. Bai , Z. Cao , G. Chen , Y. Chen , X. He , G. Heinzel , Y. K. Lau , C. Liu , J. Luo , Z. Luo , A. P. Patón , A. Rüdiger , M. Shao , R. Spurzem , Y. Wang , P. Xu , H. C. Yeh , Y. Yuan , Z. Zhou . A scientific case study of an advanced LISA mission. Class. Quantum Gravity, 2011, 28(9): 094012
CrossRef ADS Google scholar
[7]
Z. Luo , Y. Wang , Y. Wu , W. Hu , G. Jin . The Taiji program: A concise overview. Prog. Theor. Exp. Phys., 2021, 2021(5): 05A108
CrossRef ADS Google scholar
[8]
Y.L. Wu, in: Presentation to 1st eLISA Consortium Meeting (2012)
[9]
Y. Q. Li , Z. R. Luo , H. S. Liu , Y. H. Dong , G. Jin . Laser interferometer used for satellite—satellite tracking: An on-ground methodological demonstration. Chin. Phys. Lett., 2012, 29(7): 079501
CrossRef ADS Google scholar
[10]
H. S. Liu , Y. H. Dong , Y. Q. Li , Z. R. Luo , G. Jin . The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev. Sci. Instrum., 2014, 85(2): 024503
CrossRef ADS Google scholar
[11]
Y. H. Dong , H. S. Liu , Z. R. Luo , Y. Q. Li , G. Jin . Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev. Sci. Instrum., 2014, 85(7): 074501
CrossRef ADS Google scholar
[12]
Y. Q. Li , Z. R. Luo , H. S. Liu , Y. H. Dong , G. Jin . Path-length measurement performance evaluation of polarizing laser interferometer prototype. Appl. Phys. B, 2015, 118(2): 309
CrossRef ADS Google scholar
[13]
W. R. Hu , Y. L. Wu . The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev., 2017, 4(5): 685
CrossRef ADS Google scholar
[14]
Z. Luo , Z. Guo , G. Jin , Y. Wu , W. Hu . A brief analysis to Taiji: Science and technology. Results Phys., 2020, 16: 102918
CrossRef ADS Google scholar
[15]
Z. Luo , Q. Wang , C. Mahrdt , A. Goerth , G. Heinzel . Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission. Appl. Opt., 2017, 56(5): 1495
CrossRef ADS Google scholar
[16]
Z. Luo , H. Liu , G. Jin . The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission. Opt. Laser Technol., 2018, 105: 146
CrossRef ADS Google scholar
[17]
H. Liu , Y. Dong , R. Gao , Z. Luo , G. Jin . Principle demonstration of the phase locking based on the electro-optic modulator for Taiji space gravitational wave detection pathfinder mission. Opt. Eng., 2018, 57(5): 054113
CrossRef ADS Google scholar
[18]
H. Liu , Z. Luo , G. Jin . The development of phasemeter for Taiji space gravitational wave detection. Microgravity Sci. Technol., 2018, 30(6): 775
CrossRef ADS Google scholar
[19]
W. Deng , T. Yang , J. Cao , E. Zang , L. Li , L. Chen , Z. Fang . High-efficiency 1064 nm nonplanar ring oscillator Nd:YAG laser with diode pumping at 885 nm. Opt. Lett., 2018, 43(7): 1562
CrossRef ADS Google scholar
[20]
Z. Wang , W. Sha , Z. Chen , Y. S. Kang , Z. R. Luo , M. Li , Y. P. Li . Preliminary design and analysis of telescope for space gravitational wave detection. Chin. Opt., 2018, 11(1): 131
CrossRef ADS Google scholar
[21]
The Taiji Scientific Collaboration . China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Commun. Phys., 2021, 4: 34
CrossRef ADS Google scholar
[22]
The Taiji Scientific Collaboration . Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1. Int. J. Mod. Phys. A, 2021, 36: 2102002
CrossRef ADS Google scholar
[23]
A. Klein , E. Barausse , A. Sesana , A. Petiteau , E. Berti , S. Babak , J. Gair , S. Aoudia , I. Hinder , F. Ohme , B. Wardell . Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D, 2016, 93(2): 024003
CrossRef ADS Google scholar
[24]
X. H. Zhang , S. D. Mohanty , X. B. Zou , Y. X. Liu . Resolving Galactic binaries in LISA data using particle swarm optimization and cross-validation. Phys. Rev. D, 2021, 104(2): 024023
CrossRef ADS Google scholar
[25]
A. Sesana . Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett., 2016, 116(23): 231102
CrossRef ADS Google scholar
[26]
S. Xin , W. B. Han , S. C. Yang . Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys. Rev. D, 2019, 100(8): 084055
CrossRef ADS Google scholar
[27]
M.Otto, Time-Delay Interferometry Simulations for the Laser Interferometer Space Antenna, Ph. D. thesis, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015
[28]
A. Blelly , J. Bobin , H. Moutarde . Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data. Mon. Not. R. Astron. Soc., 2021, 509(4): 5902
CrossRef ADS Google scholar
[29]
T. Robson , N. J. Cornish . Detecting gravitational wave bursts with LISA in the presence of instrumental glitches. Phys. Rev. D, 2019, 99(2): 024019
CrossRef ADS Google scholar
[30]
S. V. Dhurandhar , K. R. Nayak , S. Koshti , J. Y. Vinet . Fundamentals of the LISA stable flight formation. Class. Quantum Gravity, 2005, 22(3): 481
CrossRef ADS Google scholar
[31]
K. R. Nayak , S. Koshti , S. V. Dhurandhar , J. Y. Vinet . On the minimum flexing of LISA’s arms. Class. Quantum Gravity, 2006, 23(5): 1763
CrossRef ADS Google scholar
[32]
B. Wu , C. G. Huang , C. F. Qiao . Analytical analysis on the orbits of Taiji spacecrafts. Phys. Rev. D, 2019, 100(12): 122001
CrossRef ADS Google scholar
[33]
B. Chauvineau , T. Regimbau , J. Y. Vinet , S. Pireaux . Relativistic analysis of the LISA long range optical links. Phys. Rev. D, 2005, 72(12): 122003
CrossRef ADS Google scholar
[34]
A. Hees , S. Bertone , C. Le Poncin-Lafitte , Relativistic formulation of coordinate light time . Doppler, and astrometric observables up to the second post-Minkowskian order. Phys. Rev. D, 2014, 89(6): 064045
CrossRef ADS Google scholar
[35]
M. L. Katz , J. B. Bayle , A. J. K. Chua , M. Vallisneri . Assessing the data-analysis impact of LISA orbit approximations using a GPU-accelerated response model. Phys. Rev. D, 2022, 106(10): 103001
CrossRef ADS Google scholar
[36]
N.RijnveldJ.A. C. M. Pijnenburg, in: International Conference on Space Optics — ICSO 2010, edited by N. Kadowaki, SPIE, Rhodes Island, Greece, 2017, p. 96
[37]
S.BabakM.HewitsonA.Petiteau, LISA sensitivity and SNR calculations, arXiv: 2108.01167 (2021)
[38]
M. L. Katz , L. Z. Kelley , F. Dosopoulou , S. Berry , L. Blecha , S. L. Larson . Probing massive black hole binary populations with LISA. Mon. Not. R. Astron. Soc., 2019, 491: 2301
CrossRef ADS Google scholar
[39]
A. Bohé , L. Shao , A. Taracchini , A. Buonanno , S. Babak . . Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D, 2017, 95(4): 044028
CrossRef ADS Google scholar
[40]
J. R. Gair , S. Babak , A. Sesana , P. Amaro-Seoane , E. Barausse , C. P. L. Berry , E. Berti , C. Sopuerta . Prospects for observing extreme-mass-ratio inspirals with LISA. J. Phys. Conf. Ser., 2017, 840: 012021
CrossRef ADS Google scholar
[41]
S. Babak , J. Gair , A. Sesana , E. Barausse , C. F. Sopuerta , C. P. L. Berry , E. Berti , P. Amaro-Seoane , A. Petiteau , A. Klein . Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 2017, 95(10): 103012
CrossRef ADS Google scholar
[42]
L. Barack , C. Cutler . Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D, 2007, 75(4): 042003
CrossRef ADS Google scholar
[43]
K. Glampedakis . Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity. Class. Quantum Gravity, 2005, 22(15): S605
CrossRef ADS Google scholar
[44]
W. B. Han , Z. Cao . Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals. Phys. Rev. D, 2011, 84(4): 044014
CrossRef ADS Google scholar
[45]
S. Babak , H. Fang , J. R. Gair , K. Glampedakis , S. A. Hughes . “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D, 2007, 75(2): 024005
CrossRef ADS Google scholar
[46]
L. Barack , C. Cutler . LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D, 2004, 69(8): 082005
CrossRef ADS Google scholar
[47]
A. J. K. Chua , J. R. Gair . Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class. Quantum Gravity, 2015, 32(23): 232002
CrossRef ADS Google scholar
[48]
A. J. K. Chua , C. J. Moore , J. R. Gair . Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D, 2017, 96(4): 044005
CrossRef ADS Google scholar
[49]
M. L. Katz , A. J. K. Chua , L. Speri , N. Warburton , S. A. Hughes . Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Phys. Rev. D, 2021, 104(6): 064047
CrossRef ADS Google scholar
[50]
C. Zhang , W. B. Han , S. C. Yang . Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Commum. Theor. Phys., 2021, 73(8): 085401
CrossRef ADS Google scholar
[51]
T. Kupfer , V. Korol , S. Shah , G. Nelemans , T. R. Marsh , G. Ramsay , P. J. Groot , D. T. H. Steeghs , E. M. Rossi . LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc., 2018, 480(1): 302
CrossRef ADS Google scholar
[52]
G. Nelemans , L. R. Yungelson , S. F. P. Zwart . The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. Astron. Astrophys., 2001, 375(3): 890
CrossRef ADS Google scholar
[53]
G. Nelemans , C. A. Tout . Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. R. Astron. Soc., 2005, 356(2): 753
CrossRef ADS Google scholar
[54]
J.GairM.HewitsonA.PetiteauG.Mueller, in: Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas, Springer Singapore, Singapore, 2021, pp 1–71
[55]
A. Toubiana , S. Marsat , S. Babak , J. Baker , T. Dal Canton . Parameter estimation of stellar-mass black hole binaries with LISA. Phys. Rev. D, 2020, 102(12): 124037
CrossRef ADS Google scholar
[56]
N. Bartolo , D. Bertacca , R. Caldwell , C. R. Contaldi , G. Cusin . . Probing anisotropies of the stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2022, 11: 009
CrossRef ADS Google scholar
[57]
R. Abbott . . (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Upper limits on the isotropic gravitational-wave background from advanced LIGO and advanced Virgo’s third observing run. Phys. Rev. D, 2021, 104(2): 022004
CrossRef ADS Google scholar
[58]
TheLIGO Scientific CollaborationtheVirgo CollaborationtheKAGRA Collaboration, All-sky, all-frequency directional search for persistent gravitational waves from advanced LIGO’s and advanced Virgo’s first three observing runs, Phys. Rev. D 105(12), 122001 (2022)
[59]
C. Caprini , D. G. Figueroa , R. Flauger , G. Nardini , M. Peloso , M. Pieroni , A. Ricciardone , G. Tasinato . Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2019, 11: 017
CrossRef ADS Google scholar
[60]
M. Hindmarsh , S. J. Huber , K. Rummukainen , D. J. Weir . Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett., 2014, 112(4): 041301
CrossRef ADS Google scholar
[61]
J. Liu , Z. K. Guo , R. G. Cai , G. Shiu . Gravitational waves from oscillons with Cuspy potentials. Phys. Rev. Lett., 2018, 120(3): 031301
CrossRef ADS Google scholar
[62]
R. G. Cai , S. Pi , M. Sasaki . Gravitational waves induced by non-Gaussian scalar perturbations. Phys. Rev. Lett., 2019, 122(20): 201101
CrossRef ADS Google scholar
[63]
C. Yuan , Q. G. Huang . Gravitational waves induced by the local-type non-Gaussian curvature perturbations. Phys. Lett. B, 2021, 821: 136606
CrossRef ADS Google scholar
[64]
M. Falxa , S. Babak , M. Le Jeune . Adaptive kernel density estimation proposal in gravitational wave data analysis. Phys. Rev. D, 2023, 107(2): 022008
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

The research was supported by the Peng Cheng Laboratory Cloud Brain and by Peng Cheng Cloud-Brain. Further funding was provided by the National Key Research and Development Program of China (Grant Nos. 2021YFC2203001, 2020YFC2201501, and 2021YFC2203002), as well as the NSFC (Nos. 11920101003, 12021003, 12173071, 12147103, 12235019, and No. 12075297). Z.C. and W.H. are supported by the CAS Project for Young Scientists in Basic Research YSBR-006. Z.C. was also supported by the Interdisciplinary Research Funds of Beijing Normal University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8655 KB)

Accesses

Citations

Detail

Sections
Recommended

/