Realization of highly isolated stable few-spin systems based on alkaline-earth fermions

Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang

PDF(4516 KB)
PDF(4516 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 62303. DOI: 10.1007/s11467-023-1314-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Realization of highly isolated stable few-spin systems based on alkaline-earth fermions

Author information +
History +

Abstract

Few-level systems consisting of a certain number of spin states have provided the basis of a wide range of cold atom researches. However, more developments are still needed for better preparation of isolated few-spin systems. In this work, we demonstrate a highly nonlinear spin-discriminating (HNSD) method for isolating an arbitrary few-level manifold out of a larger total number of spin ground states in fermionic alkaline-earth atoms. With this method, we realize large and tunable energy shifts for unwanted spin states while inducing negligible shifts for the spin states of interest, which leads to a highly isolated few-spin system under minimal perturbation. Furthermore, the isolated few-spin system exhibits a long lifetime on the hundred-millisecond scale. Using the HNSD method, we demonstrate a characteristic Rabi oscillation between the two states of an isolated two-spin Fermi gas. Our method has wide applicability for realizing long-lived two-spin or high-spin quantum systems based on alkaline-earth fermions.

Graphical abstract

Keywords

few-spin system / alkaline-earth atoms / ultracold Fermi gas / a.c. Stark shift / long-lived quantum system

Cite this article

Download citation ▾
Wen-Wei Wang, Han Zhang, Chang Qiao, Ming-Cheng Liang, Rui Wu, Xibo Zhang. Realization of highly isolated stable few-spin systems based on alkaline-earth fermions. Front. Phys., 2023, 18(6): 62303 https://doi.org/10.1007/s11467-023-1314-2

References

[1]
A. D. Ludlow , M. M. Boyd , J. Ye , E. Peik , P. O. Schmidt . Optical atomic clocks. Rev. Mod. Phys., 2015, 87(2): 637
CrossRef ADS Google scholar
[2]
C. Chin , R. Grimm , P. Julienne , E. Tiesinga . Feshbach resonances in ultracold gases. Rev. Mod. Phys., 2010, 82(2): 1225
CrossRef ADS Google scholar
[3]
P. Naidon , S. Endo . Efimov physics: A review. Rep. Prog. Phys., 2017, 80(5): 056001
CrossRef ADS Google scholar
[4]
C. Monroe , W. C. Campbell , L. M. Duan , Z. X. Gong , A. V. Gorshkov , P. W. Hess , R. Islam , K. Kim , N. M. Linke , G. Pagano , P. Richerme , C. Senko , N. Y. Yao . Programmable quantum simulations of spin systems with trapped ions. Rev. Mod. Phys., 2021, 93(2): 025001
CrossRef ADS Google scholar
[5]
J.K. AsbóthL.OroszlányA.Pályi, A Short Course on Topological Insulators, Springer, 2016
[6]
X. L. Qi , Y. S. Wu , S. C. Zhang . Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B, 2006, 74(8): 085308
CrossRef ADS Google scholar
[7]
X. J. Liu , K. T. Law , T. K. Ng . Realization of 2D spin–orbit interaction and exotic topological orders in cold atoms. Phys. Rev. Lett., 2014, 112(8): 086401
CrossRef ADS Google scholar
[8]
L. Huang , Z. Meng , P. Wang , P. Peng , S. L. Zhang , L. Chen , D. Li , Q. Zhou , J. Zhang . Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys., 2016, 12(6): 540
CrossRef ADS Google scholar
[9]
Z. Wu , L. Zhang , W. Sun , X. T. Xu , B. Z. Wang , S. C. Ji , Y. Deng , S. Chen , X. J. Liu , J. W. Pan . Realization of two-dimensional spin–orbit coupling for Bose–Einstein condensates. Science, 2016, 354(6308): 83
CrossRef ADS Google scholar
[10]
W. Sun , B. Z. Wang , X. T. Xu , C. R. Yi , L. Zhang , Z. Wu , Y. Deng , X. J. Liu , S. Chen , J. W. Pan . Highly controllable and robust 2D spin–orbit coupling for quantum gases. Phys. Rev. Lett., 2018, 121(15): 150401
CrossRef ADS Google scholar
[11]
X. T. Xu , Z. Y. Wang , R. H. Jiao , C. R. Yi , W. Sun , S. Chen . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
CrossRef ADS Google scholar
[12]
J. Ye , H. J. Kimble , H. Katori . Quantum state engineering and precision metrology using state-insensitive light traps. Science, 2008, 320(5884): 1734
CrossRef ADS Google scholar
[13]
A. V. Gorshkov , M. Hermele , V. Gurarie , C. Xu , P. S. Julienne , J. Ye , P. Zoller , E. Demler , M. D. Lukin , A. M. Rey . Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms. Nat. Phys., 2010, 6(4): 289
CrossRef ADS Google scholar
[14]
A. J. Daley . Quantum computing and quantum simulation with group-II atoms. Quantum Inform. Process., 2011, 10(6): 865
CrossRef ADS Google scholar
[15]
S. Taie , R. Yamazaki , S. Sugawa , Y. Takahashi . An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling. Nat. Phys., 2012, 8(11): 825
CrossRef ADS Google scholar
[16]
S.StellmerF.SchreckT.C. Killian, in: Annual Review of Cold Atoms and Molecules, Vol. 2, Chapter 1, 1st Ed., World Scientific, Singapore, 2014
[17]
G.PaganoM.ManciniG.CappelliniP.LombardiF.SchaferH.HuX.J. LiuJ.CataniC.SiasM.InguscioL.Fallani, A one-dimensional liquid of fermions with tunable spin, Nat. Phys. 10(3), 198 (2014)
[18]
X. Zhang , M. Bishof , S. L. Bromley , C. V. Kraus , M. S. Safronova , P. Zoller , A. M. Rey , J. Ye . Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism. Science, 2014, 345(6203): 1467
CrossRef ADS Google scholar
[19]
F. Scazza , C. Hofrichter , M. Höfer , P. C. De Groot , I. Bloch , S. Fölling . Observation of two-orbital spin-exchange interactions with ultracold SU(N)-symmetric fermions. Nat. Phys., 2014, 10(10): 779
CrossRef ADS Google scholar
[20]
G. Cappellini , M. Mancini , G. Pagano , P. Lombardi , L. Livi , M. Siciliani de Cumis , P. Cancio , M. Pizzocaro , D. Calonico , F. Levi , C. Sias , J. Catani , M. Inguscio , L. Fallani . Direct observation of coherent interorbital spin-exchange dynamics. Phys. Rev. Lett., 2014, 113(12): 120402
CrossRef ADS Google scholar
[21]
Y. G. Lin , Q. Wang , Y. Li , F. Meng , B. K. Lin , E. J. Zang , Z. Sun , F. Fang , T. C. Li , Z. J. Fang . First evaluation and frequency measurement of the strontium optical lattice clock at NIM. Chin. Phys. Lett., 2015, 32(9): 090601
CrossRef ADS Google scholar
[22]
X. Tian , Q. Xu , M. Yin , D. Kong , Y. Wang , B. Lu , H. Liu , J. Ren , H. Chang . Experiment study on optical lattice clock of strontium at NTSC. Acta Opt. Sin., 2015, 35(s1): s102001
CrossRef ADS Google scholar
[23]
M. Mancini , G. Pagano , G. Cappellini , L. Livi , M. Rider , J. Catani , C. Sias , P. Zoller , M. Inguscio , M. Dalmonte , L. Fallani . Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science, 2015, 349(6255): 1510
CrossRef ADS Google scholar
[24]
B.SongC.HeS.ZhangE.HajiyevW.HuangX.J. LiuG.B. Jo, Spin–orbit-coupled two-electron Fermi gases of ytterbium atoms, Phys. Rev. A 94, 061604(R) (2016)
[25]
L. F. Livi , G. Cappellini , M. Diem , L. Franchi , C. Clivati , M. Frittelli , F. Levi , D. Calonico , J. Catani , M. Inguscio , L. Fallani . Synthetic dimensions and spin–orbit coupling with an optical clock transition. Phys. Rev. Lett., 2016, 117(22): 220401
CrossRef ADS Google scholar
[26]
S. Kolkowitz , S. L. Bromley , T. Bothwell , M. L. Wall , G. E. Marti , A. P. Koller , X. Zhang , A. M. Rey , J. Ye . Spin–orbit-coupled fermions in an optical lattice clock. Nature, 2017, 542(7639): 66
CrossRef ADS Google scholar
[27]
S.L. CampbellR.B. HutsonG.E. MartiA.GobanN.D. OppongR.L. McNallyL.SonderhouseJ.M. RobinsonW.ZhangB.J. BloomJ.Ye, A Fermi-degenerate three-dimensional optical lattice clock, Science 358(6359), 90 (2017)
[28]
B. Song , L. Zhang , C. He , T. F. J. Poon , E. Hajiyev , S. Zhang , X. J. Liu , G. B. Jo . Observation of symmetry-protected topological band with ultracold fermions. Sci. Adv., 2018, 4(2): eaao4748
CrossRef ADS Google scholar
[29]
A. Goban , R. B. Hutson , G. E. Marti , S. L. Campbell , M. A. Perlin , P. S. Julienne , J. P. D’Incao , A. M. Rey , J. Ye . Emergence of multi-body interactions in a fermionic lattice clock. Nature, 2018, 563(7731): 369
CrossRef ADS Google scholar
[30]
B. Song , C. He , S. Niu , L. Zhang , Z. Ren , X. J. Liu , G. B. Jo . Observation of nodal-line semimetal with ultracold fermions in an optical lattice. Nat. Phys., 2019, 15(9): 911
CrossRef ADS Google scholar
[31]
L. Sonderhouse , C. Sanner , R. B. Hutson , A. Goban , T. Bilitewski , L. Yan , W. R. Milner , A. M. Rey , J. Ye . Thermodynamics of a deeply degenerate SU(N)-symmetric Fermi gas. Nat. Phys., 2020, 16(12): 1216
CrossRef ADS Google scholar
[32]
P. Lauria , W. T. Kuo , N. R. Cooper , J. T. Barreiro . Experimental realization of a fermionic spin-momentum lattice. Phys. Rev. Lett., 2022, 128(24): 245301
CrossRef ADS Google scholar
[33]
M. C. Liang , Y. D. Wei , L. Zhang , X. J. Wang , H. Zhang , W. W. Wang , W. Qi , X. J. Liu , X. Zhang . Realization of Qi–Wu–Zhang model in spin–orbit-coupled ultracold fermions. Phys. Rev. Res., 2023, 5(1): L012006
CrossRef ADS Google scholar
[34]
J. Dalibard , F. Gerbier , G. Juzeliunas , P. Ohberg . Colloquium: Artificial gauge potentials for neutral atoms. Rev. Mod. Phys., 2011, 83(4): 1523
CrossRef ADS Google scholar
[35]
N. Goldman , G. Juzeliunas , P. Ohberg , I. B. Spielman . Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys., 2014, 77(12): 126401
CrossRef ADS Google scholar
[36]
H. Zhai . Degenerate quantum gases with spin–orbit coupling: A review. Rep. Prog. Phys., 2015, 78(2): 026001
CrossRef ADS Google scholar
[37]
L.ZhangX.J. Liu, in: Synthetic Spin–Orbit Coupling in Cold Atoms, Chapter 1, pp 1–87, edited by W. Zhang, W. Yi, and C. A. R. S. de Melo, World Scientific, Singapore, 2018
[38]
G.W. F. Drake (Ed.), Atomic, Molecular, & Optical Physics Handbook, American Institute of Physics, Woodbury, N.Y., 1996
[39]
H.ZhangW.-W. WangC.QiaoL.ZhangM.-C. LiangR.WuX.-J. WangX.-J. LiuX.Zhang, Topological spin–orbit-coupled fermions beyond rotating wave approximation, under review by Phys. Rev. Lett.
[40]
W. Qi , M. C. Liang , H. Zhang , Y. D. Wei , W. W. Wang , X. J. Wang , X. Zhang . Experimental realization of degenerate Fermi gases of 87Sr atoms with 10 or two spin components. Chin. Phys. Lett., 2019, 36(9): 093701
CrossRef ADS Google scholar
[41]
H.J. MetcalfP.Straten, Laser Cooling and Trapping, Springer, New York, USA, 1999
[42]
C.J. Foot, Atomic Physics, Oxford: Oxford University Press, 2005
[43]
D.A. Steck, Quantum and Atom Optics, available online at URL: steck.us/teaching, revision 0.12. 5, 26 January 2019
[44]
H.Zhai, Ultracold Atomic Physics, Cambridge University Press, Cambridge, 2021
[45]
C. Qiao , W. Zhang . Spontaneous decay-induced quantum dynamics in Rydberg-blockaded Λ-type atoms. J. Phys. At. Mol. Opt. Phys., 2021, 54(20): 205501
CrossRef ADS Google scholar
[46]
C.Cohen-TannoudjiD.Guery-Odelin, Advances in Atomic Physics: An Overview, Singapore: World Scientific, 2011
[47]
M.O. ScullyM.S. Zubairy, Quantum Optics, Cambridge University Press, Cambridge, 1997

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Availability of data and material

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Acknowledgements

We are grateful to Murray Barrett for very insightful discussions. We thank Meng Khoon Tey, Li-Yang Xie, Bo-Yang Wang, Yu-Dong Wei, Biao Wu, Shina Tan, Yige Lin, Xiaoji Zhou for discussion and technical support. This work was supported by the Chinese Academy of Sciences Strategic Priority Research Program under Grant No. XDB35020100, the National Key Research and Development Program of China under Grant No. 2018YFA0305601, the National Natural Science Foundation of China under Grant No. 11874073, the Hefei National Laboratory and the Scientific and Technological Innovation 2030 Key Program of Quantum Communication and Quantum Computing under Grant No. 2021ZD0301903. H.Z. and X.Z. conceived the project. W.-W.W., H.Z., C.Q., M.-C.L., R.W. performed the experiments. C.Q., H.Z., W.-W.W. performed the numerical computations. All authors contributed to the data analysis and the writing of this manuscript.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4516 KB)

Accesses

Citations

Detail

Sections
Recommended

/