Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting

Jianchong Xing, Wenkai Bai, Bo Xiong, Jun-Hui Zheng, Tao Yang

PDF(5121 KB)
PDF(5121 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 62302. DOI: 10.1007/s11467-023-1316-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting

Author information +
History +

Abstract

The combination of multi-component Bose−Einstein condensates (BECs) and phase imprinting techniques provides an ideal platform for exploring nonlinear dynamics and investigating the quantum transport properties of superfluids. In this paper, we study abundant density structures and corresponding dynamics of phase-separated binary Bose−Einstein condensates with phase-imprinted single vortex or vortex dipole. By adjusting the ratio between the interspecies and intraspecies interactions, and the locations of the phase singularities, the typical density profiles such as ball-shell structures, crescent-gibbous structures, Matryoshka-like structures, sector-sector structures and sandwich-type structures appear, and the phase diagrams are obtained. The dynamics of these structures exhibit diverse properties, including the penetration of vortex dipoles, emergence of half-vortex dipoles, co-rotation of sectors, and oscillation between sectors. The pinning effects induced by a potential defect are also discussed, which is useful for controlling and manipulating individual quantum states.

Graphical abstract

Keywords

Bose−Einstein condensates / phase separation / angular momentum / energy competition

Cite this article

Download citation ▾
Jianchong Xing, Wenkai Bai, Bo Xiong, Jun-Hui Zheng, Tao Yang. Structure and dynamics of binary Bose−Einstein condensates with vortex phase imprinting. Front. Phys., 2023, 18(6): 62302 https://doi.org/10.1007/s11467-023-1316-0

References

[1]
M. R. Matthews , B. P. Anderson , P. C. Haljan , D. S. Hall , C. E. Wieman , E. A. Cornell . Vortices in a Bose–Einstein condensate. Phys. Rev. Lett., 1999, 83(13): 2498
CrossRef ADS Google scholar
[2]
B. Jackson , J. F. McCann , C. S. Adams . Vortex line and ring dynamics in trapped Bose–Einstein condensates. Phys. Rev. A, 1999, 61(1): 013604
CrossRef ADS Google scholar
[3]
T. Yang , B. Xiong , K. A. Benedict . Dynamical excitations in the collision of two-dimensional Bose–Einstein condensates. Phys. Rev. A, 2013, 87(2): 023603
CrossRef ADS Google scholar
[4]
J. Denschlag , J. E. Simsarian , D. L. Feder , C. W. Clark , L. A. Collins , J. Cubizolles , L. Deng , E. W. Hagley , K. Helmerson , W. P. Reinhardt , S. L. Rolston , B. I. Schneider , W. D. Phillips . Generating solitons by phase engineering of a Bose–Einstein condensate. Science, 2000, 287(5450): 97
CrossRef ADS Google scholar
[5]
Q. L. Cheng , W. K. Bai , Y. Z. Zhang , B. Xiong , T. Yang . Influence of a dark soliton on the reflection of a Bose–Einstein condensate by a square barrier. Laser Phys., 2019, 29(1): 015501
CrossRef ADS Google scholar
[6]
D. M. Wang , J. C. Xing , R. Du , B. Xiong , T. Yang . Quantum reflection of a Bose–Einstein condensate with a dark soliton from a step potential. Chin. Phys. B, 2021, 30(12): 120303
CrossRef ADS Google scholar
[7]
R. Du , J. C. Xing , B. Xiong , J. H. Zheng , T. Yang . Quench dynamics of Bose–Einstein condensates in boxlike traps. Chin. Phys. Lett., 2022, 39(7): 070304
CrossRef ADS Google scholar
[8]
D. Proment , M. Onorato , C. F. Barenghi . Vortex knots in a Bose–Einstein condensate. Phys. Rev. E, 2012, 85(3): 036306
CrossRef ADS Google scholar
[9]
W. K. Bai , T. Yang , W. M. Liu . Topological transition from superfluid vortex rings to isolated knots and links. Phys. Rev. A, 2020, 102(6): 063318
CrossRef ADS Google scholar
[10]
J. Ruostekoski , J. R. Anglin . Creating vortex rings and three-dimensional skyrmions in Bose–Einstein condensates. Phys. Rev. Lett., 2001, 86(18): 3934
CrossRef ADS Google scholar
[11]
X. Zhang , X. Hu , D. Wang , X. Liu , W. Liu . Dynamics of Bose−Einstein condensates near Feshbach resonance in external potential. Front. Phys. China, 2011, 6: 46
[12]
P. H. Lu , X. F. Zhang , C. Q. Dai . Dynamics and formation of vortices collapsed from ring dark solitons in a two-dimensional spin–orbit coupled Bose–Einstein condensate. Front. Phys., 2022, 17(4): 42501
CrossRef ADS Google scholar
[13]
S. W. Song , L. Wen , C. F. Liu , S. C. Gou , W. M. Liu . Ground states, solitons and spin textures in spin-1 Bose–Einstein condensates. Front. Phys., 2013, 8(3): 302
CrossRef ADS Google scholar
[14]
S. K. Adhikari . Coupled Bose–Einstein condensate: Collapse for attractive interaction. Phys. Rev. A, 2001, 63(4): 043611
CrossRef ADS Google scholar
[15]
T. L. Ho , V. B. Shenoy . Binary mixtures of Bose condensates of alkali atoms. Phys. Rev. Lett., 1996, 77(16): 3276
CrossRef ADS Google scholar
[16]
R. Navarro , R. Carretero-González , P. G. Kevrekidis . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2009, 80(2): 023613
CrossRef ADS Google scholar
[17]
G. Catelani , E. A. Yuzbashyan . Coreless vorticity in multicomponent Bose and Fermi superfluids. Phys. Rev. A, 2010, 81(3): 033629
CrossRef ADS Google scholar
[18]
K. J. H. Law , P. G. Kevrekidis , L. S. Tuckerman . Stable vortex–bright-soliton structures in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(16): 160405
CrossRef ADS Google scholar
[19]
M. Pola , J. Stockhofe , P. Schmelcher , P. G. Kevrekidis . Vortex–bright-soliton dipoles: Bifurcations, symmetry breaking, and soliton tunneling in a vortex-induced double well. Phys. Rev. A, 2012, 86(5): 053601
CrossRef ADS Google scholar
[20]
P. Kuopanportti , J. A. M. Huhtamäki , M. Möttönen . Exotic vortex lattices in two-species Bose–Einstein condensates. Phys. Rev. A, 2012, 85(4): 043613
CrossRef ADS Google scholar
[21]
C. Lee . Universality and anomalous mean-field break-down of symmetry-breaking transitions in a coupled two-component Bose–Einstein Condensate. Phys. Rev. Lett., 2009, 102(7): 070401
CrossRef ADS Google scholar
[22]
J. Sabbatini , W. H. Zurek , M. J. Davis . Phase separation and pattern formation in a binary Bose–Einstein condensate. Phys. Rev. Lett., 2011, 107(23): 230402
CrossRef ADS Google scholar
[23]
H. Takeuchi , S. Ishino , M. Tsubota . Binary quantum turbulence arising from countersuperflow instability in two-component Bose–Einstein condensates. Phys. Rev. Lett., 2010, 105(20): 205301
CrossRef ADS Google scholar
[24]
E. Timmermans . Phase separation of Bose–Einstein condensates. Phys. Rev. Lett., 1998, 81(26): 5718
CrossRef ADS Google scholar
[25]
L. Wen , W. M. Liu , Y. Cai , J. M. Zhang , J. Hu . Controlling phase separation of a two-component Bose–Einstein condensate by confinement. Phys. Rev. A, 2012, 85(4): 043602
CrossRef ADS Google scholar
[26]
R. W. Pattinson , T. P. Billam , S. A. Gardiner , D. J. McCarron , H. W. Cho , S. L. Cornish , N. G. Parker , N. P. Proukakis . Equilibrium solutions for immiscible two-species Bose–Einstein condensates in perturbed harmonic traps. Phys. Rev. A, 2013, 87(1): 013625
CrossRef ADS Google scholar
[27]
K. L. Lee , N. B. Jørgensen , I. K. Liu , L. Wacker , J. J. Arlt , N. P. Proukakis . Phase separation and dynamics of two-component Bose–Einstein condensates. Phys. Rev. A, 2016, 94(1): 013602
CrossRef ADS Google scholar
[28]
M. Pyzh , P. Schmelcher . Phase separation of a Bose–Bose mixture: Impact of the trap and particle-number imbalance. Phys. Rev. A, 2020, 102(2): 023305
CrossRef ADS Google scholar
[29]
K. Sasaki , N. Suzuki , D. Akamatsu , H. Saito . Rayleigh–Taylor instability and mushroom-pattern formation in a two-component Bose–Einstein condensate. Phys. Rev. A, 2009, 80(6): 063611
CrossRef ADS Google scholar
[30]
H. Takeuchi , N. Suzuki , K. Kasamatsu , H. Saito , M. Tsubota . Quantum Kelvin–Helmholtz instability in phase-separated two-component Bose–Einstein condensates. Phys. Rev. B, 2010, 81(9): 094517
CrossRef ADS Google scholar
[31]
K. W. Madison , F. Chevy , W. Wohlleben , J. Dalibard . Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett., 2000, 84(5): 806
CrossRef ADS Google scholar
[32]
F. Chevy , K. W. Madison , J. Dalibard . Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett., 2000, 85(11): 2223
CrossRef ADS Google scholar
[33]
L. S. Leslie , A. Hansen , K. C. Wright , B. M. Deutsch , N. P. Bigelow . Creation and detection of skyrmions in a Bose–Einstein condensate. Phys. Rev. Lett., 2009, 103(25): 250401
CrossRef ADS Google scholar
[34]
J. Choi , W. J. Kwon , Y. Shin . Observation of topologically stable 2D skyrmions in an antiferromagnetic spinor Bose–Einstein condensate. Phys. Rev. Lett., 2012, 108(3): 035301
CrossRef ADS Google scholar
[35]
A. E. Leanhardt , A. Görlitz , A. P. Chikkatur , D. Kielpinski , Y. Shin , D. E. Pritchard , W. Ketterle . Imprinting vortices in a Bose–Einstein condensate using topological phases. Phys. Rev. Lett., 2002, 89(19): 190403
CrossRef ADS Google scholar
[36]
T. Yang , Z. Q. Hu , S. Zou , W. M. Liu . Dynamics of vortex quadrupoles in nonrotating trapped Bose–Einstein condensates. Sci. Rep., 2016, 6(1): 29066
CrossRef ADS Google scholar
[37]
S. Bandyopadhyay , A. Roy , D. Angom . Dynamics of phase separation in two-species Bose–Einstein condensates with vortices. Phys. Rev. A, 2017, 96(4): 043603
CrossRef ADS Google scholar
[38]
T. Aioi , T. Kadokura , H. Saito . Penetration of a vortex dipole across an interface of Bose–Einstein condensates. Phys. Rev. A, 2012, 85(2): 023618
CrossRef ADS Google scholar
[39]
K. T. Kapale , J. P. Dowling . Vortex phase qubit: Generating arbitrary, counterrotating, coherent superpositions in Bose–Einstein condensates via optical angular momentum beams. Phys. Rev. Lett., 2005, 95(17): 173601
CrossRef ADS Google scholar
[40]
S. Thanvanthri , K. T. Kapale , J. P. Dowling . Arbitrary coherent superpositions of quantized vortices in Bose–Einstein condensates via orbital angular momentum of light. Phys. Rev. A, 2008, 77(5): 053825
CrossRef ADS Google scholar
[41]
L. Wen , Y. Qiao , Y. Xu , L. Mao . Structure of two-component Bose−Einstein condensates with respective vortex−antivortex superposition states. Phys. Rev. A, 2013, 87(3): 033604
CrossRef ADS Google scholar
[42]
S. Ishino , M. Tsubota , H. Takeuchi . Counter-rotating vortices in miscible two-component Bose–Einstein condensates. Phys. Rev. A, 2013, 88(6): 063617
CrossRef ADS Google scholar
[43]
T. W. Neely , E. C. Samson , A. S. Bradley , M. J. Davis , B. P. Anderson . Observation of vortex dipoles in an oblate Bose–Einstein condensate. Phys. Rev. Lett., 2010, 104(16): 160401
CrossRef ADS Google scholar
[44]
D. K. Maity , K. Mukherjee , S. I. Mistakidis , S. Das , P. G. Kevrekidis , S. Majumder , P. Schmelcher . Parametrically excited star-shaped patterns at the interface of binary Bose–Einstein condensates. Phys. Rev. A, 2020, 102(3): 033320
CrossRef ADS Google scholar
[45]
C.PethickH.Smith, Bose−Einstein Condensation in Dilute Gases, New York: Cambridge University Press, 2014
[46]
G. Yang , S. Zhang , W. Han . Oblique collisions and catching-up phenomena of vortex dipoles in a uniform Bose–Einstein condensate. Phys. Scr., 2019, 94(7): 075006
CrossRef ADS Google scholar
[47]
P. J. Torres , P. G. Kevrekidis , D. J. Frantzeskakis , R. Carretero-González , P. Schmelcher , D. S. Hall . Dynamics of vortex dipoles Einstein condensates. Phys. Lett. A, 2011, 375(33): 3044
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant Nos. 12175180, 11934015, 12247103, and 12247186, the Major Basic Research Program of Natural Science of Shaanxi Province under grant Nos. 2017KCT-12 and 2017ZDJC-32, the Scientific Research Program Funded by Education Department of Shaanxi Provincial Government under grant No. 22JK0581, the Natural Science Basic Research Program of Shaanxi under grant No. 2023-JC-QN-0054, and Shaanxi Fundamental Science Research Project for Mathematics and Physics under grant Nos. 22JSZ005 and 22JSQ041. This research was also supported by the Double First-class University Construction Project of Northwest University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5121 KB)

Accesses

Citations

Detail

Sections
Recommended

/