Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems

Li-Wen Zhang, Ya-Qing Yang, Jun Chen, Lei Zhang

PDF(5319 KB)
PDF(5319 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 62301. DOI: 10.1007/s11467-023-1307-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems

Author information +
History +

Abstract

Photogalvanic effect (PGE) occurs in materials with non-centrosymmetric structures when irradiated by linearly or circularly polarized light. Here, using non-equilibrium Green’s function combined with density functional theory (NEGF-DFT), we investigated the linear photogalvanic effect (LPGE) in monolayers of group-V elements (As, Sb, and Bi) by first-principles calculations. First, by designing a two-probe structure based on the group-V elements, we found a giant anisotropy photoresponse of As between the armchair and zigzag directions. Then, we analyzed Sb and Bi’s charge and spin photocurrent characteristics when considering the spin-orbit coupling (SOC) effect. It is found that when the polarization direction of linearly polarized light is parallel or perpendicular to the transport direction (θ = 0 or 90), the spin up and spin down photoresponse in the armchair direction has the same magnitude and direction, leading to the generation of net charge current. However, in the zigzag direction, the spin up and spin down photoresponse have the same magnitude with opposite directions, leading to the generation of pure spin current. Furthermore, it is understood by analyzing the bulk spin photovoltaic (BSPV) coefficient from the symmetry point of view. Finally, we found that the net charge current generated in the armchair direction and the pure spin current generated in the zigzag direction can be further tuned with the increase of the material’s buckling height |h|. Our results highlight that these group-V monolayers are promising candidates for novel functional materials, which will provide a broad prospect for the realization of ultrathin ferroelectric devices in optoelectronics due to their spontaneous polarization characteristics and high Curie temperature.

Graphical abstract

Keywords

group-V monolayers / photogalvanic effect / pure spin current

Cite this article

Download citation ▾
Li-Wen Zhang, Ya-Qing Yang, Jun Chen, Lei Zhang. Photogalvanic effect induced charge and spin photocurrent in group-V monolayer systems. Front. Phys., 2023, 18(6): 62301 https://doi.org/10.1007/s11467-023-1307-1

References

[1]
J. F. Scott . Applications of modern ferroelectrics. Science, 2007, 315(5814): 954
CrossRef ADS Google scholar
[2]
M. Dawber , K. M. Rabe , J. F. Scott . Physics of thin-film ferroelectric oxides. Rev. Mod. Phys., 2005, 77(4): 1083
CrossRef ADS Google scholar
[3]
L. W. Martin , A. M. Rappe . Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
CrossRef ADS Google scholar
[4]
L. Jiang , L. L. Tao , B. S. Yang , J. Wang , X. F. Han . Enhanced tunneling electroresistance in multiferroic tunnel junctions due to the reversible modulation of orbitals overlap. Appl. Phys. Lett., 2016, 109(19): 192902
CrossRef ADS Google scholar
[5]
L. L. Tao , J. Wang . Ferroelectricity and tunneling electroresistance effect driven by asymmetric polar interfaces in all-oxide ferroelectric tunnel junctions. Appl. Phys. Lett., 2016, 108(6): 062903
CrossRef ADS Google scholar
[6]
C. H. Ahn , K. M. Rabe , J. M. Triscone . Ferroelectricity at the nanoscale: Local polarization in oxide thin films and heterostructures. Science, 2004, 303(5657): 488
CrossRef ADS Google scholar
[7]
D. D. Fong , G. B. Stephenson , S. K. Streiffer , J. A. Eastman , O. Auciello , P. H. Fuoss , C. Thompson . Ferro-electricity in ultrathin perovskite films. Science, 2004, 304(5677): 1650
CrossRef ADS Google scholar
[8]
J. Junquera , P. Ghosez . Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506
CrossRef ADS Google scholar
[9]
L. L. Kang , P. Jiang , N. Cao , H. Hao , X. H. Zheng , L. Zhang , Z. Zeng . Realizing giant tunneling electroresistance in two-dimensional graphene/BiP ferroelectric tunnel junction. Nanoscale, 2019, 11(36): 16837
CrossRef ADS Google scholar
[10]
C. Liu , W. H. Wan , J. Ma , W. Guo , Y. Yao . Robust ferroelectricity in two-dimensional SbN and BiP. Nanoscale, 2018, 10(17): 7984
CrossRef ADS Google scholar
[11]
J. Qiao , X. Kong , Z. X. Hu , F. Yang , W. Ji . High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 2014, 5(1): 4475
CrossRef ADS Google scholar
[12]
K. Gong , L. Zhang , W. Ji , H. Guo . Electrical contacts to monolayer black phosphorus: A first-principles investigation. Phys. Rev. B, 2014, 90(12): 125441
CrossRef ADS Google scholar
[13]
Y. Y. Li , B. Gao , Y. Han , B. K. Chen , J. Y. Huo . Optoelectronic characteristics and application of black phosphorus and its analogs. Front. Phys., 2021, 16(4): 43301
CrossRef ADS Google scholar
[14]
L.W. ZhangZ.Z. YuL.ZhangX.H. ZhengL.T. XiaoS.T. JiaJ.Wang, A novel electrically controllable volatile memory device based on few-layer black phosphorus, J. Mater. Chem. C 6(10), 2460 (2018)
[15]
H. Liu , A. T. Neal , Z. Zhu , Z. Luo , X. Xu , D. Tománek , P. D. Ye . Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano, 2014, 8(4): 4033
CrossRef ADS Google scholar
[16]
L. W. Zhang , J. Chen , X. H. Zheng , B. Wang , L. Zhang , L. T. Xiao , S. T. Jia . Gate-tunable large spin polarization in a few-layer black phosphorus-based spintronic device. Nanoscale, 2019, 11(24): 11872
CrossRef ADS Google scholar
[17]
T. Hong , B. Chamlagain , W. Lin , H. Chuang , M. Pan , Z. Zhou , Y. Q. Xu . Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale, 2014, 6(15): 8978
CrossRef ADS Google scholar
[18]
L. Li , Y. Yu , G. J. Ye , Q. Ge , X. Ou , H. Wu , D. Feng , X. H. Chen , Y. Zhang . Black phosphorus field-effect transistors. Nat. Nanotechnol., 2014, 9(5): 372
CrossRef ADS Google scholar
[19]
M. Buscema , D. J. Groenendijk , S. I. Blanter , G. A. Steele , H. S. J. van der Zant , A. Castellanos-Gomez . Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 2014, 14(6): 3347
CrossRef ADS Google scholar
[20]
A. Avsar , J. Y. Tan , M. Kurpas , M. Gmitra , K. Watanabe , T. Taniguchi , J. Fabian , B. Özyilmaz . Gate-tunable black phosphorus spin valve with nanosecond spin life-times. Nat. Phys., 2017, 13(9): 888
CrossRef ADS Google scholar
[21]
C. C. Xiao , F. Wang , S. Y. A. Yang , Y. H. Lu , Y. P. Feng , S. B. Zhang . Elemental ferroelectricity and antiferroelectricity in group-V monolayer. Adv. Funct. Mater., 2018, 28(17): 1707383
CrossRef ADS Google scholar
[22]
W. H. Wan , C. Liu , W. Xiao , Y. G. Yao . Promising ferroelectricity in 2D group IV tellurides: A first-principles study. Appl. Phys. Lett., 2017, 111(13): 132904
CrossRef ADS Google scholar
[23]
M. Bianchi , D. Guan , A. Strozecka , C. H. Voetmann , S. Bao , J. I. Pascual , A. Eiguren , P. Hofmann . Surface states on a topologically nontrivial semimetal: The case of Sb(110). Phys. Rev. B, 2012, 85(15): 155431
CrossRef ADS Google scholar
[24]
Y. H. Lu , W. T. Xu , M. Zeng , G. Yao , L. Shen , M. Yang , Z. Luo , F. Pan , K. Wu , T. Das , P. He , J. Jiang , J. Martin , Y. P. Feng , H. Lin , X. Wang . Topological properties determined by atomic buckling in self-assembled ultra-thin Bi(110). Nano Lett., 2015, 15(1): 80
CrossRef ADS Google scholar
[25]
I. Kokubo , Y. Yoshiike , K. Nakatsuji , H. Hirayama . Ultrathin Bi(110) films on Si(111) 3 × 3-B substrates. Phys. Rev. B, 2015, 91(7): 075429
CrossRef ADS Google scholar
[26]
J. Chen , L. W. Zhang , L. Zhang , X. H. Zheng , L. T. Xiao , S. T. Jia , J. Wang . Photogalvanic effect induced fully spin polarized current and pure spin current in zigzag SiC nanoribbons. Phys. Chem. Chem. Phys., 2018, 20(41): 26744
CrossRef ADS Google scholar
[27]
F.ChuM.ChenY.WangY.XieB.LiuY.YangX.AnY.Zhang, A highly polarization sensitive antimonene photodetector with a broadband photoresponse and strong anisotropy, J. Mater. Chem. C 6(10), 2509 (2018)
[28]
Y. Xie , L. Zhang , Y. Zhu , L. Liu , H. Guo . Photogalvanic effect in monolayer black phosphorus. Nanotechnology, 2015, 26(45): 455202
CrossRef ADS Google scholar
[29]
S. D. Ganichev , U. Rössler , W. Prettl , E. L. Ivchenko , X. V. Belkov , R. Neumann , K. Brunner , G. Abstreiter . Removal of spin degeneracy in p-SiGe quantum wells demonstrated by spin photocurrents. Phys. Rev. B, 2002, 66(7): 075328
CrossRef ADS Google scholar
[30]
J. Li , W. Yang , J. Liu , W. Huang , C. Li , S. Y. Chen . Enhanced circular photogalvanic effect in HgTe quantum wells in the heavily inverted regime. Phys. Rev. B, 2017, 95(3): 035308
CrossRef ADS Google scholar
[31]
P. Zhao , J. Li , W. Wei , Q. Sun , H. Jin , B. Huang , Y. Dai . Giant anisotropic photogalvanic effect in a flexible AsSb monolayer with ultrahigh carrier mobility. Phys. Chem. Chem. Phys., 2017, 19(40): 27233
CrossRef ADS Google scholar
[32]
C. Jiang , V. A. Shalygin , V. Y. Panevin , S. N. Danilov , M. M. Glazov , R. Yakimova , S. Lara-Avila , S. Kubatkin , S. D. Ganichev . Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a CO2 laser. Phys. Rev. B, 2011, 84(12): 125429
CrossRef ADS Google scholar
[33]
H. Guan , N. Tang , X. Xu , L. L. Shang , W. Huang , L. Fu , V. Fang , J. Yu , C. Zhang , X. Zhang , L. Dai , Y. Chen , W. Ge , B. Shen . Photon wavelength dependent valley photocurrent in multilayer MoS2. Phys. Rev. B, 2017, 96(24): 241304
CrossRef ADS Google scholar
[34]
V. I. Belinicher , B. I. Sturman . The photogalvanic effect in media lacking a center of symmetry. Sov. Phys. Usp., 1980, 23(3): 199
CrossRef ADS Google scholar
[35]
L. Qian , J. Zhao , Y. Xie . Enhanced photogalvanic effect in the two-dimensional MgCl2/ZnBr2 vertical heterojunction by inhomogenous tensile stress. Front. Phys., 2022, 17(1): 13502
CrossRef ADS Google scholar
[36]
X. Tao , P. Jiang , H. Hao , X. Zheng , L. Zhang , Z. Zeng . Pure spin current generation via photogalvanic effect with spatial inversion symmetry. Phys. Rev. B, 2020, 102(8): 081402
CrossRef ADS Google scholar
[37]
B.LiuL.QianY.ZhaoY.ZhangF.LiuY.ZhangY.XieW.Shi, A polarization-sensitive, self-powered, broadband and fast Ti3C2Tx MXene photodetector from visible to near-infrared driven by photogalvanic effects, Front. Phys. 17(5), 53501 (2022)
[38]
R.FeiW.SongL.Pusey-NazzaroL.Yang, PT-symmetry-enabled spin circular photogalvanic effect in antiferromagnetic insulators, Phys. Rev. Lett. 127(20), 207402 (2021)
[39]
L. Shu , L. Qian , X. Ye , Y. Xie . Multifunctional two-dimensional VSi2N4/WSi2N4/VSi2N4 photodetector driven by the photogalvanic effect. Phys. Rev. Appl., 2022, 17(5): 054010
CrossRef ADS Google scholar
[40]
H. Ishizuka , M. Sato . Large photogalvanic spin current by magnetic resonance in bilayer Cr trihalides. Phys. Rev. Lett., 2022, 129(10): 107201
CrossRef ADS Google scholar
[41]
G. Kresse , J. Hafner . Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 47(1): 558
CrossRef ADS Google scholar
[42]
G.KresseJ.Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)
[43]
P. E. Blöchl . Projector augmented-wave method. Phys. Rev. B, 1994, 50(24): 17953
CrossRef ADS Google scholar
[44]
J.HeydG.E. Scuseria, Efficient hybrid density functional calculations in solids: Assessment of the Heyd−Scuseria−Ernzerhof screened Coulomb hybrid functional, J. Chem. Phys. 121(3), 1187 (2004)
[45]
A. V. Krukau , O. A. Vydrov , A. F. Izmaylov , G. E. Scuseria . Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys., 2006, 125(22): 224106
CrossRef ADS Google scholar
[46]
J.TaylorH.GuoJ.Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
[47]
J.TaylorH.GuoJ.Wang, Ab initio modeling of open systems: Charge transfer, electron conduction, and molecular switching of a C60 device, Phys. Rev. B 63(12), 121104 (2001)
[48]
D. Waldron , P. Haney , B. Larade , A. MacDonald , H. Guo . Nonlinear spin current and magnetoresistance of molecular tunnel junctions. Phys. Rev. Lett., 2006, 96(16): 166804
CrossRef ADS Google scholar
[49]
M. X. Zhai , X. F. Wang , P. Vasilopoulos , Y. Liu , Y. Dong , L. Zhou , Y. Jiang , W. You . Giant magnetoresistance and spin Seebeck coefficient in zigzag α-graphyne nanoribbons. Nanoscale, 2014, 6(19): 11121
CrossRef ADS Google scholar
[50]
L. Zhang , K. Gong , J. Chen , L. Liu , Y. Zhu , D. Xiao , H. Guo . Generation and transport of valley-polarized current in transition-metal dichalcogenides. Phys. Rev. B, 2014, 90(19): 195428
CrossRef ADS Google scholar
[51]
A. Saraiva-Souza , M. Smeu , L. Zhang , M. A. Ratner , H. Guo . Two-dimensional γ-graphyne suspended on Si(111): A hybrid device. J. Phys. Chem. C, 2016, 120(8): 4605
CrossRef ADS Google scholar
[52]
For details of the NanoDcal quantum tranpsort package, see URL: hzwtech.com
[53]
L.KleinmanD.M. Bylander, Efficacious form for model pseudopotentials, Phys. Rev. Lett. 48(20), 1425 (1982)
[54]
J. Chen , Y. Hu , H. Guo . First-principles analysis of photocurrent in graphene PN junctions. Phys. Rev. B, 2012, 85(15): 155441
CrossRef ADS Google scholar
[55]
L. E. Henrickson . Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys., 2002, 91(10): 6273
CrossRef ADS Google scholar
[56]
W. M. Luo , Z. G. Shao , X. F. Qin , M. Yang . Photogalvanic effect in monolayer WSe2−MoS2 lateral heterojunction from first principles. Physica E, 2020, 115: 113714
CrossRef ADS Google scholar
[57]
M.S. Dresselhaus, Solid State Physics (part II): Optical Properties of Solids, Lecture Notes, Massachusetts Institute of Technology, Cambridge, MA, 2001
[58]
H. W. Xu , H. Wang , J. Zhou , J. Li . Pure spin photocurrent in non-centrosymmetric crystals: Bulk spin photovoltaic effect. Nat. Commun., 2021, 12(1): 4330
CrossRef ADS Google scholar
[59]
B. M. Fregoso , T. Morimoto , J. E. Moore . Quantitative relationship between polarization differences and the zone-averaged shift photocurrent. Phys. Rev. B, 2017, 96(7): 075421
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

We gratefully acknowledge the support from the National Key R&D Program of China under Grant No. 2022YFA1404003, the National Natural Science Foundation of China (Grant Nos. 12074230 and 12174231), the Natural Science Foundation of Shanxi Normal University, the Fund for Shanxi “1331 Project”, and Shanxi Province 100-Plan Talent Program, Fundamental Research Program of Shanxi Province through 202103021222001 and 202203021212397. This research was conducted using the High Performance Computer of Shanxi University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5319 KB)

Accesses

Citations

Detail

Sections
Recommended

/