Single-photon source with sub-MHz linewidth for cesium-based quantum information processing

Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li, Tian-Cai Zhang

PDF(4436 KB)
PDF(4436 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 61303. DOI: 10.1007/s11467-023-1317-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Single-photon source with sub-MHz linewidth for cesium-based quantum information processing

Author information +
History +

Abstract

A single-photon source with narrow bandwidth, high purity, and large brightness can efficiently interact with material qubits strongly coupled to an optical microcavity for quantum information processing. Here, we experimentally demonstrate a degenerate doubly resonant single-photon source at 852 nm by the cavity-enhanced spontaneous parametric downconversion process with a 100% duty cycle of generation. The single photon source possesses both high purity with a second-order correlation gh(2)(0)=0.021 and narrow linewidth with Δνsp=(800±13)kHz. The single-photon source is compatible with the cesium atom D2 line and can be used for cesium-based quantum information processing.

Graphical abstract

Keywords

single-photon source / sub-MHz linewidth / few longitudinal modes / quantum information processing

Cite this article

Download citation ▾
Hai He, Peng-Fei Yang, Peng-Fei Zhang, Gang Li, Tian-Cai Zhang. Single-photon source with sub-MHz linewidth for cesium-based quantum information processing. Front. Phys., 2023, 18(6): 61303 https://doi.org/10.1007/s11467-023-1317-z

References

[1]
E.KnillR.LaflammeG.J. Milburn, A scheme for efficient quantum computation with linear optics, Nature 409(6816), 46 (2001)
[2]
N. Piro , F. Rohde , C. Schuck , M. Almendros , J. Huwer , J. Ghosh , A. Haase , M. Hennrich , F. Dubin , J. Eschner . Heralded single- photon absorption by a single atom. Nat. Phys., 2011, 7(1): 17
CrossRef ADS Google scholar
[3]
V. Jacques , E. Wu , F. Grosshans , F. Treussart , P. Grangier , A. Aspect , J. F. Roch . Experimental realization of Wheeler’s delayed-choice Gedanken experiment. Science, 2007, 315(5814): 966
CrossRef ADS Google scholar
[4]
C. Esposito , M. R. Barros , A. Durán Hernández , G. Carvacho , F. Di Colandrea , R. Barboza , F. Cardano , N. Spagnolo , L. Marrucci , F. Sciarrino . Quantum walks of two correlated photons in a 2D synthetic lattice. NPJ Quantum Inf., 2022, 8(1): 34
CrossRef ADS Google scholar
[5]
T. B. Pittman , Y. H. Shih , D. V. Strekalov , A. V. Sergienko . Optical imaging by means of two-photon quantum entanglement. Phys. Rev. A, 1995, 52(5): R3429
CrossRef ADS Google scholar
[6]
Y. F. Yan , L Zhou , W Zhong , Y. B. Sheng . Measurement-device-independent quantum key distribution of multiple degrees of freedom of a single photon. Front. Phys., 2021, 16(1): 11501
CrossRef ADS Google scholar
[7]
A. Beveratos , R. Brouri , T. Gacoin , A. Villing , J. P. Poizat , P. Grangier . Single photon quantum cryptography. Phys. Rev. Lett., 2002, 89(18): 187901
CrossRef ADS Google scholar
[8]
L. M. Duan , M. D. Lukin , J. I. Cirac , P. Zoller . Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414(6862): 413
CrossRef ADS Google scholar
[9]
J. Yin , Y. Cao , Y. H. Li , S. K. Liao , L. Zhang . . Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356(6343): 1140
CrossRef ADS Google scholar
[10]
M.BrekenfeldD.NiemietzJ.D. ChristesenG.Rempe, A quantum network node with crossed optical fibre cavities, Nat. Phys. 16(6), 647 (2020)
[11]
A.ReisererN.KalbG.RempeS.Ritter, A quantum gate between a flying optical photon and a single trapped atom, Nature 508(7495), 237 (2014)
[12]
S.DaissS.LangenfeldS.WelteE.DistanteP.ThomasL.HartungO.MorinG.Rempe, A quantum-logic gate between distant quantum-network modules, Science 371(6529), 614 (2021)
[13]
S.LangenfeldO.MorinM.KorberG.Rempe, A network-ready random-access qubits memory, npj Quantum Inf. 6(1), 86 (2020)
[14]
H. J. Kimble . The quantum internet. Nature, 2008, 453(7198): 1023
CrossRef ADS Google scholar
[15]
S. Ritter , C. Nolleke , C. Hahn , A. Reiserer , A. Neuzner , M. Uphoff , M. Mucke , E. Figueroa , J. Bochmann , G. Rempe . An elementary quantum network of single atoms in optical cavities. Nature, 2012, 484(7393): 195
CrossRef ADS Google scholar
[16]
J. T. Sheng , Y. X. Chao , S. Kumar , H. Q. Fan , J. Sedlacek , J. P. Shaffer . Intracavity Rydberg-atom electromagnetically induced transparency using a high-finesse optical cavity. Phys. Rev. A, 2017, 96(3): 033813
CrossRef ADS Google scholar
[17]
C. Junge , D. O’Shea , J. Volz , A. Rauschenbeutel . Strong coupling between single atoms and nontransversal photons. Phys. Rev. Lett., 2013, 110(21): 213604
CrossRef ADS Google scholar
[18]
S. Kato , T. Aoki . Strong coupling between a trapped single atom and an all-fiber cavity. Phys. Rev. Lett., 2015, 115(9): 093603
CrossRef ADS Google scholar
[19]
J. McKeever , A. Boca , A. D. Boozer , R. Miller , J. R. Buck , A. Kuzmich , H. J. Kimble . Deterministic generation of single photons from one atom trapped in a cavity. Science, 2004, 303(5666): 1992
CrossRef ADS Google scholar
[20]
B. Liu , G. Jin , J. He , J. M. Wang . Suppression of single-cesium atom heating in a microscopic optical dipole trap for demonstration of an 852-nm triggered single-photon source. Phys. Rev. A, 2016, 94(1): 013409
CrossRef ADS Google scholar
[21]
B. Darquié , M. P. A. Jones , J. Dingjan , J. Beugnon , S. Bergamini , Y. Sortais , G. Messin , A. Browaeys , P. Grangier . Controlled single-photon emission from a single trapped two-level atom. Science, 2005, 309(5733): 454
CrossRef ADS Google scholar
[22]
G. Stein , V. Bushmakin , Y. J. Wang , A. W. Schell , I. Gerhardt . Narrow-band fiber-coupled single-photon source. Phys. Rev. Appl., 2020, 13(5): 054042
CrossRef ADS Google scholar
[23]
M. Keller , B. Lange , K. Hayasaka , W. Lange , H. Walther . Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature, 2004, 431(7012): 1075
CrossRef ADS Google scholar
[24]
C. Y. Lu , J. W. Pan . Quantum-dot single-photon sources for the quantum internet. Nat. Nanotechnol., 2021, 16(12): 1294
CrossRef ADS Google scholar
[25]
E. Togan , Y. Chu , A. S. Trifonov , L. Jiang , J. Maze , L. Childress , M. V. G. Dutt , A. S. Sorensen , P. R. Hemmer , A. S. Zibrov , M. D. Lukin . Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466(7307): 730
CrossRef ADS Google scholar
[26]
K. B. Dideriksen , R. Schmieg , M. Zugenmaier , E. S. Polzik . Room-temperature single-photon source with near-millisecond built-in memory. Nat. Commun., 2021, 12(1): 3699
CrossRef ADS Google scholar
[27]
A. I. Lvovsky , H. Hansen , T. Aichele , O. Benson , J. Mlynek , S. Schiller . Quantum state reconstruction of the single- photon Fock state. Phys. Rev. Lett., 2001, 87(5): 050402
CrossRef ADS Google scholar
[28]
V. Prakash , L. C. Bianchet , M. T. Cuairan , P. Gomez , N. Bruno , M. W. Mitchell . Narrowband photon pairs with independent frequency tuning for quantum light−matter interactions. Opt. Express, 2019, 27(26): 38463
CrossRef ADS Google scholar
[29]
J. S. Tang , L. Tang , H. D. Wu , Y. Wu , H. Sun , H. Zhang , T. Li , Y. Q. Lu , M. Xiao , K. Xia . Towards on-demand heralded single-photon sources via photon blockade. Phys. Rev. Appl., 2021, 15(6): 064020
CrossRef ADS Google scholar
[30]
K. Wakui , H. Takahashi , A. Furusawa , M. Sasaki . Photon subtracted squeezed states generated with periodically poled KTiOPO4. Opt. Express, 2007, 15(6): 3568
CrossRef ADS Google scholar
[31]
M. Scholz , L. Koch , O. Benson . Statistics of narrow- band single photons for quantum memories generated by ultrabright cavity-enhanced parametric down-conversion. Phys. Rev. Lett., 2009, 102(6): 063603
CrossRef ADS Google scholar
[32]
Z. Y. Zhou , D. S. Ding , Y. Li , F. Y. Wang , B. S. Shi . Cavity-enhanced bright photon pairs at telecom wavelengths with a triple-resonance configuration. J. Opt. Soc. Am. B, 2014, 31(1): 128
CrossRef ADS Google scholar
[33]
M. Rambach , A. Nikolova , T. J. Weinhold , A. G. White . Sub-megahertz linewidth single photon source. APL Photonics, 2016, 1(9): 096101
CrossRef ADS Google scholar
[34]
K. Niizeki , K. Ikeda , M. Y. Zheng , X. P. Xie , K. Okamura , N. Takei , N. Namekata , S. Inoue , H. Kosaka , T. Horikiri . Ultrabright narrow-band telecom two-photon source for long-distance quantum communication. Appl. Phys. Express, 2018, 11(4): 042801
CrossRef ADS Google scholar
[35]
A. Moqanaki , F. Massa , P. Walther . Novel single-mode narrow-band photon source of high brightness tuned to cesium D2 line. APL Photonics, 2019, 4(9): 090804
CrossRef ADS Google scholar
[36]
P. J. Tsai , Y. C. Chen . Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Sci. Technol., 2018, 3(3): 034005
CrossRef ADS Google scholar
[37]
J. Liu , J. Liu , P. Yu , G. Zhang . Sub-megahertz narrow-band photon pairs at 606 nm for solid-state quantum memories. APL Photonics, 2020, 5(6): 066105
CrossRef ADS Google scholar
[38]
L. Tian , S. J. Li , H. X. Yuan , H. Wang . Generation of narrow-band polarization-entangled photon pairs at a rubidium D1 line. J. Phys. Soc. Jpn., 2016, 85(12): 124403
CrossRef ADS Google scholar
[39]
J. Wang , Y. F. Huang , C. Zhang , J. M. Cui , Z. Y. Zhou , B. H. Liu , Z. Q. Zhou , J. S. Tang , C. F. Li , G. C. Guo . Universal photonic quantum interface for a quantum network. Phys. Rev. Appl., 2018, 10(5): 054036
CrossRef ADS Google scholar
[40]
H. Zhang , X. M. Jin , J. Yang , H. N. Dai , S. J. Yang , T. M. Zhao , J. Rui , Y. He , X. Jiang , F. Yang , G. S. Pan , Z. S. Yuan , Y. Deng , Z. B. Chen , X. H. Bao , S. Chen , B. Zhao , J. W. Pan . Preparation and storage of frequency-uncorrelated entangled photons from cavity-enhanced spontaneous parametric downconversion. Nat. Photonics, 2011, 5(10): 628
CrossRef ADS Google scholar
[41]
J. Fekete , D. Rieländer , M. Cristiani , H. de Riedmatten . Ultranarrow-band photon-pair source compatible with solid state quantum memories and telecommunication networks. Phys. Rev. Lett., 2013, 110(22): 220502
CrossRef ADS Google scholar
[42]
T. W. Hansch , B. Couillaud . Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun., 1980, 35(3): 441
CrossRef ADS Google scholar
[43]
R. H. Brown , R. Q. Twiss . Correlation between photons in two coherent beams of light. Nature, 1956, 177(4497): 27
CrossRef ADS Google scholar
[44]
C.S. ChuuG.Y. YinS.E. Harris, A miniature ultrabright source of temporally long, narrowband biphotons, Appl. Phys. Lett. 101(5), 051108 (2012)
[45]
M. Scholz , L. Koch , O. Benson . Analytical treatment of spectral properties and signal-idler intensity correlations for a double-resonant optical parametric oscillator far below threshold. Opt. Commun., 2009, 282(17): 3518
CrossRef ADS Google scholar
[46]
F. Wolfgramm , Y. A. de Icaza Astiz , F. A. Beduini , A. Cerè , M. W. Mitchell . Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett., 2011, 106(5): 053602
CrossRef ADS Google scholar
[47]
Y. J. Lu , Z. Y. Ou . Optical parametric oscillator far below threshold: Experiment versus theory. Phys. Rev. A, 2000, 62(3): 033804
CrossRef ADS Google scholar
[48]
M. Wahl , T. Röhlicke , H. J. Rahn , R. Erdmann , G. Kell , A. Ahlrichs , M. Kernbach , A. W. Schell , O. Benson . Integrated multichannel photon timing instrument with very short dead time and high throughput. Rev. Sci. Instrum., 2013, 84(4): 043102
CrossRef ADS Google scholar
[49]
M. Beck . Comparing measurements of g(2)(0) performed with different coincidence detection techniques. J. Opt. Soc. Am. B, 2007, 24(12): 2972
CrossRef ADS Google scholar
[50]
U. Paudel , J. J. Wong , M. Goggin , P. G. Kwiat , A. S. Bracker , M. Yakes , D. Gammon , D. G. Steel . Direct excitation of a single quantum dot with cavity-SPDC photons. Opt. Express, 2019, 27(11): 16308
CrossRef ADS Google scholar
[51]
C. H. Wu , T. Y. Wu , Y. C. Yeh , P. H. Liu , C. H. Chang , C. K. Liu , T. Cheng , C. S. Chuu . Bright single photons for light−matter interaction. Phys. Rev. A, 2017, 96(2): 023811
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Availability of data and material

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11974223, and 11974225), and the Fund for Shanxi 1331 Project Key Subjects Construction.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4436 KB)

Accesses

Citations

Detail

Sections
Recommended

/