Synthetic two-dimensional electronics for transistor scaling

Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji

PDF(8268 KB)
PDF(8268 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 63601. DOI: 10.1007/s11467-023-1305-3
TOPICAL REVIEW
TOPICAL REVIEW

Synthetic two-dimensional electronics for transistor scaling

Author information +
History +

Abstract

Two-dimensional (2D) materials have been considered to hold promise for transistor ultrascaling, thanks to their atomically thin body immune to short-channel effects. The lower channel size limit of 2D transistors is yet to be revealed, as this size is below the spatial resolution of most lithographic techniques. In recent years, chemical approaches such as chemical vapor deposition (CVD) and metalorganic CVD (MOCVD) have been established to grow atomically precise nanostructures and heterostructures, thus allowing for synthetic construction of ultrascaled transistors. In this review, we summarize recent developments on the precise synthesis and defect engineering of electronic nanostructures/heterostructures aiming for transistor applications. We demonstrate with rich examples that ultrascaled 2D transistors are achievable by finely tuning the “growth-as-fabrication” process and could host a plethora of new device physics. Finally, by plotting the scaling trend of 2D transistors, we conclude that synthetic electronics possess superior scaling capability and could facilitate the development of post-Moore nanoelectronics.

Graphical abstract

Keywords

2D materials / nanostructures / synthetic electronics / transistor scaling

Cite this article

Download citation ▾
Zihan Wang, Yan Yang, Bin Hua, Qingqing Ji. Synthetic two-dimensional electronics for transistor scaling. Front. Phys., 2023, 18(6): 63601 https://doi.org/10.1007/s11467-023-1305-3

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
K.S. NovoselovD.V. AndreevaW.C. Ren G.C. Shan, Graphene and other two-dimensional materials, Front. Phys. 14(1), 13301(2019)
[3]
A.SplendianiL.SunY.Zhang T.LiJ.Kim C.-Y.ChimG. GalliF.Wang, Emerging Photoluminescence in Monolayer MoS2, Nano Lett. 10(4), 1271(2010)
[4]
H.M. DongS. D. GuoY.F. DuanF.HuangW.Xu J.Zhang, Electronic and optical properties of single-layer MoS2, Front. Phys. 13(4), 137307 (2018)
[5]
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis. Single-layer MoS2 transistors. Nat. Nanotechnol., 2011, 6(3): 147
CrossRef ADS Google scholar
[6]
T. Roy, M. Tosun, X. Cao, H. Fang, D. H. Lien, P. Zhao, Y. Z. Chen, Y. L. Chueh, J. Guo, A. Javey. Dual-gated MoS2 /WSe2 van der Waals tunnel diodes and transistors. ACS Nano, 2015, 9(2): 2071
CrossRef ADS Google scholar
[7]
R. Yan, S. Fathipour, Y. Han, B. Song, S. Xiao, M. Li, N. Ma, V. Protasenko, D. A. Muller, D. Jena, H. G. Xing. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett., 2015, 15(9): 5791
CrossRef ADS Google scholar
[8]
F. Schwierz. Graphene transistors. Nat. Nanotechnol., 2010, 5(7): 487
CrossRef ADS Google scholar
[9]
Y. T. Huang, Y. H. Chen, Y. J. Ho, S. W. Huang, Y. R. Chang, K. Watanabe, T. Taniguchi, H. C. Chiu, C. T. Liang, R. Sankar, F. C. Chou, C. W. Chen, W. H. Wang. High-performance InSe transistors with ohmic contact enabled by nonrectifying barrier-type indium electrodes. ACS Appl. Mater. Interfaces, 2018, 10(39): 33450
CrossRef ADS Google scholar
[10]
Y. Jung, M. S. Choi, A. Nipane, A. Borah, B. Kim, A. Zangiabadi, T. Taniguchi, K. Watanabe, W. J. Yoo, J. Hone, J. T. Teherani. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron., 2019, 2(5): 187
CrossRef ADS Google scholar
[11]
M.L. ChenX. SunH.LiuH.WangQ.Zhu S.WangH. DuB.DongJ.ZhangY.Sun S.QiuT. AlavaS.LiuD.M. SunZ.Han, A FinFET with one atomic layer channel, Nat. Commun. 11(1), 1205 (2020)
[12]
M. Furchi, A. Urich, A. Pospischil, G. Lilley, K. Unterrainer, H. Detz, P. Klang, A. M. Andrews, W. Schrenk, G. Strasser, T. Mueller. Microcavity-integrated graphene photodetector. Nano Lett., 2012, 12(6): 2773
CrossRef ADS Google scholar
[13]
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6(1): 74
CrossRef ADS Google scholar
[14]
H. S. Lee, S. W. Min, Y. G. Chang, M. K. Park, T. Nam, H. Kim, J. H. Kim, S. Ryu, S. Im. MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett., 2012, 12(7): 3695
CrossRef ADS Google scholar
[15]
H. Wang, C. Zhang, W. Chan, S. Tiwari, F. Rana. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun., 2015, 6(1): 8831
CrossRef ADS Google scholar
[16]
M. S. Mannoor, H. Tao, J. D. Clayton, A. Sengupta, D. L. Kaplan, R. R. Naik, N. Verma, F. G. Omenetto, M. C. McAlpine. Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun., 2012, 3(1): 763
CrossRef ADS Google scholar
[17]
E. Singh, M. Meyyappan, H. S. Nalwa. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces, 2017, 9(40): 34544
CrossRef ADS Google scholar
[18]
J. Yao, G. Yang. Flexible and high-performance all-2D photodetector for wearable devices. Small, 2018, 14(21): 1704524
CrossRef ADS Google scholar
[19]
D. Deng, K. S. Novoselov, Q. Fu, N. Zheng, Z. Tian, X. Bao. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol., 2016, 11(3): 218
CrossRef ADS Google scholar
[20]
X. Chia, M. Pumera. Characteristics and performance of two-dimensional materials for electrocatalysis. Nat. Catal., 2018, 1(12): 909
CrossRef ADS Google scholar
[21]
Y. Wang, J. Mao, X. Meng, L. Yu, D. Deng, X. Bao. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev., 2019, 119(3): 1806
CrossRef ADS Google scholar
[22]
J.MaoY. WangZ.L. ZhengD.H. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)
[23]
G.LuoZ. Z. ZhangH.O. LiX.X. SongG.W. Deng G.CaoM. XiaoG.P. Guo, Quantum dot behavior in transition metal dichalcogenides nanostructures, Front. Phys. 12(4), 128502 (2017)
[24]
M.J. HuN. B. ZhangG.C. ShanJ.F. GaoJ.Z. Liu R.K. Y. Li, Two-dimensional materials: Emerging toolkit for construction of ultrathin high-efficiency microwave shield and absorber, Front. Phys. 13(4), 138113 (2018)
[25]
W.CaoJ. KangW.LiuK.Banerjee, A compact current–voltage model for 2D semiconductor based field-effect transistors considering interface traps, mobility degradation, and inefficient doping effect, IEEE Trans. Electron Dev. 61(12), 4282 (2014)
[26]
R. R. Schaller. Moore’s law: Past, present and future. IEEE Spectr., 1997, 34(6): 52
CrossRef ADS Google scholar
[27]
C. A. Mack. Fifty years of Moore’s law. IEEE Trans. Semicond. Manuf., 2011, 24(2): 202
CrossRef ADS Google scholar
[28]
H. Liu, A. T. Neal, P. D. Ye. Channel length scaling of MoS2 MOSFETs. ACS Nano, 2012, 6(10): 8563
CrossRef ADS Google scholar
[29]
K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
CrossRef ADS Google scholar
[30]
D. Akinwande, C. Huyghebaert, C. H. Wang, M. I. Serna, S. Goossens, L. J. Li, H. S. P. Wong, F. H. L. Koppens. Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573(7775): 507
CrossRef ADS Google scholar
[31]
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol., 2012, 7(11): 699
CrossRef ADS Google scholar
[32]
F. Xia, H. Wang, D. Xiao, M. Dubey, A. Ramasubramaniam. Two-dimensional material nanophotonics. Nat. Photonics, 2014, 8(12): 899
CrossRef ADS Google scholar
[33]
K. F. Mak, J. Shan. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics, 2016, 10(4): 216
CrossRef ADS Google scholar
[34]
D.HisamotoT. KagaY.KawamotoE.Takeda, A fully depleted lean-channel transistor (DELTA) - A novel vertical ultrathin SOI MOSFET, in: International Technical Digest on Electron Devices Meeting, 1989, pp 833–836
[35]
N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, D. L. Kwong. High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett., 2006, 27(5): 383
CrossRef ADS Google scholar
[36]
Y. Liu, X. Duan, H. J. Shin, S. Park, Y. Huang, X. Duan. Promises and prospects of two-dimensional transistors. Nature, 2021, 591(7848): 43
CrossRef ADS Google scholar
[37]
C. Liu, H. Chen, S. Wang, Q. Liu, Y. G. Jiang, D. W. Zhang, M. Liu, P. Zhou. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol., 2020, 15(7): 545
CrossRef ADS Google scholar
[38]
X. Zhu, D. Li, X. Liang, W. D. Lu. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater., 2019, 18(2): 141
CrossRef ADS Google scholar
[39]
C. S. Yang, D. S. Shang, N. Liu, E. J. Fuller, S. Agrawal, A. A. Talin, Y. Q. Li, B. G. Shen, Y. Sun. All-solid-state synaptic transistor with ultralow conductance for neuromorphic computing. Adv. Funct. Mater., 2018, 28(42): 1804170
CrossRef ADS Google scholar
[40]
M. D. Levenson, N. S. Viswanathan, R. A. Simpson. Improving resolution in photolithography with a phase-shifting mask. IEEE Trans. Electron Dev., 1982, 29(12): 1828
CrossRef ADS Google scholar
[41]
J. Dong, J. Liu, G. Kang, J. Xie, Y. Wang. Pushing the resolution of photolithography down to 15 nm by surface plasmon interference. Sci. Rep., 2014, 4(1): 5618
CrossRef ADS Google scholar
[42]
A. Selimis, V. Mironov, M. Farsari. Direct laser writing: Principles and materials for scaffold 3D printing. Microelectron. Eng., 2015, 132: 83
CrossRef ADS Google scholar
[43]
M. Duocastella, G. Vicidomini, K. Korobchevskaya, K. Pydzińska, M. Ziółek, A. Diaspro, G. de Miguel. Improving the spatial resolution in direct laser writing lithography by using a reversible cationic photoinitiator. J. Phys. Chem. C, 2017, 121(31): 16970
CrossRef ADS Google scholar
[44]
C.VieuF. CarcenacA.PépinY.ChenM.Mejias A.LebibL. Manin-FerlazzoL.Couraud H.Launois, Electron beam lithography: Resolution limits and applications, Appl. Surf. Sci. 164(1–4), 111 (2000)
[45]
V. R. Manfrinato, L. Zhang, D. Su, H. Duan, R. G. Hobbs, E. A. Stach, K. K. Berggren. Resolution limits of electron-beam lithography toward the atomic scale. Nano Lett., 2013, 13(4): 1555
CrossRef ADS Google scholar
[46]
K. Xu, D. Chen, F. Yang, Z. Wang, L. Yin, F. Wang, R. Cheng, K. Liu, J. Xiong, Q. Liu, J. He. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett., 2017, 17(2): 1065
CrossRef ADS Google scholar
[47]
A.NourbakhshA.ZubairR.N. SajjadA.Tavakkoli K. GW.ChenS.Fang X.LingJ. KongM.S. DresselhausE.KaxirasK.K. BerggrenD.AntoniadisT.Palacios, MoS2 field-effect transistor with sub-10 nm channel length, Nano Lett. 16(12), 7798 (2016) (2016)
[48]
L. Xie, M. Liao, S. Wang, H. Yu, L. Du, J. Tang, J. Zhao, J. Zhang, P. Chen, X. Lu, G. Wang, G. Xie, R. Yang, D. Shi, G. Zhang. Graphene-contacted ultrashort channel monolayer MoS2 transistors. Adv. Mater., 2017, 29(37): 1702522
CrossRef ADS Google scholar
[49]
L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, Y. Liu. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron., 2021, 4(5): 342
CrossRef ADS Google scholar
[50]
S. B. Desai, S. R. Madhvapathy, A. B. Sachid, J. P. Llinas, Q. Wang, G. H. Ahn, G. Pitner, M. J. Kim, J. Bokor, C. Hu, H. S. P. Wong, A. Javey. MoS2 transistors with 1-nanometer gate lengths. Science, 2016, 354(6308): 99
CrossRef ADS Google scholar
[51]
F. Wu, H. Tian, Y. Shen, Z. Hou, J. Ren, G. Gou, Y. Sun, Y. Yang, T. L. Ren. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature, 2022, 603(7900): 259
CrossRef ADS Google scholar
[52]
W. Zheng, T. Xie, Y. Zhou, Y. L. Chen, W. Jiang, S. Zhao, J. Wu, Y. Jing, Y. Wu, G. Chen, Y. Guo, J. Yin, S. Huang, H. Q. Xu, Z. Liu, H. Peng. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors. Nat. Commun., 2015, 6(1): 6972
CrossRef ADS Google scholar
[53]
B. Li, L. Zhou, D. Wu, H. Peng, K. Yan, Y. Zhou, Z. Liu. Photochemical chlorination of graphene. ACS Nano, 2011, 5(7): 5957
CrossRef ADS Google scholar
[54]
M. Lin, D. Wu, Y. Zhou, W. Huang, W. Jiang, W. Zheng, S. Zhao, C. Jin, Y. Guo, H. Peng, Z. Liu. Controlled growth of atomically thin In2Se3 flakes by van der Waals epitaxy. J. Am. Chem. Soc., 2013, 135(36): 13274
CrossRef ADS Google scholar
[55]
Y. Zhou, Y. Nie, Y. Liu, K. Yan, J. Hong, C. Jin, Y. Zhou, J. Yin, Z. Liu, H. Peng. Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets. ACS Nano, 2014, 8(2): 1485
CrossRef ADS Google scholar
[56]
L. Liu, L. Kong, Q. Li, C. He, L. Ren, Q. Tao, X. Yang, J. Lin, B. Zhao, Z. Li, Y. Chen, W. Li, W. Song, Z. Lu, G. Li, S. Li, X. Duan, A. Pan, L. Liao, Y. Liu. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron., 2021, 4(5): 342
CrossRef ADS Google scholar
[57]
L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim. Chaotic Dirac billiard in graphene quantum dots. Science, 2008, 320(5874): 356
CrossRef ADS Google scholar
[58]
X. Wang, H. Dai. Etching and narrowing of graphene from the edges. Nat. Chem., 2010, 2(8): 661
CrossRef ADS Google scholar
[59]
L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877
CrossRef ADS Google scholar
[60]
Z. Shi, R. Yang, L. Zhang, Y. Wang, D. Liu, D. Shi, E. Wang, G. Zhang. Patterning graphene with zigzag edges by self-aligned anisotropic etching. Adv. Mater., 2011, 23(27): 3061
CrossRef ADS Google scholar
[61]
J. Wu, W. Pisula, K. Müllen. Graphenes as potential material for electronics. Chem. Rev., 2007, 107(3): 718
CrossRef ADS Google scholar
[62]
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 2010, 466(7305): 470
CrossRef ADS Google scholar
[63]
H. S. Wang, L. Chen, K. Elibol, L. He, H. Wang, C. Chen, C. Jiang, C. Li, T. Wu, C. X. Cong, T. J. Pennycook, G. Argentero, D. Zhang, K. Watanabe, T. Taniguchi, W. Wei, Q. Yuan, J. C. Meyer, X. Xie. Towards chirality control of graphene nanoribbons embedded in hexagonal boron nitride. Nat. Mater., 2021, 20(2): 202
CrossRef ADS Google scholar
[64]
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W. A. de Heer. Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol., 2010, 5(10): 727
CrossRef ADS Google scholar
[65]
Y. Deng, C. Zhu, Y. Wang, X. Wang, X. Zhao, Y. Wu, B. Tang, R. Duan, K. Zhou, Z. Liu. Lithography-free, high-density MoTe2 nanoribbon arrays. Mater. Today, 2022, 58: 8
CrossRef ADS Google scholar
[66]
A. Aljarb, J. H. Fu, C. C. Hsu, C. P. Chuu, Y. Wan, M. Hakami, D. R. Naphade, E. Yengel, C. J. Lee, S. Brems, T. A. Chen, M. Y. Li, S. H. Bae, W. T. Hsu, Z. Cao, R. Albaridy, S. Lopatin, W. H. Chang, T. D. Anthopoulos, J. Kim, L. J. Li, V. Tung. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat. Mater., 2020, 19(12): 1300
CrossRef ADS Google scholar
[67]
T. Chowdhury, J. Kim, E. C. Sadler, C. Li, S. W. Lee, K. Jo, W. Xu, D. H. Gracias, N. V. Drichko, D. Jariwala, T. H. Brintlinger, T. Mueller, H. G. Park, T. J. Kempa. Substrate-directed synthesis of MoS2 nanocrystals with tunable dimensionality and optical properties. Nat. Nanotechnol., 2020, 15(1): 29
CrossRef ADS Google scholar
[68]
V.SchmidtJ. V. WittemannS.SenzU.Gösele, Silicon nanowires: A review on aspects of their growth and their electrical properties, Adv. Mater. 21(25–26), 2681 (2009)
[69]
J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, H. Dai. Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395(6705): 878
CrossRef ADS Google scholar
[70]
S. Li, Y. C. Lin, W. Zhao, J. Wu, Z. Wang, Z. Hu, Y. Shen, D. M. Tang, J. Wang, Q. Zhang, H. Zhu, L. Chu, W. Zhao, C. Liu, Z. Sun, T. Taniguchi, M. Osada, W. Chen, Q. H. Xu, A. T. S. Wee, K. Suenaga, F. Ding, G. Eda. Vapour–liquid–solid growth of monolayer MoS2 nanoribbons. Nat. Mater., 2018, 17(6): 535
CrossRef ADS Google scholar
[71]
X. Li, B. Li, J. Lei, K. V. Bets, X. Sang, E. Okogbue, Y. Liu, R. R. Unocic, B. I. Yakobson, J. Hone, A. R. Harutyunyan. Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons. Sci. Adv., 2021, 7(50): eabk1892
CrossRef ADS Google scholar
[72]
X. Duan, C. Wang, J. C. Shaw, R. Cheng, Y. Chen, H. Li, X. Wu, Y. Tang, Q. Zhang, A. Pan, J. Jiang, R. Yu, Y. Huang, X. Duan. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol., 2014, 9(12): 1024
CrossRef ADS Google scholar
[73]
M. Y. Li, Y. Shi, C. C. Cheng, L. S. Lu, Y. C. Lin, H. L. Tang, M. L. Tsai, C. W. Chu, K. H. Wei, J. H. He, W. H. Chang, K. Suenaga, L. J. Li. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science, 2015, 349(6247): 524
CrossRef ADS Google scholar
[74]
Z. Zhang, P. Chen, X. Duan, K. Zang, J. Luo, X. Duan. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017, 357(6353): 788
CrossRef ADS Google scholar
[75]
P. K. Sahoo, S. Memaran, Y. Xin, L. Balicas, H. R. Gutiérrez. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature, 2018, 553(7686): 63
CrossRef ADS Google scholar
[76]
R. Zhang, M. Li, L. Li, Z. Wei, F. Jiao, D. Geng, W. Hu. The more, the better–recent advances in construction of 2D multi‐heterostructures. Adv. Funct. Mater., 2021, 31(26): 2102049
CrossRef ADS Google scholar
[77]
Z. Zhang, Z. Huang, J. Li, D. Wang, Y. Lin, X. Yang, H. Liu, S. Liu, Y. Wang, B. Li, X. Duan, X. Duan. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol., 2022, 17(5): 493
CrossRef ADS Google scholar
[78]
H. Yang, J. Heo, S. Park, H. J. Song, D. H. Seo, K. E. Byun, P. Kim, I. Yoo, H. J. Chung, K. Kim. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science, 2012, 336(6085): 1140
CrossRef ADS Google scholar
[79]
C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 2010, 5(10): 722
CrossRef ADS Google scholar
[80]
L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, L. A. Ponomarenko. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 2012, 335(6071): 947
CrossRef ADS Google scholar
[81]
T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y. J. Kim, A. Gholinia, S. J. Haigh, O. Makarovsky, L. Eaves, L. A. Ponomarenko, A. K. Geim, K. S. Novoselov, A. Mishchenko. Vertical field-effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol., 2013, 8(2): 100
CrossRef ADS Google scholar
[82]
W. J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, X. Duan. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat. Nanotechnol., 2013, 8(12): 952
CrossRef ADS Google scholar
[83]
L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, K. S. Novoselov. Strong light-matter interactions in heterostructures of atomically thin films. Science, 2013, 340(6138): 1311
CrossRef ADS Google scholar
[84]
R.WuQ.Tao W.DangY. LiuB.LiJ.LiB.Zhao Z.ZhangH. MaG.SunX.DuanX.Duan, van der Waals epitaxial growth of atomically thin 2D metals on dangling‐bond‐free WSe2 and WS2, Adv. Funct. Mater. 29(12), 1806611 (2019)
[85]
Q. Fu, X. Wang, J. Zhou, J. Xia, Q. Zeng, D. Lv, C. Zhu, X. Wang, Y. Shen, X. Li, Y. Hua, F. Liu, Z. Shen, C. Jin, Z. Liu. One-step synthesis of metal/semiconductor heterostructure NbS2/MoS2. Chem. Mater., 2018, 30(12): 4001
CrossRef ADS Google scholar
[86]
Z. Zhang, Y. Gong, X. Zou, P. Liu, P. Yang, J. Shi, L. Zhao, Q. Zhang, L. Gu, Y. Zhang. Epitaxial growth of two-dimensional metal–semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano, 2019, 13(1): 885
CrossRef ADS Google scholar
[87]
L. Rogée, L. Wang, Y. Zhang, S. Cai, P. Wang, M. Chhowalla, W. Ji, S. P. Lau. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376(6596): 973
CrossRef ADS Google scholar
[88]
X. Hong, J. Kim, S. F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol., 2014, 9(9): 682
CrossRef ADS Google scholar
[89]
G. Jin, C. S. Lee, O. F. N. Okello, S. H. Lee, M. Y. Park, S. Cha, S. Y. Seo, G. Moon, S. Y. Min, D. H. Yang, C. Han, H. Ahn, J. Lee, H. Choi, J. Kim, S. Y. Choi, M. H. Jo. Heteroepitaxial van der Waals semiconductor superlattices. Nat. Nanotechnol., 2021, 16(10): 1092
CrossRef ADS Google scholar
[90]
S. Xie, L. Tu, Y. Han, L. Huang, K. Kang, K. U. Lao, P. Poddar, C. Park, D. A. Muller, R. A. Jr DiStasio, J. Park. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science, 2018, 359(6380): 1131
CrossRef ADS Google scholar
[91]
N.IchinoseM. MaruyamaT.HottaZ.LiuR.Canton-VitoriaS.OkadaF.ZengF.Zhang T.TaniguchiK. WatanabeR.Kitaura, Two-dimensional atomic-scale ultrathin lateral heterostructures, arXiv: 2208.12696 (2022)
[92]
Y. Wan, E. Li, Z. Yu, J. K. Huang, M. Y. Li, A. S. Chou, Y. T. Lee, C. J. Lee, H. C. Hsu, Q. Zhan, A. Aljarb, J. H. Fu, S. P. Chiu, X. Wang, J. J. Lin, Y. P. Chiu, W. H. Chang, H. Wang, Y. Shi, N. Lin, Y. Cheng, V. Tung, L. J. Li. Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun., 2022, 13(1): 4149
CrossRef ADS Google scholar
[93]
B. Stampfer, F. Zhang, Y. Y. Illarionov, T. Knobloch, P. Wu, M. Waltl, A. Grill, J. Appenzeller, T. Grasser. Characterization of single defects in ultrascaled MoS2 field-effect transistors. ACS Nano, 2018, 12(6): 5368
CrossRef ADS Google scholar
[94]
Y. Zhou, J. Zhang, E. Song, J. Lin, J. Zhou, K. Suenaga, W. Zhou, Z. Liu, J. Liu, J. Lou, H. J. Fan. Enhanced performance of in-plane transition metal dichalcogenides monolayers by configuring local atomic structures. Nat. Commun., 2020, 11(1): 2253
CrossRef ADS Google scholar
[95]
J. Jiang, L. A. T. Nguyen, T. D. Nguyen, D. H. Luong, D. Y. Kim, Y. Jin, P. Kim, D. L. Duong, Y. H. Lee. Probing giant Zeeman shift in vanadium-doped WSe2 via resonant magnetotunneling transport. Phys. Rev. B, 2021, 103(1): 014441
CrossRef ADS Google scholar
[96]
P. Mallet, F. Chiapello, H. Okuno, H. Boukari, M. Jamet, J. Y. Veuillen. Bound hole states associated to individual vanadium atoms incorporated into monolayer WSe2. Phys. Rev. Lett., 2020, 125(3): 036802
CrossRef ADS Google scholar
[97]
M. A. Kastner. The single-electron transistor. Rev. Mod. Phys., 1992, 64(3): 849
CrossRef ADS Google scholar
[98]
M.Ratner, A brief history of molecular electronics, Nat. Nanotechnol. 8(6), 378 (2013)
[99]
G. Xu, C. M. Jr Torres, J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang, K. L. Wang. Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett., 2011, 11(3): 1082
CrossRef ADS Google scholar
[100]
S. Chen, S. Kim, W. Chen, J. Yuan, R. Bashir, J. Lou, A. M. van der Zande, W. P. King. Monolayer MoS2 nanoribbon transistors fabricated by scanning probe lithography. Nano Lett., 2019, 19(3): 2092
CrossRef ADS Google scholar
[101]
J. Shi, M. Liu, J. Wen, X. Ren, X. Zhou, Q. Ji, D. Ma, Y. Zhang, C. Jin, H. Chen, S. Deng, N. Xu, Z. Liu, Y. Zhang. All chemical vapor deposition synthesis and intrinsic bandgap observation of MoS2/graphene heterostructures. Adv. Mater., 2015, 27(44): 7086
CrossRef ADS Google scholar
[102]
X. Ling, Y. Lin, Q. Ma, Z. Wang, Y. Song, L. Yu, S. Huang, W. Fang, X. Zhang, A. L. Hsu, Y. Bie, Y. H. Lee, Y. Zhu, L. Wu, J. Li, P. Jarillo-Herrero, M. Dresselhaus, T. Palacios, J. Kong. Parallel stitching of 2D materials. Adv. Mater., 2016, 28(12): 2322
CrossRef ADS Google scholar
[103]
M. Zhao, Y. Ye, Y. Han, Y. Xia, H. Zhu, S. Wang, Y. Wang, D. A. Muller, X. Zhang. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol., 2016, 11(11): 954
CrossRef ADS Google scholar
[104]
A. Behranginia, P. Yasaei, A. K. Majee, V. K. Sangwan, F. Long, C. J. Foss, T. Foroozan, S. Fuladi, M. R. Hantehzadeh, R. Shahbazian-Yassar, M. C. Hersam, Z. Aksamija, A. Salehi-Khojin. Direct growth of high mobility and low-noise lateral MoS2–graphene heterostructure electronics. Small, 2017, 13(30): 1604301
CrossRef ADS Google scholar
[105]
W. S. Leong, Q. Ji, N. Mao, Y. Han, H. Wang, A. J. Goodman, A. Vignon, C. Su, Y. Guo, P. C. Shen, Z. Gao, D. A. Muller, W. A. Tisdale, J. Kong. Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc., 2018, 140(39): 12354
CrossRef ADS Google scholar
[106]
X. Cai, Z. Wu, X. Han, Y. Chen, S. Xu, J. Lin, T. Han, P. He, X. Feng, L. An, R. Shi, J. Wang, Z. Ying, Y. Cai, M. Hua, J. Liu, D. Pan, C. Cheng, N. Wang. Bridging the gap between atomically thin semiconductors and metal leads. Nat. Commun., 2022, 13(1): 1777
CrossRef ADS Google scholar
[107]
J. Li, X. Yang, Y. Liu, B. Huang, R. Wu, Z. Zhang, B. Zhao, H. Ma, W. Dang, Z. Wei, K. Wang, Z. Lin, X. Yan, M. Sun, B. Li, X. Pan, J. Luo, G. Zhang, Y. Liu, Y. Huang, X. Duan, X. Duan. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579(7799): 368
CrossRef ADS Google scholar
[108]
R. Wu, Q. Tao, J. Li, W. Li, Y. Chen, Z. Lu, Z. Shu, B. Zhao, H. Ma, Z. Zhang, X. Yang, B. Li, H. Duan, L. Liao, Y. Liu, X. Duan, X. Duan. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron., 2022, 5(8): 497
CrossRef ADS Google scholar
[109]
Y. Liu, J. Guo, Y. Wu, E. Zhu, N. O. Weiss, Q. He, H. Wu, H. C. Cheng, Y. Xu, I. Shakir, Y. Huang, X. Duan. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett., 2016, 16(10): 6337
CrossRef ADS Google scholar
[110]
C. J. McClellan, E. Yalon, K. K. H. Smithe, S. V. Suryavanshi, E. Pop. High current density in monolayer MoS2 doped by AlOx. ACS Nano, 2021, 15(1): 1587
CrossRef ADS Google scholar
[111]
R. Kappera, D. Voiry, S. E. Yalcin, W. Jen, M. Acerce, S. Torrel, B. Branch, S. Lei, W. Chen, S. Najmaei, J. Lou, P. M. Ajayan, G. Gupta, A. D. Mohite, M. Chhowalla. Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2. APL Mater., 2014, 2(9): 092516
CrossRef ADS Google scholar
[112]
H. M. W. Khalil, M. F. Khan, J. Eom, H. Noh. Highly stable and tunable chemical doping of multilayer WS2 field effect transistor: Reduction in contact resistance. ACS Appl. Mater. Interfaces, 2015, 7(42): 23589
CrossRef ADS Google scholar
[113]
K. K. H. Smithe, S. V. Suryavanshi, M. Muñoz Rojo, A. D. Tedjarati, E. Pop. Low variability in synthetic monolayer MoS2 devices. ACS Nano, 2017, 11(8): 8456
CrossRef ADS Google scholar
[114]
T. Kanazawa, T. Amemiya, A. Ishikawa, V. Upadhyaya, K. Tsuruta, T. Tanaka, Y. Miyamoto. Few-layer HfS2 transistors. Sci. Rep., 2016, 6(1): 22277
CrossRef ADS Google scholar
[115]
M. J. Mleczko, C. Zhang, H. R. Lee, H. H. Kuo, B. Magyari-Köpe, R. G. Moore, Z. X. Shen, I. R. Fisher, Y. Nishi, E. Pop. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv., 2017, 3(8): e1700481
CrossRef ADS Google scholar
[116]
K. K. H. Smithe, C. D. English, S. V. Suryavanshi, E. Pop. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett., 2018, 18(7): 4516
CrossRef ADS Google scholar
[117]
C.D. EnglishK.K. H. SmitheR.L. Xu E.Pop, Approaching ballistic transport in monolayer MoS2 transistors with self-aligned 10 nm top gates, in: 2016 IEEE International Electron Devices Meeting (IEDM), 2016, pp 5.6.1−5.6.4
[118]
J. Wang, L. Cai, J. Chen, X. Guo, Y. Liu, Z. Ma, Z. Xie, H. Huang, M. Chan, Y. Zhu, L. Liao, Q. Shao, Y. Chai. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv., 2021, 7(44): eabf8744
CrossRef ADS Google scholar
[119]
A. Sebastian, R. Pendurthi, T. H. Choudhury, J. M. Redwing, S. Das. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun., 2021, 12(1): 693
CrossRef ADS Google scholar
[120]
W.LiuJ. KangW.CaoD.SarkarY.Khatami D.JenaK. Banerjee, High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance, in: 2013 IEEE International Electron Devices Meeting, IEEE, Washington, DC, USA, 2013, pp 19.4.1–19.4.4
[121]
R. Kappera, D. Voiry, S. E. Yalcin, B. Branch, G. Gupta, A. D. Mohite, M. Chhowalla. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater., 2014, 13(12): 1128
CrossRef ADS Google scholar
[122]
Q.SmetsG. ArutchelvanJ.JussotD.VerreckI.AsselberghsA.N. MehtaA.GaurD.Lin S.E. KazziB. GrovenM.CaymaxI.Radu, Ultra-scaled MOCVD MoS2 MOSFETs with 42 nm contact pitch and 250 µA/µm drain current, in: 2019 IEEE International Electron Devices Meeting (IEDM), 2019, pp 23.2.1–23.2.4
[123]
Y. Guo, Y. Han, J. Li, A. Xiang, X. Wei, S. Gao, Q. Chen. Study on the resistance distribution at the contact between molybdenum disulfide and metals. ACS Nano, 2014, 8(8): 7771
CrossRef ADS Google scholar
[124]
K. K. H. Smithe, C. D. English, S. V. Suryavanshi, E. Pop. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater., 2016, 4(1): 011009
CrossRef ADS Google scholar
[125]
X. Cui, E. M. Shih, L. A. Jauregui, S. H. Chae, Y. D. Kim, B. Li, D. Seo, K. Pistunova, J. Yin, J. H. Park, H. J. Choi, Y. H. Lee, K. Watanabe, T. Taniguchi, P. Kim, C. R. Dean, J. C. Hone. Low-temperature Ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett., 2017, 17(8): 4781
CrossRef ADS Google scholar
[126]
H. J. Chuang, B. Chamlagain, M. Koehler, M. M. Perera, J. Yan, D. Mandrus, D. Tománek, Z. Zhou, Low-resistance 2D/2D Ohmic contacts: A universal approach to high-performance WSe2 . MoS2, and MoSe2 transistors. Nano Lett., 2016, 16(3): 1896
CrossRef ADS Google scholar
[127]
N. Haratipour, M. C. Robbins, S. J. Koester. Black phosphorus p-MOSFETs with 7-nm HfO2 gate dielectric and low contact resistance. IEEE Electron Device Lett., 2015, 36(4): 411
CrossRef ADS Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22205142) and the Science and Technology Commission of Shanghai Municipality (Nos. 21ZR1442100 and 21PJ1410200). The work was also supported by the Startup Fund and the Double First-Class Initiative Fund of ShanghaiTech University.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8268 KB)

Accesses

Citations

Detail

Sections
Recommended

/