Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting
Jianchong Xing, Wenkai Bai, Bo Xiong, Jun-Hui Zheng, Tao Yang
Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting
The combination of multi-component Bose−Einstein condensates (BECs) and phase imprinting techniques provides an ideal platform for exploring nonlinear dynamics and investigating the quantum transport properties of superfluids. In this paper, we study abundant density structures and corresponding dynamics of phase-separated binary Bose−Einstein condensates with phase-imprinted single vortex or vortex dipole. By adjusting the ratio between the interspecies and intraspecies interactions, and the locations of the phase singularities, the typical density profiles such as ball-shell structures, crescent-gibbous structures, Matryoshka-like structures, sector-sector structures and sandwich-type structures appear, and the phase diagrams are obtained. The dynamics of these structures exhibit diverse properties, including the penetration of vortex dipoles, emergence of half-vortex dipoles, co-rotation of sectors, and oscillation between sectors. The pinning effects induced by a potential defect are also discussed, which is useful for controlling and manipulating individual quantum states.
Bose−Einstein condensates / phase separation / angular momentum / energy competition
[1] |
M. R. Matthews , B. P. Anderson , P. C. Haljan , D. S. Hall , C. E. Wieman , E. A. Cornell . Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 1999, 83(13): 2498
CrossRef
ADS
Google scholar
|
[2] |
B. Jackson , J. F. McCann , C. S. Adams . Vortex line and ring dynamics in trapped Bose–Einstein condensates. Phys. Rev. A, 1999, 61(1): 013604
CrossRef
ADS
Google scholar
|
[3] |
T. Yang , B. Xiong , K. A. Benedict . Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A, 2013, 87(2): 023603
CrossRef
ADS
Google scholar
|
[4] |
J. Denschlag , J. E. Simsarian , D. L. Feder , C. W. Clark , L. A. Collins , J. Cubizolles , L. Deng , E. W. Hagley , K. Helmerson , W. P. Reinhardt , S. L. Rolston , B. I. Schneider , W. D. Phillips . Generating solitons by phase engineering of a Bose–Einstein condensate. Science, 2000, 287(5450): 97
CrossRef
ADS
Google scholar
|
[5] |
Q. L. Cheng , W. K. Bai , Y. Z. Zhang , B. Xiong , T. Yang . Influence of a dark soliton on the reflection of a Bose–Einstein condensate by a square barrier. Laser Phys., 2019, 29(1): 015501
CrossRef
ADS
Google scholar
|
[6] |
D. M. Wang , J. C. Xing , R. Du , B. Xiong , T. Yang . Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential. Chin. Phys. B, 2021, 30(12): 120303
CrossRef
ADS
Google scholar
|
[7] |
R. Du , J. C. Xing , B. Xiong , J. H. Zheng , T. Yang . Quench dynamics of Bose–Einstein condensates in boxlike traps. Chin. Phys. Lett., 2022, 39(7): 070304
CrossRef
ADS
Google scholar
|
[8] |
D. Proment , M. Onorato , C. F. Barenghi . Vortex knots in a Bose–Einstein condensate. Phys. Rev. E, 2012, 85(3): 036306
CrossRef
ADS
Google scholar
|
[9] |
W. K. Bai , T. Yang , W. M. Liu . Topological transition from superfluid vortex rings to isolated knots and links. Phys. Rev. A, 2020, 102(6): 063318
CrossRef
ADS
Google scholar
|
[10] |
J. Ruostekoski , J. R. Anglin . Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Phys. Rev. Lett., 2001, 86(18): 3934
CrossRef
ADS
Google scholar
|
[11] |
X. Zhang , X. Hu , D. Wang , X. Liu , W. Liu . Dynamics of Bose−Einstein condensates near Feshbach resonance in external potential. Front. Phys. China, 2011, 6: 46
|
[12] |
P. H. Lu , X. F. Zhang , C. Q. Dai . Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
CrossRef
ADS
Google scholar
|
[13] |
S. W. Song , L. Wen , C. F. Liu , S. C. Gou , W. M. Liu . Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates. Front. Phys., 2013, 8(3): 302
CrossRef
ADS
Google scholar
|
[14] |
S. K. Adhikari . Coupled Bose–Einstein condensate: Collapse for attractive interaction. Phys. Rev. A, 2001, 63(4): 043611
CrossRef
ADS
Google scholar
|
[15] |
T. L. Ho , V. B. Shenoy . Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett., 1996, 77(16): 3276
CrossRef
ADS
Google scholar
|
[16] |
R. Navarro , R. Carretero-González , P. G. Kevrekidis . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2009, 80(2): 023613
CrossRef
ADS
Google scholar
|
[17] |
G. Catelani , E. A. Yuzbashyan . Coreless vorticity in multicomponent Bose and Fermi superfluids. Phys. Rev. A, 2010, 81(3): 033629
CrossRef
ADS
Google scholar
|
[18] |
K. J. H. Law , P. G. Kevrekidis , L. S. Tuckerman . Stable vortex–bright-soliton structures in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(16): 160405
CrossRef
ADS
Google scholar
|
[19] |
M. Pola , J. Stockhofe , P. Schmelcher , P. G. Kevrekidis . Vortex–bright-soliton dipoles: Bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well. Phys. Rev. A, 2012, 86(5): 053601
CrossRef
ADS
Google scholar
|
[20] |
P. Kuopanportti , J. A. M. Huhtamäki , M. Möttönen . Exotic vortex lattices in two-species Bose–Einstein condensates. Phys. Rev. A, 2012, 85(4): 043613
CrossRef
ADS
Google scholar
|
[21] |
C. Lee . Universality and anomalous mean-field break-down of symmetry-breaking transitions in a coupled two-component Bose–Einstein Condensate. Phys. Rev. Lett., 2009, 102(7): 070401
CrossRef
ADS
Google scholar
|
[22] |
J. Sabbatini , W. H. Zurek , M. J. Davis . Phase separation and pattern formation in a binary Bose–Einstein condensate. Phys. Rev. Lett., 2011, 107(23): 230402
CrossRef
ADS
Google scholar
|
[23] |
H. Takeuchi , S. Ishino , M. Tsubota . Binary quantum turbulence arising from countersuperflow instability in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(20): 205301
CrossRef
ADS
Google scholar
|
[24] |
E. Timmermans . Phase separation of Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(26): 5718
CrossRef
ADS
Google scholar
|
[25] |
L. Wen , W. M. Liu , Y. Cai , J. M. Zhang , J. Hu . Controlling phase separation of a two-component Bose–Einstein condensate by confinement. Phys. Rev. A, 2012, 85(4): 043602
CrossRef
ADS
Google scholar
|
[26] |
R. W. Pattinson , T. P. Billam , S. A. Gardiner , D. J. McCarron , H. W. Cho , S. L. Cornish , N. G. Parker , N. P. Proukakis . Equilibrium solutions for immiscible two-species Bose–Einstein condensates in perturbed harmonic traps. Phys. Rev. A, 2013, 87(1): 013625
CrossRef
ADS
Google scholar
|
[27] |
K. L. Lee , N. B. Jørgensen , I. K. Liu , L. Wacker , J. J. Arlt , N. P. Proukakis . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2016, 94(1): 013602
CrossRef
ADS
Google scholar
|
[28] |
M. Pyzh , P. Schmelcher . Phase separation of a Bose–Bose mixture: Impact of the trap and particle-number imbalance. Phys. Rev. A, 2020, 102(2): 023305
CrossRef
ADS
Google scholar
|
[29] |
K. Sasaki , N. Suzuki , D. Akamatsu , H. Saito . Rayleigh–Taylor instability and mushroom-pattern formation in a two-component Bose–Einstein condensate. Phys. Rev. A, 2009, 80(6): 063611
CrossRef
ADS
Google scholar
|
[30] |
H. Takeuchi , N. Suzuki , K. Kasamatsu , H. Saito , M. Tsubota . Quantum Kelvin–Helmholtz instability in phase-separated two-component Bose–Einstein condensates. Phys. Rev. B, 2010, 81(9): 094517
CrossRef
ADS
Google scholar
|
[31] |
K. W. Madison , F. Chevy , W. Wohlleben , J. Dalibard . Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
CrossRef
ADS
Google scholar
|
[32] |
F. Chevy , K. W. Madison , J. Dalibard . Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett., 2000, 85(11): 2223
CrossRef
ADS
Google scholar
|
[33] |
L. S. Leslie , A. Hansen , K. C. Wright , B. M. Deutsch , N. P. Bigelow . Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett., 2009, 103(25): 250401
CrossRef
ADS
Google scholar
|
[34] |
J. Choi , W. J. Kwon , Y. Shin . Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett., 2012, 108(3): 035301
CrossRef
ADS
Google scholar
|
[35] |
A. E. Leanhardt , A. Görlitz , A. P. Chikkatur , D. Kielpinski , Y. Shin , D. E. Pritchard , W. Ketterle . Imprinting vortices in a Bose–Einstein condensate using topological phases. Phys. Rev. Lett., 2002, 89(19): 190403
CrossRef
ADS
Google scholar
|
[36] |
T. Yang , Z. Q. Hu , S. Zou , W. M. Liu . Dynamics of vortex quadrupoles in nonrotating trapped Bose–Einstein condensates. Sci. Rep., 2016, 6(1): 29066
CrossRef
ADS
Google scholar
|
[37] |
S. Bandyopadhyay , A. Roy , D. Angom . Dynamics of phase separation in two-species Bose–Einstein condensates with vortices. Phys. Rev. A, 2017, 96(4): 043603
CrossRef
ADS
Google scholar
|
[38] |
T. Aioi , T. Kadokura , H. Saito . Penetration of a vortex dipole across an interface of Bose–Einstein condensates. Phys. Rev. A, 2012, 85(2): 023618
CrossRef
ADS
Google scholar
|
[39] |
K. T. Kapale , J. P. Dowling . Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose–Einstein condensates via optical angular momentum beams. Phys. Rev. Lett., 2005, 95(17): 173601
CrossRef
ADS
Google scholar
|
[40] |
S. Thanvanthri , K. T. Kapale , J. P. Dowling . Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light. Phys. Rev. A, 2008, 77(5): 053825
CrossRef
ADS
Google scholar
|
[41] |
L. Wen , Y. Qiao , Y. Xu , L. Mao . Structure of two-component Bose−Einstein condensates with respective vortex−antivortex superposition states. Phys. Rev. A, 2013, 87(3): 033604
CrossRef
ADS
Google scholar
|
[42] |
S. Ishino , M. Tsubota , H. Takeuchi . Counter-rotating vortices in miscible two-component Bose–Einstein condensates. Phys. Rev. A, 2013, 88(6): 063617
CrossRef
ADS
Google scholar
|
[43] |
T. W. Neely , E. C. Samson , A. S. Bradley , M. J. Davis , B. P. Anderson . Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett., 2010, 104(16): 160401
CrossRef
ADS
Google scholar
|
[44] |
D. K. Maity , K. Mukherjee , S. I. Mistakidis , S. Das , P. G. Kevrekidis , S. Majumder , P. Schmelcher . Parametrically excited star-shaped patterns at the interface of binary Bose–Einstein condensates. Phys. Rev. A, 2020, 102(3): 033320
CrossRef
ADS
Google scholar
|
[45] |
C.PethickH.Smith, Bose−Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2014
|
[46] |
G. Yang , S. Zhang , W. Han . Oblique collisions and catching-up phenomena of vortex dipoles in a uniform Bose–Einstein condensate. Phys. Scr., 2019, 94(7): 075006
CrossRef
ADS
Google scholar
|
[47] |
P. J. Torres , P. G. Kevrekidis , D. J. Frantzeskakis , R. Carretero-González , P. Schmelcher , D. S. Hall . Dynamics of vortex dipoles Einstein condensates. Phys. Lett. A, 2011, 375(33): 3044
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |