Magnetic-field-sensitive multi-wave interference
Wenhua Yan, Xudong Ren, Wenjie Xu, Zhongkun Hu, Minkang Zhou
Magnetic-field-sensitive multi-wave interference
We report an experimental study of magnetic-field-sensitive multi-wave interference, realized in a three-wave RF-atom system. In the F = 1 hyperfine level of the ground state, Ramsey fringes were observed via the spin-selective Raman detection. A decrease in the fringe contrast was observed with increasing free evolution time. The maximum evolution time for observable fringe contrasts was investigated at different atom temperatures, under free-falling and trapped conditions. As the main interest of the Ramsey method, the improvement in magnetic field resolution is observed with an increase of evolution time T up to 3 ms and with the measurement resolution reaching 0.85 nT. This study paves the way for precision magnetic field measurements based on cold atoms.
atom interferometer / magnetometer / cold atom device / multi-wave interference
[1] |
N. F. Ramsey . A molecular beam resonance method with separated oscillating fields. Phys. Rev., 1950, 78(6): 695
CrossRef
ADS
Google scholar
|
[2] |
T. P. Heavner , E. A. Donley , F. Levi , G. Costanzo , T. E. Parker , J. H. Shirley , N. Ashby , S. Barlow , S. R. Jefferts . First accuracy evaluation of NIST-F2. Metrologia, 2014, 51(3): 174
CrossRef
ADS
Google scholar
|
[3] |
J. Guena , M. Abgrall , D. Rovera , P. Laurent , B. Chupin , M. Lours , G. Santarelli , P. Rosenbusch , M. E. Tobar , Ruoxin Li , K. Gibble , A. Clairon , S. Bize . Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59(3): 391
CrossRef
ADS
Google scholar
|
[4] |
V. Gerginov , N. Nemitz , S. Weyers , R. Schröder , D. Griebsch , R. Wynands . Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia, 2010, 47(1): 65
CrossRef
ADS
Google scholar
|
[5] |
M. Sadgrove , Y. Eto , S. Sekine , H. Suzuki , T. Hirano . Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas. J. Phys. Soc. Jpn., 2013, 82(9): 094002
CrossRef
ADS
Google scholar
|
[6] |
L. Chen , K. Zhang , Y. Xu , Q. Luo , W. Xu , M. Zhou , Z. Hu . Multi-wave atom interferometer based on Doppler-insensitive Raman transition. Opt. Express, 2020, 28(6): 8463
CrossRef
ADS
Google scholar
|
[7] |
Petrovic I. Herrera, P. Lombardi, F. Schäfer , F. S. Cataliotti. . A multi-state interferometer on an atom chip. New J. Phys., 2013, 15(4): 043002
CrossRef
ADS
Google scholar
|
[8] |
M. Robert-de-Saint-Vincent , J. P. Brantut , C. J. Bordé , A. Aspect , T. Bourdel , P. Bouyer . A quantum trampoline for ultra-cold atoms. Europhys. Lett., 2010, 89(1): 10002
CrossRef
ADS
Google scholar
|
[9] |
M. Gustavsson , E. Haller , M. J. Mark , J. G. Danzl , R. Hart , A. J. Daley , H. C. Nägerl . Interference of interacting matter waves. New J. Phys., 2010, 12(6): 065029
CrossRef
ADS
Google scholar
|
[10] |
M. K. Zhou , K. Zhang , X. C. Duan , Y. Ke , C. G. Shao , Z. K. Hu . Atomic multiwave interferometer for Aharonov−Casher-phase measurements. Phys. Rev. A, 2016, 93(2): 023641
CrossRef
ADS
Google scholar
|
[11] |
G. Di Domenico , H. Saudan , G. Bison , P. Knowles , A. Weis . Sensitivity of double-resonance alignment magnetometers. Phys. Rev. A, 2007, 76(2): 023407
CrossRef
ADS
Google scholar
|
[12] |
S. Knappe , P. D. D. Schwindt , V. Gerginov , V. Shah , L. Liew , J. Moreland , H. G. Robinson , L. Hollberg , J. Kitching . Microfabricated atomic clocks and magnetometers. J. Opt. A, 2006, 8(7): S318
CrossRef
ADS
Google scholar
|
[13] |
P. D. D. Schwindt , S. Knappe , V. Shah , L. Hollberg , J. Kitching , L. A. Liew , J. Moreland . Chip-scale atomic magnetometer. Appl. Phys. Lett., 2004, 85(26): 6409
CrossRef
ADS
Google scholar
|
[14] |
J. Li , W. Quan , B. Zhou , Z. Wang , J. Lu , Z. Hu , G. Liu , J. Fang . SERF atomic magnetometer – recent advances and applications: A review. IEEE Sens. J., 2018, 18(20): 8198
CrossRef
ADS
Google scholar
|
[15] |
D. Budker , M. Romalis . Optical magnetometry. Nat. Phys., 2007, 3(4): 227
CrossRef
ADS
Google scholar
|
[16] |
M. W. Mitchell , S. P. Alvarez . Quantum limits to the energy resolution of magnetic field sensors. Rev. Mod. Phys., 2020, 92(2): 021001
CrossRef
ADS
Google scholar
|
[17] |
W. Zhao , W. Qian , D. Lv , R. Wei . Improvement of average magnetic field measurement based on magnetic-field-sensitive Ramsey fringes. Opt. Lett., 2022, 47(8): 2073
CrossRef
ADS
Google scholar
|
[18] |
W. Wang , R. Dong , R. Wei , J. Lin , F. Zou , T. Chen , Y. Wang . Measuring magnetic field vector by stimulated Raman transitions. Appl. Phys. Lett., 2016, 108(12): 122401
CrossRef
ADS
Google scholar
|
[19] |
C. Shi , R. Wei , Z. Zhou , D. Lv , T. Li , Y. Wang . Magnetic field measurement on 87Rb atomic fountain clock. Chin. Opt. Lett., 2010, 8: 549
CrossRef
ADS
Google scholar
|
[20] |
A. Peters , K. Y. Chung , S. Chu . High-precision gravity measurements using atom interferometry. Metrologia, 2001, 38(1): 25
CrossRef
ADS
Google scholar
|
[21] |
Z. K. Hu , B. L. Sun , X. C. Duan , M. K. Zhou , L. L. Chen , S. Zhan , Q. Z. Zhang , J. Luo . Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A, 2013, 88(4): 043610
CrossRef
ADS
Google scholar
|
[22] |
Z. Y. Wang , T. Chen , X. L. Wang , Z. Zhang , Y. F. Xu , Q. Lin . A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement. Front. Phys. China, 2009, 4(2): 174
CrossRef
ADS
Google scholar
|
[23] |
J. Wang , L. Zhou , R. B. Li , M. Liu , M. S. Zhan . Cold atom interferometers and their applications in precision measurements. Front. Phys. China, 2009, 4(2): 179
CrossRef
ADS
Google scholar
|
[24] |
R. Gautier , M. Guessoum , L. A. Sidorenkov , Q. Bouton , A. Landragin , R. Geiger . Accurate measurement of the Sagnac effect for matter waves. Sci. Adv., 2022, 8(23): eabn8009
CrossRef
ADS
Google scholar
|
[25] |
W. J. Xu , L. Cheng , J. Liu , C. Zhang , K. Zhang , Y. Cheng , Z. Gao , L. S. Cao , X. C. Duan , M. K. Zhou , Z. K. Hu . Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope. Opt. Express, 2020, 28(8): 12189
CrossRef
ADS
Google scholar
|
[26] |
Z. W. Yao , S. B. Lu , R. B. Li , J. Luo , J. Wang , M. S. Zhan . Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope. Phys. Rev. A, 2018, 97(1): 013620
CrossRef
ADS
Google scholar
|
[27] |
X. Alauze , A. Bonnin , C. Solaro , F. P. D. Santos . A trapped ultracold atom force sensor with a μm-scale spatial resolution. New J. Phys., 2018, 20(8): 083014
CrossRef
ADS
Google scholar
|
[28] |
R. Bennett , D. H. J. O’Dell . Revealing short-range non-Newtonian gravity through Casimir–Polder shielding. New J. Phys., 2019, 21(3): 033032
CrossRef
ADS
Google scholar
|
[29] |
P. Wolf , P. Lemonde , A. Lambrecht , S. Bize , A. Landragin , A. Clairon . From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A, 2007, 75(6): 063608
CrossRef
ADS
Google scholar
|
[30] |
S. Dimopoulos , A. A. Geraci . Probing submicron forces by interferometry of Bose−Einstein condensed atoms. Phys. Rev. D, 2003, 68(12): 124021
CrossRef
ADS
Google scholar
|
[31] |
X. B. Deng , Y. Y. Xu , X. C. Duan , Z. K. Hu . Precisely mapping the absolute magnetic field in vacuum by an optical ramsey atom interferometer. Phys. Rev. Appl., 2021, 15(5): 054062
CrossRef
ADS
Google scholar
|
[32] |
H. Zhang , X. Ren , W. Yan , Y. Cheng , H. Zhou , Z. Gao , Q. Luo , M. Zhou , Z. Hu . Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms. Opt. Express, 2021, 29(19): 30007
CrossRef
ADS
Google scholar
|
[33] |
W. Yan , X. Ren , M. Zhou , Z. Hu . Precision magnetic field sensing with dual multi-wave atom interferometer. Sensors (Basel), 2022, 23(1): 173
CrossRef
ADS
Google scholar
|
[34] |
F.Reinhard, Design and construction of an atomic clock on an atom chip, Thesis, Université Pierre et Marie Curie-Paris VI, 2009
|
[35] |
Y. Eto , M. Sadgrove , S. Hasegawa , H. Saito , T. Hirano . Control of spin current in a Bose gas by periodic application of π pulses. Phys. Rev. A, 2014, 90(1): 013626
CrossRef
ADS
Google scholar
|
[36] |
M. Fattori , C. D’Errico , G. Roati , M. Zaccanti , M. Jona-Lasinio , M. Modugno , M. Inguscio , G. Modugno . Atom interferometry with a weakly interacting Bose−Einstein condensate. Phys. Rev. Lett., 2008, 100(8): 080405
CrossRef
ADS
Google scholar
|
[37] |
M. Fattori , T. Koch , S. Goetz , A. Griesmaier , S. Hensler , J. Stuhler , T. Pfau . Demagnetization cooling of a gas. Nat. Phys., 2006, 2(11): 765
CrossRef
ADS
Google scholar
|
[38] |
S. Hensler , A. Greiner , J. Stuhler , T. Pfau . Depolarisation cooling of an atomic cloud. Europhys. Lett., 2005, 71(6): 918
CrossRef
ADS
Google scholar
|
[39] |
A. Widera , F. Gerbier , S. Fölling , T. Gericke , O. Mandel , I. Bloch . Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. New J. Phys., 2006, 8(8): 152
CrossRef
ADS
Google scholar
|
[40] |
H. Schmaljohann , M. Erhard , J. Kronjäger , M. Kottke , S. van Staa , L. Cacciapuoti , J. J. Arlt , K. Bongs , K. Sengstock . Dynamics of F = 2 Spinor Bose−Einstein condensates. Phys. Rev. Lett., 2004, 92(4): 040402
CrossRef
ADS
Google scholar
|
[41] |
T. Kuwamoto , K. Araki , T. Eno , T. Hirano . Magnetic field dependence of the dynamics of 87Rb spin-2 Bose−Einstein condensates. Phys. Rev. A, 2004, 69(6): 063604
CrossRef
ADS
Google scholar
|
[42] |
X. T. Xu , Z. Y. Wang , R. H. Jiao , C. R. Yi , W. Sun , S. Chen . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
CrossRef
ADS
Google scholar
|
[43] |
B. Merkel , K. Thirumalai , J. E. Tarlton , V. M. Schäfer , C. J. Ballance , T. P. Harty , D. M. Lucas . Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum., 2019, 90(4): 044702
CrossRef
ADS
Google scholar
|
[44] |
F.Riehle, Frequency Standards: Basics and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004
|
[45] |
H. C. J. Gan , G. Maslennikov , K. W. Tseng , T. R. Tan , R. Kaewuam , K. J. Arnold , D. Matsukevich , M. D. Barrett . Oscillating-magnetic-field effects in high-precision metrology. Phys. Rev. A, 2018, 98(3): 032514
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |