
Realization of highly isolated stable few-spin systems based on alkaline-earth fermions
Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 62303.
Realization of highly isolated stable few-spin systems based on alkaline-earth fermions
Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.
few-spin system / alkaline-earth atoms / ultracold Fermi gas / a.c. Stark shift / long-lived quantum system
Fig.1 The highly nonlinear spin-discriminating (HNSD) method for realizing an isolated few-spin system of a given number of spin states. (a) Diagram for the HNSD method. The spin ground states with |
Fig.2 Calibrating the light-induced differential energy shifts between spin ground states. (a) Population transfer from |
Fig.3 Lifetime of spin states in an isolated two-spin manifold under the HNSD method. (a) Sample measurements for the evolution of atomic populations under various holding times in the presence of the HNSD beam, with atoms initially populated equally in the |
Fig.4 Demonstration of an isolated two-spin system using two-photon Raman Rabi oscillation. Under a single Rabi pulse of on-resonance two-photon Raman coupling, evolution of the atomic population percentage in the |
Fig.5 The computed properties of a highly isolated, long-lived three-spin manifold generated by the HNSD method. (a) Schematic for generating a three-spin manifold. Here, the manifold consists of three spin ground states with |
[1] |
A. D. Ludlow , M. M. Boyd , J. Ye , E. Peik , P. O. Schmidt . Optical atomic clocks. Rev. Mod. Phys., 2015, 87(2): 637
CrossRef
ADS
Google scholar
|
[2] |
C. Chin , R. Grimm , P. Julienne , E. Tiesinga . Feshbach resonances in ultracold gases. Rev. Mod. Phys., 2010, 82(2): 1225
CrossRef
ADS
Google scholar
|
[3] |
P. Naidon , S. Endo . Efimov physics: A review. Rep. Prog. Phys., 2017, 80(5): 056001
CrossRef
ADS
Google scholar
|
[4] |
C. Monroe , W. C. Campbell , L. M. Duan , Z. X. Gong , A. V. Gorshkov , P. W. Hess , R. Islam , K. Kim , N. M. Linke , G. Pagano , P. Richerme , C. Senko , N. Y. Yao . Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 2021, 93(2): 025001
CrossRef
ADS
Google scholar
|
[5] |
J.K. AsbóthL.OroszlányA.Pályi, A Short Course on Topological Insulators, Springer, 2016
|
[6] |
X. L. Qi , Y. S. Wu , S. C. Zhang . Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 2006, 74(8): 085308
CrossRef
ADS
Google scholar
|
[7] |
X. J. Liu , K. T. Law , T. K. Ng . Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett., 2014, 112(8): 086401
CrossRef
ADS
Google scholar
|
[8] |
L. Huang , Z. Meng , P. Wang , P. Peng , S. L. Zhang , L. Chen , D. Li , Q. Zhou , J. Zhang . Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
CrossRef
ADS
Google scholar
|
[9] |
Z. Wu , L. Zhang , W. Sun , X. T. Xu , B. Z. Wang , S. C. Ji , Y. Deng , S. Chen , X. J. Liu , J. W. Pan . Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
CrossRef
ADS
Google scholar
|
[10] |
W. Sun , B. Z. Wang , X. T. Xu , C. R. Yi , L. Zhang , Z. Wu , Y. Deng , X. J. Liu , S. Chen , J. W. Pan . Highly controllable and robust 2D spin–orbit coupling for quantum gases. Phys. Rev. Lett., 2018, 121(15): 150401
CrossRef
ADS
Google scholar
|
[11] |
X. T. Xu , Z. Y. Wang , R. H. Jiao , C. R. Yi , W. Sun , S. Chen . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
CrossRef
ADS
Google scholar
|
[12] |
J. Ye , H. J. Kimble , H. Katori . Quantum state engineering and precision metrology using state-insensitive light traps. Science, 2008, 320(5884): 1734
CrossRef
ADS
Google scholar
|
[13] |
A. V. Gorshkov , M. Hermele , V. Gurarie , C. Xu , P. S. Julienne , J. Ye , P. Zoller , E. Demler , M. D. Lukin , A. M. Rey . Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys., 2010, 6(4): 289
CrossRef
ADS
Google scholar
|
[14] |
A. J. Daley . Quantum computing and quantum simulation with group-II atoms. Quantum Inform. Process., 2011, 10(6): 865
CrossRef
ADS
Google scholar
|
[15] |
S. Taie , R. Yamazaki , S. Sugawa , Y. Takahashi . An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys., 2012, 8(11): 825
CrossRef
ADS
Google scholar
|
[16] |
S.StellmerF.SchreckT.C. Killian, in: Annual Review of Cold Atoms and Molecules, Vol. 2, Chapter 1, 1st Ed., World Scientific, Singapore, 2014
|
[17] |
G.PaganoM.ManciniG.CappelliniP.LombardiF.SchaferH.HuX.J. LiuJ.CataniC.SiasM.InguscioL.Fallani, A one-dimensional liquid of fermions with tunable spin, Nat. Phys. 10(3), 198 (2014)
|
[18] |
X. Zhang , M. Bishof , S. L. Bromley , C. V. Kraus , M. S. Safronova , P. Zoller , A. M. Rey , J. Ye . Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science, 2014, 345(6203): 1467
CrossRef
ADS
Google scholar
|
[19] |
F. Scazza , C. Hofrichter , M. Höfer , P. C. De Groot , I. Bloch , S. Fölling . Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys., 2014, 10(10): 779
CrossRef
ADS
Google scholar
|
[20] |
G. Cappellini , M. Mancini , G. Pagano , P. Lombardi , L. Livi , M. Siciliani de Cumis , P. Cancio , M. Pizzocaro , D. Calonico , F. Levi , C. Sias , J. Catani , M. Inguscio , L. Fallani . Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett., 2014, 113(12): 120402
CrossRef
ADS
Google scholar
|
[21] |
Y. G. Lin , Q. Wang , Y. Li , F. Meng , B. K. Lin , E. J. Zang , Z. Sun , F. Fang , T. C. Li , Z. J. Fang . First evaluation and frequency measurement of the strontium optical lattice clock at NIM. Chin. Phys. Lett., 2015, 32(9): 090601
CrossRef
ADS
Google scholar
|
[22] |
X. Tian , Q. Xu , M. Yin , D. Kong , Y. Wang , B. Lu , H. Liu , J. Ren , H. Chang . Experiment study on optical lattice clock of strontium at NTSC. Acta Opt. Sin., 2015, 35(s1): s102001
CrossRef
ADS
Google scholar
|
[23] |
M. Mancini , G. Pagano , G. Cappellini , L. Livi , M. Rider , J. Catani , C. Sias , P. Zoller , M. Inguscio , M. Dalmonte , L. Fallani . Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science, 2015, 349(6255): 1510
CrossRef
ADS
Google scholar
|
[24] |
B.SongC.HeS.ZhangE.HajiyevW.HuangX.J. LiuG.B. Jo, Spin–orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)
|
[25] |
L. F. Livi , G. Cappellini , M. Diem , L. Franchi , C. Clivati , M. Frittelli , F. Levi , D. Calonico , J. Catani , M. Inguscio , L. Fallani . Synthetic dimensions and spin–orbit coupling with an optical clock transition. Phys. Rev. Lett., 2016, 117(22): 220401
CrossRef
ADS
Google scholar
|
[26] |
S. Kolkowitz , S. L. Bromley , T. Bothwell , M. L. Wall , G. E. Marti , A. P. Koller , X. Zhang , A. M. Rey , J. Ye . Spin–orbit-coupled fermions in an optical lattice clock. Nature, 2017, 542(7639): 66
CrossRef
ADS
Google scholar
|
[27] |
S.L. CampbellR.B. HutsonG.E. MartiA.GobanN.D. OppongR.L. McNallyL.SonderhouseJ.M. RobinsonW.ZhangB.J. BloomJ.Ye, A Fermi-degenerate three-dimensional optical lattice clock, Science 358(6359), 90 (2017)
|
[28] |
B. Song , L. Zhang , C. He , T. F. J. Poon , E. Hajiyev , S. Zhang , X. J. Liu , G. B. Jo . Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
CrossRef
ADS
Google scholar
|
[29] |
A. Goban , R. B. Hutson , G. E. Marti , S. L. Campbell , M. A. Perlin , P. S. Julienne , J. P. D’Incao , A. M. Rey , J. Ye . Emergence of multi-body interactions in a fermionic lattice clock. Nature, 2018, 563(7731): 369
CrossRef
ADS
Google scholar
|
[30] |
B. Song , C. He , S. Niu , L. Zhang , Z. Ren , X. J. Liu , G. B. Jo . Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys., 2019, 15(9): 911
CrossRef
ADS
Google scholar
|
[31] |
L. Sonderhouse , C. Sanner , R. B. Hutson , A. Goban , T. Bilitewski , L. Yan , W. R. Milner , A. M. Rey , J. Ye . Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys., 2020, 16(12): 1216
CrossRef
ADS
Google scholar
|
[32] |
P. Lauria , W. T. Kuo , N. R. Cooper , J. T. Barreiro . Experimental realization of a fermionic spin-momentum lattice. Phys. Rev. Lett., 2022, 128(24): 245301
CrossRef
ADS
Google scholar
|
[33] |
M. C. Liang , Y. D. Wei , L. Zhang , X. J. Wang , H. Zhang , W. W. Wang , W. Qi , X. J. Liu , X. Zhang . Realization of Qi–Wu–Zhang model in spin–orbit-coupled ultracold fermions. Phys. Rev. Res., 2023, 5(1): L012006
CrossRef
ADS
Google scholar
|
[34] |
J. Dalibard , F. Gerbier , G. Juzeliunas , P. Ohberg . Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 2011, 83(4): 1523
CrossRef
ADS
Google scholar
|
[35] |
N. Goldman , G. Juzeliunas , P. Ohberg , I. B. Spielman . Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys., 2014, 77(12): 126401
CrossRef
ADS
Google scholar
|
[36] |
H. Zhai . Degenerate quantum gases with spin–orbit coupling: A review. Rep. Prog. Phys., 2015, 78(2): 026001
CrossRef
ADS
Google scholar
|
[37] |
L.ZhangX.J. Liu, in: Synthetic Spin–Orbit Coupling in Cold Atoms, Chapter 1, pp 1–87, edited by W. Zhang, W. Yi, and C. A. R. S. de Melo, World Scientific, Singapore, 2018
|
[38] |
G.W. F. Drake (Ed.), Atomic, Molecular, & Optical Physics Handbook, American Institute of Physics, Woodbury, N.Y., 1996
|
[39] |
H.ZhangW.-W. WangC.QiaoL.ZhangM.-C. LiangR.WuX.-J. WangX.-J. LiuX.Zhang, Topological spin–orbit-coupled fermions beyond rotating wave approximation, under review by Phys. Rev. Lett.
|
[40] |
W. Qi , M. C. Liang , H. Zhang , Y. D. Wei , W. W. Wang , X. J. Wang , X. Zhang . Experimental realization of degenerate Fermi gases of 87Sr atoms with 10 or two spin components. Chin. Phys. Lett., 2019, 36(9): 093701
CrossRef
ADS
Google scholar
|
[41] |
H.J. MetcalfP.Straten, Laser Cooling and Trapping, Springer, New York, USA, 1999
|
[42] |
C.J. Foot, Atomic Physics, Oxford: Oxford University Press, 2005
|
[43] |
D.A. Steck, Quantum and Atom Optics, available online at URL: steck.us/teaching, revision 0.12. 5, 26 January 2019
|
[44] |
H.Zhai, Ultracold Atomic Physics, Cambridge University Press, Cambridge, 2021
|
[45] |
C. Qiao , W. Zhang . Spontaneous decay-induced quantum dynamics in Rydberg-blockaded Λ-type atoms. J. Phys. At. Mol. Opt. Phys., 2021, 54(20): 205501
CrossRef
ADS
Google scholar
|
[46] |
C.Cohen-TannoudjiD.Guery-Odelin, Advances in Atomic Physics: An Overview, Singapore: World Scientific, 2011
|
[47] |
M.O. ScullyM.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997
|
/
〈 |
|
〉 |