Machine learning transforms the inference of the nuclear equation of state
Yongjia Wang, Qingfeng Li
Machine learning transforms the inference of the nuclear equation of state
Our knowledge of the properties of dense nuclear matter is usually obtained indirectly via nuclear experiments, astrophysical observations, and nuclear theory calculations. Advancing our understanding of the nuclear equation of state (EOS, which is one of the most important properties and of central interest in nuclear physics) has relied on various data produced from experiments and calculations. We review how machine learning is revolutionizing the way we extract EOS from these data, and summarize the challenges and opportunities that come with the use of machine learning.
nuclear equation of state / machine learning / nuclear theory / nuclear experiment
[1] |
C. Drischler , J. Holt , C. Wellenhofer . Chiral effective field theory and the high-density nuclear equation of state. Annu. Rev. Nucl. Part. Sci., 2021, 71(1): 403
CrossRef
ADS
Google scholar
|
[2] |
B. A. Li , L. W. Chen , C. M. Ko . Recent progress and new challenges in isospin physics with heavy-ion reactions. Phys. Rep., 2008, 464(4−6): 113
CrossRef
ADS
Google scholar
|
[3] |
M. Oertel , M. Hempel , T. Klähn , S. Typel . Equations of state for supernovae and compact stars. Rev. Mod. Phys., 2017, 89(1): 015007
CrossRef
ADS
Google scholar
|
[4] |
A.SorensenK.AgarwalK.W. Brown,
|
[5] |
J. Lattimer . Neutron stars and the nuclear matter equation of state. Annu. Rev. Nucl. Part. Sci., 2021, 71(1): 433
CrossRef
ADS
Google scholar
|
[6] |
J. A. López , C. O. Dorso , G. A. Frank . Properties of nuclear pastas. Front. Phys. (Beijing), 2021, 16(2): 24301
CrossRef
ADS
Google scholar
|
[7] |
M. Tsang , J. Stone , F. Camera , P. Danielewicz , S. Gandolfi , K. Hebeler , C. J. Horowitz , J. Lee , W. G. Lynch , Z. Kohley , R. Lemmon , P. Möller , T. Murakami , S. Riordan , X. Roca-Maza , F. Sammarruca , A. W. Steiner , I. Vidaña , S. J. Yennello . Constraints on the symmetry energy and neutron skins from experiments and theory. Phys. Rev. C, 2012, 86(1): 015803
CrossRef
ADS
Google scholar
|
[8] |
H. Wolter , M. Colonna , D. Cozma .
CrossRef
ADS
Google scholar
|
[9] |
Y. J. Wang , Q. F. Li . Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies. Front. Phys. (Beijing), 2020, 15(4): 44302
CrossRef
ADS
Google scholar
|
[10] |
M. I. Jordan , T. M. Mitchell . Machine learning: Trends, perspectives, and prospects. Science, 2015, 349(6245): 255
CrossRef
ADS
Google scholar
|
[11] |
G. Carleo , I. Cirac , K. Cranmer , L. Daudet , M. Schuld , N. Tishby , L. Vogt-Maranto , L. Zdeborová . Machine learning and the physical sciences. Rev. Mod. Phys., 2019, 91(4): 045002
CrossRef
ADS
Google scholar
|
[12] |
A.J. HeyS.TansleyK.M. Tolle,
|
[13] |
S. Gazula , J. Clark , H. Bohr . Learning and prediction of nuclear stability by neural networks. Nucl. Phys. A., 1992, 540(1−2): 1
CrossRef
ADS
Google scholar
|
[14] |
S. Bass , A. Bischoff , C. Hartnack , J. A. Maruhn , J. Reinhardt , H. Stocker , W. Greiner . Neural networks for impact parameter determination. J. Phys. G Nucl. Part. Phys., 1994, 20(1): L21
CrossRef
ADS
Google scholar
|
[15] |
P. Bedaque , A. Boehnlein , M. Cromaz , M. Diefenthaler , L. Elouadrhiri , T. Horn , M. Kuchera , D. Lawrence , D. Lee , S. Lidia , R. McKeown , W. Melnitchouk , W. Nazarewicz , K. Orginos , Y. Roblin , M. Scott Smith , M. Schram , X. N. Wang . A. I. for nuclear physics. Eur. Phys. J. A, 2021, 57(3): 100
CrossRef
ADS
Google scholar
|
[16] |
A. Boehnlein , M. Diefenthaler , N. Sato , M. Schram , V. Ziegler , C. Fanelli , M. Hjorth-Jensen , T. Horn , M. P. Kuchera , D. Lee , W. Nazarewicz , P. Ostroumov , K. Orginos , A. Poon , X. N. Wang , A. Scheinker , M. S. Smith , L. G. Pang . Colloquium: Machine learning in nuclear physics. Rev. Mod. Phys., 2022, 94(3): 031003
CrossRef
ADS
Google scholar
|
[17] |
W.B. HeY.G. MaL.G. PangH.C. SongK.Zhou, High energy nuclear physics meets Machine Learning, arXiv: 2303.06752 (2023)
|
[18] |
W.HeQ.LiY.MaZ.M. NiuJ.C. PeiY.X. Zhang, Machine learning in nuclear physics at low and intermediate energies, arXiv: 2301.06396 (2023)
|
[19] |
P. Morfouace , C. Tsang , Y. Zhang , W. G. Lynch , M. B. Tsang , D. D. S. Coupland , M. Youngs , Z. Chajecki , M. A. Famiano , T. K. Ghosh , G. Jhang , J. Lee , H. Liu , A. Sanetullaev , R. Showalter , J. Winkelbauer . Constraining the symmetry energy with heavy-ion collisions and Bayesian analyses. Phys. Lett. B, 2019, 799: 135045
CrossRef
ADS
Google scholar
|
[20] |
M.O. KuttanJ.SteinheimerK.ZhouH.Stoecker, The QCD EoS of dense nuclear matter from Bayesian analysis of heavy ion collision data, arXiv: 2211.11670 (2022)
|
[21] |
B.A. LiW.J. Xie, Bayesian inference of in-medium baryon−baryon scattering cross sections from HADES proton flow data, arXiv: 2303.10474 (2023)
|
[22] |
S. Huth , P. T. Pang , I. Tews , T. Dietrich , A. Le Fèvre , A. Schwenk , W. Trautmann , K. Agarwal , M. Bulla , M. W. Coughlin , C. Van Den Broeck . Constraining neutron-star matter with microscopic and macroscopic collisions. Nature, 2022, 606(7913): 276
CrossRef
ADS
Google scholar
|
[23] |
L. G. Pang , K. Zhou , N. Su , H. Petersen , H. Stöcker , X. N. Wang . An equation-of-state-meter of quantum chromodynamics transition from deep learning. Nat. Commun., 2018, 9(1): 210
CrossRef
ADS
Google scholar
|
[24] |
Y. Wang , Z. Gao , H. Lü , Q. Li . Decoding the nuclear symmetry energy event-by-event in heavy-ion collisions with machine learning. Phys. Lett. B, 2022, 835: 137508
CrossRef
ADS
Google scholar
|
[25] |
K.ZhouL.WangL.G. PangS.Z. Shi, Exploring QCD matter in extreme conditions with Machine Learning, arXiv: 2303.15136 (2023)
|
[26] |
M. Raissi , P. Perdikaris , G. E. Karniadakis . Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys., 2019, 378: 686
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |