Magnetic-field-sensitive multi-wave interference

Wenhua Yan, Xudong Ren, Wenjie Xu, Zhongkun Hu, Minkang Zhou

PDF(4522 KB)
PDF(4522 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 52306. DOI: 10.1007/s11467-023-1300-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Magnetic-field-sensitive multi-wave interference

Author information +
History +

Abstract

We report an experimental study of magnetic-field-sensitive multi-wave interference, realized in a three-wave RF-atom system. In the F = 1 hyperfine level of the 87Rb52S1/2 ground state, Ramsey fringes were observed via the spin-selective Raman detection. A decrease in the fringe contrast was observed with increasing free evolution time. The maximum evolution time for observable fringe contrasts was investigated at different atom temperatures, under free-falling and trapped conditions. As the main interest of the Ramsey method, the improvement in magnetic field resolution is observed with an increase of evolution time T up to 3 ms and with the measurement resolution reaching 0.85 nT. This study paves the way for precision magnetic field measurements based on cold atoms.

Graphical abstract

Keywords

atom interferometer / magnetometer / cold atom device / multi-wave interference

Cite this article

Download citation ▾
Wenhua Yan, Xudong Ren, Wenjie Xu, Zhongkun Hu, Minkang Zhou. Magnetic-field-sensitive multi-wave interference. Front. Phys., 2023, 18(5): 52306 https://doi.org/10.1007/s11467-023-1300-8

References

[1]
N. F. Ramsey . A molecular beam resonance method with separated oscillating fields. Phys. Rev., 1950, 78(6): 695
CrossRef ADS Google scholar
[2]
T. P. Heavner , E. A. Donley , F. Levi , G. Costanzo , T. E. Parker , J. H. Shirley , N. Ashby , S. Barlow , S. R. Jefferts . First accuracy evaluation of NIST-F2. Metrologia, 2014, 51(3): 174
CrossRef ADS Google scholar
[3]
J. Guena , M. Abgrall , D. Rovera , P. Laurent , B. Chupin , M. Lours , G. Santarelli , P. Rosenbusch , M. E. Tobar , Ruoxin Li , K. Gibble , A. Clairon , S. Bize . Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59(3): 391
CrossRef ADS Google scholar
[4]
V. Gerginov , N. Nemitz , S. Weyers , R. Schröder , D. Griebsch , R. Wynands . Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia, 2010, 47(1): 65
CrossRef ADS Google scholar
[5]
M. Sadgrove , Y. Eto , S. Sekine , H. Suzuki , T. Hirano . Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas. J. Phys. Soc. Jpn., 2013, 82(9): 094002
CrossRef ADS Google scholar
[6]
L. Chen , K. Zhang , Y. Xu , Q. Luo , W. Xu , M. Zhou , Z. Hu . Multi-wave atom interferometer based on Doppler-insensitive Raman transition. Opt. Express, 2020, 28(6): 8463
CrossRef ADS Google scholar
[7]
Petrovic I. Herrera, P. Lombardi, F. Schäfer , F. S. Cataliotti. . A multi-state interferometer on an atom chip. New J. Phys., 2013, 15(4): 043002
CrossRef ADS Google scholar
[8]
M. Robert-de-Saint-Vincent , J. P. Brantut , C. J. Bordé , A. Aspect , T. Bourdel , P. Bouyer . A quantum trampoline for ultra-cold atoms. Europhys. Lett., 2010, 89(1): 10002
CrossRef ADS Google scholar
[9]
M. Gustavsson , E. Haller , M. J. Mark , J. G. Danzl , R. Hart , A. J. Daley , H. C. Nägerl . Interference of interacting matter waves. New J. Phys., 2010, 12(6): 065029
CrossRef ADS Google scholar
[10]
M. K. Zhou , K. Zhang , X. C. Duan , Y. Ke , C. G. Shao , Z. K. Hu . Atomic multiwave interferometer for Aharonov−Casher-phase measurements. Phys. Rev. A, 2016, 93(2): 023641
CrossRef ADS Google scholar
[11]
G. Di Domenico , H. Saudan , G. Bison , P. Knowles , A. Weis . Sensitivity of double-resonance alignment magnetometers. Phys. Rev. A, 2007, 76(2): 023407
CrossRef ADS Google scholar
[12]
S. Knappe , P. D. D. Schwindt , V. Gerginov , V. Shah , L. Liew , J. Moreland , H. G. Robinson , L. Hollberg , J. Kitching . Microfabricated atomic clocks and magnetometers. J. Opt. A, 2006, 8(7): S318
CrossRef ADS Google scholar
[13]
P. D. D. Schwindt , S. Knappe , V. Shah , L. Hollberg , J. Kitching , L. A. Liew , J. Moreland . Chip-scale atomic magnetometer. Appl. Phys. Lett., 2004, 85(26): 6409
CrossRef ADS Google scholar
[14]
J. Li , W. Quan , B. Zhou , Z. Wang , J. Lu , Z. Hu , G. Liu , J. Fang . SERF atomic magnetometer – recent advances and applications: A review. IEEE Sens. J., 2018, 18(20): 8198
CrossRef ADS Google scholar
[15]
D. Budker , M. Romalis . Optical magnetometry. Nat. Phys., 2007, 3(4): 227
CrossRef ADS Google scholar
[16]
M. W. Mitchell , S. P. Alvarez . Quantum limits to the energy resolution of magnetic field sensors. Rev. Mod. Phys., 2020, 92(2): 021001
CrossRef ADS Google scholar
[17]
W. Zhao , W. Qian , D. Lv , R. Wei . Improvement of average magnetic field measurement based on magnetic-field-sensitive Ramsey fringes. Opt. Lett., 2022, 47(8): 2073
CrossRef ADS Google scholar
[18]
W. Wang , R. Dong , R. Wei , J. Lin , F. Zou , T. Chen , Y. Wang . Measuring magnetic field vector by stimulated Raman transitions. Appl. Phys. Lett., 2016, 108(12): 122401
CrossRef ADS Google scholar
[19]
C. Shi , R. Wei , Z. Zhou , D. Lv , T. Li , Y. Wang . Magnetic field measurement on 87Rb atomic fountain clock. Chin. Opt. Lett., 2010, 8: 549
CrossRef ADS Google scholar
[20]
A. Peters , K. Y. Chung , S. Chu . High-precision gravity measurements using atom interferometry. Metrologia, 2001, 38(1): 25
CrossRef ADS Google scholar
[21]
Z. K. Hu , B. L. Sun , X. C. Duan , M. K. Zhou , L. L. Chen , S. Zhan , Q. Z. Zhang , J. Luo . Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A, 2013, 88(4): 043610
CrossRef ADS Google scholar
[22]
Z. Y. Wang , T. Chen , X. L. Wang , Z. Zhang , Y. F. Xu , Q. Lin . A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement. Front. Phys. China, 2009, 4(2): 174
CrossRef ADS Google scholar
[23]
J. Wang , L. Zhou , R. B. Li , M. Liu , M. S. Zhan . Cold atom interferometers and their applications in precision measurements. Front. Phys. China, 2009, 4(2): 179
CrossRef ADS Google scholar
[24]
R. Gautier , M. Guessoum , L. A. Sidorenkov , Q. Bouton , A. Landragin , R. Geiger . Accurate measurement of the Sagnac effect for matter waves. Sci. Adv., 2022, 8(23): eabn8009
CrossRef ADS Google scholar
[25]
W. J. Xu , L. Cheng , J. Liu , C. Zhang , K. Zhang , Y. Cheng , Z. Gao , L. S. Cao , X. C. Duan , M. K. Zhou , Z. K. Hu . Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope. Opt. Express, 2020, 28(8): 12189
CrossRef ADS Google scholar
[26]
Z. W. Yao , S. B. Lu , R. B. Li , J. Luo , J. Wang , M. S. Zhan . Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope. Phys. Rev. A, 2018, 97(1): 013620
CrossRef ADS Google scholar
[27]
X. Alauze , A. Bonnin , C. Solaro , F. P. D. Santos . A trapped ultracold atom force sensor with a μm-scale spatial resolution. New J. Phys., 2018, 20(8): 083014
CrossRef ADS Google scholar
[28]
R. Bennett , D. H. J. O’Dell . Revealing short-range non-Newtonian gravity through Casimir–Polder shielding. New J. Phys., 2019, 21(3): 033032
CrossRef ADS Google scholar
[29]
P. Wolf , P. Lemonde , A. Lambrecht , S. Bize , A. Landragin , A. Clairon . From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A, 2007, 75(6): 063608
CrossRef ADS Google scholar
[30]
S. Dimopoulos , A. A. Geraci . Probing submicron forces by interferometry of Bose−Einstein condensed atoms. Phys. Rev. D, 2003, 68(12): 124021
CrossRef ADS Google scholar
[31]
X. B. Deng , Y. Y. Xu , X. C. Duan , Z. K. Hu . Precisely mapping the absolute magnetic field in vacuum by an optical ramsey atom interferometer. Phys. Rev. Appl., 2021, 15(5): 054062
CrossRef ADS Google scholar
[32]
H. Zhang , X. Ren , W. Yan , Y. Cheng , H. Zhou , Z. Gao , Q. Luo , M. Zhou , Z. Hu . Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms. Opt. Express, 2021, 29(19): 30007
CrossRef ADS Google scholar
[33]
W. Yan , X. Ren , M. Zhou , Z. Hu . Precision magnetic field sensing with dual multi-wave atom interferometer. Sensors (Basel), 2022, 23(1): 173
CrossRef ADS Google scholar
[34]
F.Reinhard, Design and construction of an atomic clock on an atom chip, Thesis, Université Pierre et Marie Curie-Paris VI, 2009
[35]
Y. Eto , M. Sadgrove , S. Hasegawa , H. Saito , T. Hirano . Control of spin current in a Bose gas by periodic application of π pulses. Phys. Rev. A, 2014, 90(1): 013626
CrossRef ADS Google scholar
[36]
M. Fattori , C. D’Errico , G. Roati , M. Zaccanti , M. Jona-Lasinio , M. Modugno , M. Inguscio , G. Modugno . Atom interferometry with a weakly interacting Bose−Einstein condensate. Phys. Rev. Lett., 2008, 100(8): 080405
CrossRef ADS Google scholar
[37]
M. Fattori , T. Koch , S. Goetz , A. Griesmaier , S. Hensler , J. Stuhler , T. Pfau . Demagnetization cooling of a gas. Nat. Phys., 2006, 2(11): 765
CrossRef ADS Google scholar
[38]
S. Hensler , A. Greiner , J. Stuhler , T. Pfau . Depolarisation cooling of an atomic cloud. Europhys. Lett., 2005, 71(6): 918
CrossRef ADS Google scholar
[39]
A. Widera , F. Gerbier , S. Fölling , T. Gericke , O. Mandel , I. Bloch . Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. New J. Phys., 2006, 8(8): 152
CrossRef ADS Google scholar
[40]
H. Schmaljohann , M. Erhard , J. Kronjäger , M. Kottke , S. van Staa , L. Cacciapuoti , J. J. Arlt , K. Bongs , K. Sengstock . Dynamics of F = 2 Spinor Bose−Einstein condensates. Phys. Rev. Lett., 2004, 92(4): 040402
CrossRef ADS Google scholar
[41]
T. Kuwamoto , K. Araki , T. Eno , T. Hirano . Magnetic field dependence of the dynamics of 87Rb spin-2 Bose−Einstein condensates. Phys. Rev. A, 2004, 69(6): 063604
CrossRef ADS Google scholar
[42]
X. T. Xu , Z. Y. Wang , R. H. Jiao , C. R. Yi , W. Sun , S. Chen . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
CrossRef ADS Google scholar
[43]
B. Merkel , K. Thirumalai , J. E. Tarlton , V. M. Schäfer , C. J. Ballance , T. P. Harty , D. M. Lucas . Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum., 2019, 90(4): 044702
CrossRef ADS Google scholar
[44]
F.Riehle, Frequency Standards: Basics and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004
[45]
H. C. J. Gan , G. Maslennikov , K. W. Tseng , T. R. Tan , R. Kaewuam , K. J. Arnold , D. Matsukevich , M. D. Barrett . Oscillating-magnetic-field effects in high-precision metrology. Phys. Rev. A, 2018, 98(3): 032514
CrossRef ADS Google scholar

Acknowledgements

This study was supported by the National Key Research and Development Program of China (Grant No. 2020YFC2200200), the National Natural Science Foundation of China (Grants Nos. 12004128, 12104174, and 12274163), and Open Fund of Wuhan, Gravitation and Solid Earth Tides, National Observation and Research Station (Grants Nos. WHYWZ202211 and WHYWZ202104). We thank Dr. Xiaochun Duan and Dr. Jean-Michel Le Floch for the enlightening talk about this work. Codes and data are available upon request from the authors. The authors declare no conflicts of interest.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4522 KB)

Accesses

Citations

Detail

Sections
Recommended

/