Experimental studies for nuclear chirality in China

Shouyu Wang, Chen Liu, Bin Qi, Wenzheng Xu, Hui Zhang

PDF(8966 KB)
PDF(8966 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (6) : 64601. DOI: 10.1007/s11467-023-1303-5
TOPICAL REVIEW
TOPICAL REVIEW

Experimental studies for nuclear chirality in China

Author information +
History +

Abstract

In the last decade, chiral symmetry in atomic nuclei has attracted significant attention and become one of the hot topics in current nuclear physics frontiers. This paper provides a review of experimental studies for nuclear chirality in China. In particular, the experimental setups, chiral mass regions, lifetime measurements, and simultaneous breaking of chirality and other symmetries are discussed in detail. These studies found a new chiral mass region (A ≈ 80), extended the boundaries of the A ≈ 100 and 130 chiral mass regions, and tested the chiral geometry of 130Cs, 106Ag, 80Br and 76Br by lifetime measurements. In addition, simultaneous breaking of chirality and other symmetries have been studied in 74As, 76Br, 78Br, 80Br, 81Kr and 131Ba.

Graphical abstract

Keywords

nuclear chirality / lifetime measurements / energy spectra / electromagnetic transition probabilities

Cite this article

Download citation ▾
Shouyu Wang, Chen Liu, Bin Qi, Wenzheng Xu, Hui Zhang. Experimental studies for nuclear chirality in China. Front. Phys., 2023, 18(6): 64601 https://doi.org/10.1007/s11467-023-1303-5

References

[1]
S. Frauendorf, J. Meng. Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
CrossRef ADS Google scholar
[2]
T.KoikeK. StarostaC.VamanT.AhnD.B. FossanR.M. ClarkM.CromazI.Y. Lee A.O. Macchiavelli, Sensitive criterion for chirality; chiral doublet bands in 59104Rh, AIP Conf. Proc. 656, 160 (2003)
[3]
T. Koike, K. Starosta, I. Hamamoto. Chiral bands, dynamical spontaneous symmetry breaking, and the selection rule for electromagnetic transitions in the chiral geometry. Phys. Rev. Lett., 2004, 93(17): 172502
CrossRef ADS Google scholar
[4]
S. Y. Wang, S. Q. Zhang, B. Qi, J. Meng. Examining the chiral geometry in 104Rh and 106Rh. Chin. Phys. Lett., 2007, 24(2): 664
CrossRef ADS Google scholar
[5]
S. Frauendorf. Spontaneous symmetry breaking in rotating nuclei. Rev. Mod. Phys., 2001, 73(2): 463
CrossRef ADS Google scholar
[6]
J. Meng, B. Qi, S. Q. Zhang, S. Y. Wang. Chiral symmetry in atomic nuclei. Mod. Phys. Lett. A, 2008, 23(27n30): 2560
CrossRef ADS Google scholar
[7]
J. Meng, S. Q. Zhang. Open problems in understanding the nuclear chirality. J. Phys. G, 2010, 37(6): 064025
CrossRef ADS Google scholar
[8]
R. A. Bark, E. O. Lieder, R. M. Lieder, E. A. Lawrie, J. J. Lawrie, S. P. Bvumbi, N. Y. Kheswa, S. S. Ntshangase, T. E. Madiba, P. L. Masiteng, S. M. Mullins, S. Murray, P. Papka, O. Shirinda, Q. B. Chen, S. Q. Zhang, Z. H. Zhang, P. W. Zhao, C. Xu, J. Meng, D. G. Roux, Z. P. Li, J. Peng, B. Qi, S. Y. Wang, Z. G. Xiao. Studies of chirality in the mass 80, 100 and 190 regions. Int. J. Mod. Phys. E, 2014, 23(7): 1461001
CrossRef ADS Google scholar
[9]
J. Meng, P. W. Zhao. Nuclear chiral and magnetic rotation in covariant density functional theory. Phys. Scr., 2016, 91(5): 053008
CrossRef ADS Google scholar
[10]
A. A. Raduta. Specific features and symmetries for magnetic and chiral bands in nuclei. Prog. Part. Nucl. Phys., 2016, 90: 241
CrossRef ADS Google scholar
[11]
K. Starosta, T. Koike. Nuclear chirality, a model and the data. Phys. Scr., 2017, 92(9): 093002
CrossRef ADS Google scholar
[12]
B. W. Xiong, Y. Y. Wang. Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
CrossRef ADS Google scholar
[13]
S. Y. Wang. Recent progress in multiple chiral doublet bands. Chin. Phys. C, 2020, 44(11): 112001
CrossRef ADS Google scholar
[14]
X. Xiao, S. Y. Wang, C. Liu, R. A. Bark, J. Meng. . Chirality and octupole correlations in 74As. Phys. Rev. C, 2022, 106(6): 064302
CrossRef ADS Google scholar
[15]
W. Z. Xu, S. Y. Wang, C. Liu, X. G. Wu, R. J. Guo, B. Qi, J. Zhao, A. Rohilla, H. Jia, G. S. Li, Y. Zheng, C. B. Li, X. C. Han, L. Mu, X. Xiao, S. Wang, D. P. Sun, Z. Q. Li, Y. M. Zhang, C. L. Wang, Y. Li. Interplay between nuclear chiral and reflection symmetry breakings revealed by the lifetime measurements in 76Br. Phys. Lett. B, 2022, 833: 137287
CrossRef ADS Google scholar
[16]
C. Liu, S. Y. Wang, R. A. Bark, S. Q. Zhang, J. Meng. . Evidence for octupole correlations in multiple chiral doublet bands. Phys. Rev. Lett., 2016, 116(11): 112501
CrossRef ADS Google scholar
[17]
S. Y. Wang, B. Qi, L. Liu, S. Q. Zhang, H. Hua, X. Q. Li, Y. Y. Chen, L. H. Zhu, J. Meng, S. M. Wyngaardt, P. Papka, T. T. Ibrahim, R. A. Bark, P. Datta, E. A. Lawrie, J. J. Lawrie, S. N. T. Majola, P. L. Masiteng, S. M. Mullins, J. Gál, G. Kalinka, J. Molnár, B. M. Nyakó, J. Timár, K. Juhász, R. Schwengner. The first candidate for chiral nuclei in the A ~ 80 mass region: 80Br. Phys. Lett. B, 2011, 703(1): 40
CrossRef ADS Google scholar
[18]
R. J. Guo, S. Y. Wang, R. Schwengner, W. Z. Xu, B. Qi, C. Liu, A. Rohilla, F. Dönau, T. Servene, H. Schnare, J. Reif, G. Winter, L. Käubler, H. Prade, S. Skoda, J. Eberth, H. G. Thomas, F. Becker, B. Fiedler, S. Freund, S. Kasemann, T. Steinhardt, O. Thelen, T. Härtlein, C. Ender, F. Köck, P. Reiter, D. Schwalm. Lifetime measurements in 80Br and a new region for observation of chiral electromagnetic selection rules. Phys. Lett. B, 2022, 833: 137344
CrossRef ADS Google scholar
[19]
C. Liu, S. Y. Wang, B. Qi, S. Wang, D. P. Sun. . New candidate chiral nucleus in the A ≈ 80 mass region: 3582 Br47. Phys. Rev. C, 2019, 100(5): 054309
CrossRef ADS Google scholar
[20]
L. Mu, S. Y. Wang, C. Liu, B. Qi, R. A. Bark, J. Meng. . First observation of the coexistence of multiple chiral doublet bands and pseudospin doublet bands in the A ≈ 80 mass region. Phys. Lett. B, 2022, 827: 137006
CrossRef ADS Google scholar
[21]
X. C. Han, S. Y. Wang, B. Qi, C. Liu, S. Wang, D. P. Sun, Z. Q. Li, H. Jia, R. J. Guo, X. Xiao, L. Mu, X. Lu, Q. Wang, W. Z. Xu, H. W. Li, X. G. Wu, Y. Zheng, C. B. Li, T. X. Li, Z. Y. Huang, H. Y. Wu, D. W. Luo. First observation of candidate chiral doublet bands in Z = 37 Rb isotopes. Phys. Rev. C, 2021, 104(1): 014327
CrossRef ADS Google scholar
[22]
S.J. ZhuJ. H. HamiltonA.V. RamayyaJ.K. HwangJ.O. RasmussenY.X. LuoK.LiJ.G. Wang X.L. CheH. B. DingS.FrauendorfV.DimitrovQ.Xu L.GuY.Y. Yang, Search for chiral bands in A ~ 110 neutron-rich nuclei, Chin. Phys. C 33(4), 145 (2009)
[23]
H. B. Ding, S. J. Zhu, J. G. Wang, L. Gu, Q. Xu, Z. G. Xiao, E. Y. Yeoha, M. Zhang, L. H. Zhu, X. G. Wu, Y. Liu, C. Y. He, L. L. Wang, B. Pan, G. S. Li. Proposed chiral doublet bands in 98Tc. Chin. Phys. Lett., 2010, 27(7): 072501
CrossRef ADS Google scholar
[24]
Z. G. Wang, M. L. Liu, Y. H. Zhang, X. H. Zhou, B. T. Hu, N. T. Zhang, S. Guo, B. Ding, Y. D. Fang, J. G. Wang, G. S. Li, Y. H. Qiang, S. C. Li, B. S. Gao, Y. Zheng, W. Hua, X. G. Wu, C. Y. He, Y. Zheng, C. B. Li, J. J. Liu, S. P. Hu. High-spin level structure of the doubly odd nucleus 104Ag. Phys. Rev. C, 2013, 88(2): 024306
CrossRef ADS Google scholar
[25]
C.Y. HeL. H. ZhuX.G. WuZ.M. WangY.Liu X.Z. CuiZ. L. ZhangR.MengR.G. MaH.B. Sun S.X. WenG. S. LiC.X. Yang, Experimental study on chirality in 106Ag, Chin. Phys. C. 30(52), 166 (2006)
[26]
Y. Zheng, L. H. Zhu, X. G. Wu, C. Y. He, G. S. Li, X. Hao, B. B. Yu, S. H. Yao, B. Zhang, C. Xu, J. G. Wang, L. Gu. Electromagnetic transition strengths and new insight into the chirality in 106Ag. Chin. Phys. Lett., 2014, 31(6): 062101
CrossRef ADS Google scholar
[27]
B. Zhang, L. H. Zhu, H. B. Sun, C. Y. He, X. G. Wu, J. B. Lu, Y. J. Ma, X. Hao, Y. Zheng, B. B. Yu, G. S. Li, S. H. Yao, L. L. Wang, C. Xu, J. G. Wang, L. Gu. New band structures in 107Ag. Chin. Phys. C, 2011, 35(11): 1009
CrossRef ADS Google scholar
[28]
C. Y. He, B. Zhang, L. H. Zhu, X. G. Wu, H. B. Sun, Y. Zheng, B. B. Yu, L. L. Wang, G. S. Li, S. H. Yao, C. Xu, J. G. Wang, L. Gu. Quest for chirality in 107Ag. Plasma Sci. Technol., 2012, 14(6): 518
CrossRef ADS Google scholar
[29]
K. Y. Ma, H. Wang, H. N. Pan, J. B. Lu, Y. J. Ma, D. Yang, Q. Y. Yang, X. Guan, J. Q. Wang, S. Y. Liu, H. C. Zhang, X. G. Wu, Y. Zheng, C. B. Li. High-spin states and possible chirality in odd−odd 110Ag. Phys. Rev. C, 2021, 103(2): 024302
CrossRef ADS Google scholar
[30]
M. Wang, Y. Y. Wang, L. H. Zhu, B. H. Sun, G. L. Zhang, L. C. He, W. W. Qu, F. Wang, T. F. Wang, Y. Y. Chen, C. Xiong, J. Zhang, J. M. Zhang, Y. Zheng, C. Y. He, G. S. Li, J. L. Wang, X. G. Wu, S. H. Yao, C. B. Li, H. W. Li, S. P. Hu, J. J. Liu. New high-spin structure and possible chirality in 109In. Phys. Rev. C, 2018, 98(1): 014304
CrossRef ADS Google scholar
[31]
Y. X. Zhao, T. Komatsubara, Y. J. Ma, Y. H. Zhang, S. Y. Wang, Y. Z. Liu, K. Furuno. Observation of three-quasiparticle doublet bands in 123I: Possible evidence of chirality. Chin. Phys. Lett., 2009, 26(8): 082301
CrossRef ADS Google scholar
[32]
Y. Zheng, L. H. Zhu, X. G. Wu, Z. C. Gao, C. Y. He, G. S. Li, L. L. Wang, Y. S. Chen, Y. Sun, X. Hao, Y. Liu, X. Q. Li, B. Pan, Y. J. Ma, Z. Y. Li, H. B. Ding. Abnormal signature inversion and multiple alignments in doubly odd 126I. Phys. Rev. C, 2012, 86(1): 014320
CrossRef ADS Google scholar
[33]
X. F. Li, Y. J. Ma, Y. Z. Liu, J. B. Lu, G. Y. Zhao, L. C. Yin, R. Meng, Z. L. Zhang, L. J. Wen, X. H. Zhou, Y. X. Guo, X. G. Lei, Z. Liu, J. J. He, Y. Zheng. Search for the chiral band in the N =71 odd−odd nucleus 126Cs. Chin. Phys. Lett., 2002, 19(12): 1779
CrossRef ADS Google scholar
[34]
S. Y. Wang, Y. Z. Liu, T. Komatsubara, Y. J. Ma, Y. H. Zhang. Candidate chiral doublet bands in the odd−odd nucleus 126Cs. Phys. Rev. C, 2006, 74(1): 017302
CrossRef ADS Google scholar
[35]
L. L. Wang, X. G. Wu, L. H. Zhu, G. S. Li, X. Hao, Y. Zheng, C. Y. He, L. Wang, X. Q. Li, Y. Liu, P. Bo, Z. Y. Li, H. B. Ding. Lifetime measurements in chiral nucleus 130Cs. Chin. Phys. C, 2009, 33(S1): 173
CrossRef ADS Google scholar
[36]
X. G. Wu, L. L. Wang, L. H. Zhu, G. S. Li, X. Hao, Y. Zheng, C. Y. He, X. Q. Li, B. Pan, Y. Liu, L. Wang, Y. X. Zhao, Z. Y. Li, H. B. Ding. Test of chirality in nucleus 130Cs. Plasma Sci. Technol., 2012, 14(6): 526
CrossRef ADS Google scholar
[37]
S. Guo, C. M. Petrache, D. Mengoni, Y. H. Qiang, Y. P. Wang. . Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572
CrossRef ADS Google scholar
[38]
K. Y. Ma, J. B. Lu, D. Yang, H. D. Wang, Y. Z. Liu, X. G. Wu, Y. Zheng, C. Y. He. Candidate chiral doublet bands in 128La. Phys. Rev. C, 2012, 85(3): 037301
CrossRef ADS Google scholar
[39]
K. Y. Ma, J. B. Lu, Z. Zhang, J. Q. Liu, D. Yang, Y. M. Liu, X. Xu, X. Y. Li, Y. Z. Liu, X. G. Wu, Y. Zheng, C. B. Li. Candidate chiral doublet bands in 138Pm. Phys. Rev. C, 2018, 97(1): 014305
CrossRef ADS Google scholar
[40]
F. S. Komati, R. A. Bark, J. Gál, E. Gueorguieva, K. Juhász, G. Kalinka, A. Krasznahorkay, J. J. Lawrie, M. Lipoglavšek, M. Maliage, J. Molnár, S. M. Mullins, S. H. T. Murray, B. M. Nyakó, M. Ramashidza, J. F. Sharpey-Schafer, J. N. Scheurer, J. Timár, P. Vymers, L. Zolnai. Commissioning of the DIAMANT “chessboard” light‐charged‐particle CsI detector array with AFRODITE. AIP Conf. Proc., 2005, 802: 215
CrossRef ADS Google scholar
[41]
J. N. Scheurer, M. Aiche, M. M. Aleonard, G. Barreaua, F. Bourginea, D. Boivin, D. Cabaussel, J. F. Chemin, T. P. Doan, J. P. Goudour, M. Harston, A. Brondi. Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example. Nucl. Instrum. Methods Phys. Res. A, 1997, 385(3): 501
CrossRef ADS Google scholar
[42]
J. Gál, G. Hegyesi, J. Molnár, B. M. Nyakó, G. Kalinka, J. N. Scheurer, M. M. Aléonard, J. F. Chemin, J. L. Pedroza, K. Juhász, V. F. E. Pucknell. The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. Res. A, 2004, 516(2−3): 502
CrossRef ADS Google scholar
[43]
K. Starosta, T. Koike, C. J. Chiara, D. B. Fossan, D. R. LaFosse, A. A. Hecht, C. W. Beausang, M. A. Caprio, J. R. Cooper, R. Krücken, J. R. Novak, N. V. Zamfir, K. E. Zyromski, D. J. Hartley, D. L. Balabanski, J. Y. Zhang, S. Frauendorf, V. I. Dimitrov. Chiral doublet structures in odd−odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
CrossRef ADS Google scholar
[44]
T.KoikeK. StarostaC.J. ChiaraD.B. FossanD.R. LaFosse, Observation of chiral doublet bands in odd−odd N=73 isotones, Phys. Rev. C 63, 061304(R) (2001)
[45]
T. Koike, K. Starosta, C. J. Chiara, D. B. Fossan, D. R. LaFosse. Systematic search of πh11/2νh11/2 chiral doublet bands and role of triaxiality in odd−odd Z = 55 isotopes: 128, 130, 132, 134Cs. Phys. Rev. C, 2003, 67(4): 044319
CrossRef ADS Google scholar
[46]
R. A. Bark, A. M. Baxter, A. P. Byrne, G. D. Dracoulis, T. Kibédi, T. R. McGoram, S. M. Mullins. Candidate chiral band in La. Nucl. Phys. A., 2001, 691(3−4): 577
CrossRef ADS Google scholar
[47]
G. Rainovski, E. S. Paul, H. J. Chantler, P. J. Nolan, D. G. Jenkins, R. Wadsworth, P. Raddon, A. Simons, D. B. Fossan, T. Koike, K. Starosta, C. Vaman, E. Farnea, A. Gadea, T. Kröll, R. Isocrate, G. Angelis, D. Curien, V. I. Dimitrov. Candidate chiral twin bands in the odd−odd nucleus 132Cs: Exploring the limits of chirality in the mass A ≈ 130 region. Phys. Rev. C, 2003, 68(2): 024318
CrossRef ADS Google scholar
[48]
A. A. Hecht, C. W. Beausang, H. Amro, C. J. Barton, Z. Berant, M. A. Caprio, R. F. Casten, J. R. Cooper, D. J. Hartley, R. Krücken, D. A. Meyer, H. Newman, J. R. Novak, N. Pietralla, J. J. Ressler, A. Wolf, N. V. Zamfir, J. Y. Zhang, K. E. Zyromski. Evidence for chiral symmetry breaking in 140Eu. Phys. Rev. C, 2003, 68(5): 054310
CrossRef ADS Google scholar
[49]
D. Tonev, G. de Angelis, P. Petkov, A. Dewald, S. Brant, S. Frauendorf, D. L. Balabanski, P. Pejovic, D. Bazzacco, P. Bednarczyk, F. Camera, A. Fitzler, A. Gadea, S. Lenzi, S. Lunardi, N. Marginean, O. Möller, D. R. Napoli, A. Paleni, C. M. Petrache, G. Prete, K. O. Zell, Y. H. Zhang, J. Y. Zhang, Q. Zhong, D. Curien. Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96: 052501
CrossRef ADS Google scholar
[50]
C. M. Petrache, G. B. Hagemann, I. Hamamoto, K. Starosta. Risk of misinterpretation of nearly degenerate pair bands as chiral partners in nuclei. Phys. Rev. Lett., 2006, 96: 112502
CrossRef ADS Google scholar
[51]
E. Grodner, J. Srebrny, A. A. Pasternak, I. Zalewska, T. Morek. Ch. Droste, J. Mierzejewski, M. Kowalczyk, J. Kownacki, M. Kisieliński, S. G. Rohoziński, T. Koike, K. Starosta, A. Kordyasz, P. J. Napiorkowski, M. Wolińska-Cichocka, E. Ruchowska, W. Pɫóciennik, and J. Perkowski, 128Cs as the best example revealing chiral symmetry breaking. Phys. Rev. Lett., 2006, 97: 172501
CrossRef ADS Google scholar
[52]
C. Vaman, D. B. Fossan, T. Koike, K. Starosta, I. Y. Lee, A. O. Macchiavelli. Chiral degeneracy in triaxial 104Rh. Phys. Rev. Lett., 2004, 92(3): 032501
CrossRef ADS Google scholar
[53]
C. Liu, S. Y. Wang, B. Qi, D. P. Sun, S. Wang, C. J. Xu, L. Liu, P. Zhang, Z. Q. Li, B. Wang, X. C. Shen, M. R. Qin, H. L. Liu, Y. Gao, L. H. Zhu, X. G. Wu, G. S. Li, C. Y. He, Y. Zheng. Signature splitting, shape evolution, and nearly degenerate bands in 108Ag. Phys. Rev. C, 2013, 88: 037301
CrossRef ADS Google scholar
[54]
W. Z. Xu, S. Y. Wang, X. G. Wu, H. Jia, C. Liu, H. F. Bai, Y. J. Li, B. Qi, H. Y. Zhang, G. S. Li, Y. Zheng, C. B. Li, L. Mu, A. Rohilla, S. Wang, D. P. Sun, Z. Q. Li, N. B. Zhang, R. J. Guo, X. C. Han, X. Xiao. First observation of high-spin states in 116In and possible new region of chirality. Phys. Lett. B, 2023, 839: 137789
CrossRef ADS Google scholar
[55]
T.K. AlexanderJ.S. Foster, Advances in Nucl. Phys. 10, Chapter 3, 1978
[56]
P. Joshi, M. P. Carpenter, D. B. Fossan, T. Koike, E. S. Paul, G. Rainovski, K. Starosta, C. Vaman, R. Wadsworth. Effect of γ softness on the stability of chiral geometry: Spectroscopy of 106Ag. Phys. Rev. Lett., 2007, 98(10): 102501
CrossRef ADS Google scholar
[57]
N. Rather, P. Datta, S. Chattopadhyay, S. Rajbanshi, A. Goswami, G. H. Bhat, J. A. Sheikh, S. Roy, R. Palit, S. Pal, S. Saha, J. Sethi, S. Biswas, P. Singh, H. C. Jain. Exploring the origin of nearly degenerate doublet bands in 106Ag. Phys. Rev. Lett., 2014, 112(20): 202503
CrossRef ADS Google scholar
[58]
E. O. Lieder, R. M. Lieder, R. A. Bark, Q. B. Chen, S. Q. Zhang, J. Meng, E. A. Lawrie, J. J. Lawrie, S. P. Bvumbi, N. Y. Kheswa, S. S. Ntshangase, T. E. Madiba, P. L. Masiteng, S. M. Mullins, S. Murray, P. Papka, D. G. Roux, O. Shirinda, Z. H. Zhang, P. W. Zhao, Z. P. Li, J. Peng, B. Qi, S. Y. Wang, Z. G. Xiao, C. Xu. Resolution of chiral conundrum in 106Ag: Doppler-shift lifetime investigation. Phys. Rev. Lett., 2014, 112(20): 202502
CrossRef ADS Google scholar
[59]
L. J. Sun. . First application of Markov chain Monte Carlo-based Bayesian data analysis to the Doppler-shift attenuation method. Phys. Lett. B, 2023, 839: 137801
CrossRef ADS Google scholar
[60]
P. A. Butler, W. Nazarewicz. Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys., 1996, 68: 349
CrossRef ADS Google scholar
[61]
H. Z. Liang, J. Meng, S. G. Zhou. Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep., 2015, 570: 1
CrossRef ADS Google scholar
[62]
S. Y. Wang, S. Q. Zhang, B. Qi, J. Meng. Doublet bands in 126Cs in the triaxial rotor model coupled with two quasiparticles. Phys. Rev. C, 2007, 75: 024309
CrossRef ADS Google scholar
[63]
S. Q. Zhang, B. Qi, S. Y. Wang, J. Meng. Chiral bands for a quasi-proton and quasi-neutron coupled with a triaxial rotor. Phys. Rev. C, 2007, 75: 044307
CrossRef ADS Google scholar
[64]
S. Y. Wang, S. Q. Zhang, B. Qi, J. Peng, J. M. Yao, J. Meng. Description of πg9/2νh11/2 doublet bands in 106Rh. Phys. Rev. C, 2008, 77: 034314
CrossRef ADS Google scholar
[65]
S. Y. Wang, B. Qi, D. P. Sun. Theoretical study of positive-parity doublet bands in 124Cs. Phys. Rev. C, 2010, 82: 027303
CrossRef ADS Google scholar
[66]
S. Bhattacharya, T. Trivedi, D. Negi, R. P. Singh, S. Muralithar, R. Palit, I. Ragnarsson, S. Nag, S. Rajbanshi, M. Kumar Raju, V. V. Parkar, G. Mohanto, S. Kumar, D. Choudhury, R. Kumar, R. K. Bhowmik, S. C. Pancholi, A. K. Jain. Evolution of collectivity and evidence of octupole correlations in 73Br. Phys. Rev. C, 2019, 100: 014315
CrossRef ADS Google scholar
[67]
H. Jia, B. Qi, C. Liu, S. Y. Wang. Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: Triplet bands in 105Ag. J. Phys. G: Nucl. Part. Phys., 2019, 46: 035102
CrossRef ADS Google scholar

Declarations

The authors declare that they have no competing interests and there are no conflicts.

Acknowledgements

Fruitful discussions with Song Guo, Keyan Ma, Baohua Sun, Xiaoguang Wu, Lihua Zhu and Shengjiang Zhu are highly appreciated. This work was partly supported by the National Natural Science Foundation of China (Nos. 12225504, 12075137, and 12075138), the Major Program of Natural Science Foundation of Shandong Province (No. ZR2020ZD30), the Outstanding Youth Fund of Natural Science Foundation of Shandong Province (No. ZR2020YQ07), and the Young Scholars Program of Shandong University, Weihai.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8966 KB)

Accesses

Citations

Detail

Sections
Recommended

/