Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6

Fan-Ying Wu, Qi-Yi Wu, Chen Zhang, Yang Luo, Xiangqi Liu, Yuan-Feng Xu, Dong-Hui Lu, Makoto Hashimoto, Hao Liu, Yin-Zou Zhao, Jiao-Jiao Song, Ya-Hua Yuan, Hai-Yun Liu, Jun He, Yu-Xia Duan, Yan-Feng Guo, Jian-Qiao Meng

PDF(5708 KB)
PDF(5708 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53304. DOI: 10.1007/s11467-023-1298-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6

Author information +
History +

Abstract

The three-dimensional electronic structure and the nature of Ce 4f electrons of the Kondo insulator CeRu4Sn6 are investigated by angle-resolved photoemission spectroscopy, utilizing tunable photon energies. Our results reveal (i) the three-dimensional k-space nature of the Fermi surface, (ii) the localized-to-itinerant transition of f electrons occurs at a much high temperature than the hybridization gap opening temperature, and (iii) the “relocalization” of itinerant f-electrons below 25 K, which could be the precursor to the establishment of magnetic order.

Graphical abstract

Keywords

Kondo insulator / heavy fermion / ARPES / electronic structure / relocalization

Cite this article

Download citation ▾
Fan-Ying Wu, Qi-Yi Wu, Chen Zhang, Yang Luo, Xiangqi Liu, Yuan-Feng Xu, Dong-Hui Lu, Makoto Hashimoto, Hao Liu, Yin-Zou Zhao, Jiao-Jiao Song, Ya-Hua Yuan, Hai-Yun Liu, Jun He, Yu-Xia Duan, Yan-Feng Guo, Jian-Qiao Meng. Itinerant to relocalized transition of f electrons in the Kondo insulator CeRu4Sn6. Front. Phys., 2023, 18(5): 53304 https://doi.org/10.1007/s11467-023-1298-y

References

[1]
P. S. Riseborough. Heavy fermion semiconductors. Adv. Phys., 2000, 49(3): 257
CrossRef ADS Google scholar
[2]
S. G. Stewart. Heavy-fermion systems. Rev. Mod. Phys., 1984, 56(4): 755
CrossRef ADS Google scholar
[3]
P.Coleman, ., Handbook of Magnetism and Advanced Magnetic Materials, John Wiley & Sons, 2007
[4]
M. Dzero, K. Sun, V. Galitski, P. Coleman. Topological Kondo insulators. Phys. Rev. Lett., 2010, 104(10): 106408
CrossRef ADS Google scholar
[5]
M. Dzero, K. Sun, P. Coleman, V. Galitski. Theory of topological Kondo insulators. Phys. Rev. B, 2012, 85(4): 045130
CrossRef ADS Google scholar
[6]
F. Lu, J. Zhao, H. Weng, Z. Fang, X. Dai. Correlated topological insulators with mixed valence. Phys. Rev. Lett., 2013, 110(9): 096401
CrossRef ADS Google scholar
[7]
J. Jiang, S. Li, T. Zhang, Z. Sun, F. Chen, Z. R. Ye, M. Xu, Q. Q. Ge, S. Y. Tan, X. H. Niu, M. Xia, B. P. Xie, Y. F. Li, X. H. Chen, H. H. Wen, D. L. Feng. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun., 2013, 4(1): 3010
CrossRef ADS Google scholar
[8]
M. Neupane, N. Alidoust, S. Y. Xu, T. Kondo, Y. Ishida, D. J. Kim, C. Liu, I. Belopolski, Y. J. Jo, T. R. Chang, H. T. Jeng, T. Durakiewicz, L. Balicas, H. Lin, A. Bansil, S. Shin, Z. Fisk, M. Z. Hasan. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6. Nat. Commun., 2013, 4(1): 2991
CrossRef ADS Google scholar
[9]
N. Xu, X. Shi, P. K. Biswas, C. E. Matt, R. S. Dhaka, Y. Huang, N. C. Plumb, M. Radović, J. H. Dil, E. Pomjakushina, K. Conder, A. Amato, Z. Salman, D. McK. Paul, J. Mesot, H. Ding, M. Shi. Surface and bulk electronic structure of the strongly correlated system SmB6 and implications for a topological Kondo insulator. Phys. Rev. B, 2013, 88(12): 121102
CrossRef ADS Google scholar
[10]
N. Xu, P. K. Biswas, J. H. Dil, R. S. Dhaka, G. Landolt, S. Muff, C. E. Matt, X. Shi, N. C. Plumb, M. Radović, E. Pomjakushina, K. Conder, A. Amato, S. V. Borisenko, R. Yu, H. M. Weng, Z. Fang, X. Dai, J. Mesot, H. Ding, M. Shi. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun., 2014, 5(1): 4566
CrossRef ADS Google scholar
[11]
G. Li, Z. Xiang, F. Yu, T. Asaba, B. Lawson, P. Cai, C. Tinsman, A. Berkley, S. Wolgast, Y. S. Eo, D. J. Kim, C. Kurdak, J. W. Allen, K. Sun, X. H. Chen, Y. Y. Wang, Z. Fisk, L. Li. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science, 2014, 346(6214): 1208
CrossRef ADS Google scholar
[12]
M. Hartstein, W. H. Toews, Y. T. Hsu, B. Zeng, X. Chen, M. C. Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, M. Sutherland, S. E. Sebastian. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6. Nat. Phys., 2018, 14(2): 166
CrossRef ADS Google scholar
[13]
H. Lai, S. E. Grefe, S. Paschen, Q. Si. Weyl–Kondo semimetal in heavy-fermion systems. Proc. Natl. Acad. Sci. USA, 2018, 115(1): 93
CrossRef ADS Google scholar
[14]
C. Cao, G. X. Zhi, J. X. Zhu. From trivial Kondo insulator Ce3Pt3Bi4 to topological nodal-line semimetal Ce3Pd3Bi4. Phys. Rev. Lett., 2020, 124(16): 166403
CrossRef ADS Google scholar
[15]
J. S. Kang, C. G. Olson, Y. Inada, Y. Ōnuki, S. K. Kwon, B. I. Min. Valence-band photoemission study of single crystalline CeNiSn. Phys. Rev. B, 1998, 58(8): 4426
CrossRef ADS Google scholar
[16]
G.NakamotoT. TakabatakeY.BandoH.FujiiK.Izawa T.SuzukiT. FujitaA.MinamiI.OguroL.T. Tai A.A. Menovsky, Effect of impurity phases on the anisotropic transport properties of CeNiSn, Physica B 206–207, 840 (1995)
[17]
U. Stockert, P. J. Sun, N. Oeschler, F. Steglich, T. Takabatake, P. Coleman, S. Paschen. Giant isotropic Nernst effect in an anisotropic Kondo semimetal. Phys. Rev. Lett., 2016, 117(21): 216401
CrossRef ADS Google scholar
[18]
J. M. Tomczak. Thermoelectricity in correlated narrow-gap semiconductors. J. Phys.: Condens. Matter, 2018, 30(18): 183001
CrossRef ADS Google scholar
[19]
J. Moreno, P. Coleman. Gap-anisotropic model for the narrow-gap Kondo insulators. Phys. Rev. Lett., 2000, 84(2): 342
CrossRef ADS Google scholar
[20]
M.KyogakuY. KitaokaH.NakamuraK.AsayamaT.TakabatakeF.TeshimaH.Fujii, NMR investigation of energy gap formation in the valence fluctuating compound CeNiSn, J. Phys. Soc. Jpn. 59(5), 1728 (1990)
[21]
P. Schlottmann. Impurity bands in Kondo insulators. Phys. Rev. B, 1992, 46(2): 998
CrossRef ADS Google scholar
[22]
H. Winkler, K. A. Lorenzer, A. Prokofiev, S. Paschen. Anisotropic electrical resistivity of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2012, 391: 012077
CrossRef ADS Google scholar
[23]
I. Das, E. V. Sampathkumaran. Electrical-resistance anomalies in a Ce−Ru−Sn phase. Phys. Rev. B, 1992, 46(7): 4250
CrossRef ADS Google scholar
[24]
S. Paschen, H. Winkler, T. Nezu, M. Kriegisch, G. Hilscher, J. Custers, A. Prokofiev, A. Strydom. Anisotropy of the Kondo insulator CeRu4Sn6. J. Phys. Conf. Ser., 2010, 200(1): 012156
CrossRef ADS Google scholar
[25]
V. Guritanu, P. Wissgott, T. Weig, H. Winkler, J. Sichelschmidt, M. Scheffler, A. Prokofiev, S. Kimura, T. Iizuka, A. M. Strydom, M. Dressel, F. Steglich, K. Held, S. Paschen. Anisotropic optical conductivity of the putative Kondo insulator CeRu4Sn6. Phys. Rev. B, 2013, 87(11): 115129
CrossRef ADS Google scholar
[26]
R. Pöttgen, R. D. Hoffmann, E. Sampathkumaran, I. Das, B. Mosel, R. Müllmann. Crystal structure, specific heat, and 119Sn Mössbauer spectroscopy of CeRu4Sn6: A ternary stannide with condensed, distorted RuSn6 octahedra. J. Solid State Chem., 1997, 134(2): 326
CrossRef ADS Google scholar
[27]
E. Brüning, M. Brando, M. Baenitz, A. Bentien, A. Strydom, R. Walstedt, F. Steglich. Low-temperature properties of CeRu4Sn6 from NMR and specific heat measurements: Heavy fermions emerging from a Kondo-insulating state. Phys. Rev. B, 2010, 82(12): 125115
CrossRef ADS Google scholar
[28]
A. Amorese, K. Kummer, N. B. Brookes, O. Stockert, D. T. Adroja, A. E. M. Strydom, A. Sidorenko, H. Winkler, D. A. Zocco, A. Prokofiev, S. Paschen, M. W. Haverkort, L. H. Tjeng, A. Severing. Determining the local low-energy excitations in the Kondo semimetal CeRu4Sn6 using resonant inelastic X-ray scattering. Phys. Rev. B, 2018, 98(8): 081116
CrossRef ADS Google scholar
[29]
M. Sundermann, F. Strigari, T. Willers, H. Winkler, A. Prokofiev, J. M. Ablett, J. Rueff, D. Schmitz, E. Weschke, M. M. Sala, A. Al-Zein, A. Tanaka, M. W. Haverkort, D. Kasinathan, L. H. Tjeng, S. Paschen, A. Severing. CeRu4Sn6: A strongly correlated material with nontrivial topology. Sci. Rep., 2015, 5(1): 17937
CrossRef ADS Google scholar
[30]
W. T. Fuhrman, A. Sidorenko, J. Hänel, H. Winkler, A. Prokofiev, J. A. Rodriguez-Rivera, Y. Qiu, P. Blaha, Q. Si, C. L. Broholm, S. Paschen. Pristine quantum criticality in a Kondo semimetal. Sci. Adv., 2021, 7(21): eabf9134
CrossRef ADS Google scholar
[31]
A.StrydomZ. GuoS.PaschenR.ViennoisF.Steglich, Electronic properties of semiconducting, Physica B 359–361, 293 (2005)
[32]
E.BrüningM.BaenitzA.Gippius A.StrydomF. SteglichR.Walstedt, 119Sn NMR on the correlated semi-metal, J. Magn. Magn. Mater. 310(2), 393 (2007)
[33]
A. M. Strydom, A. D. Hillier, D. T. Adroja, S. Paschen, F. Steglich. Low-temperature muon spin relaxation measurements on CeRu4Sn6. J. Magn. Magn. Mater., 2007, 310(2): 377
CrossRef ADS Google scholar
[34]
P. Wissgott, K. Held. Electronic structure of CeRu4Sn6: A density functional plus dynamical mean field theory study. Eur. Phys. J. B, 2016, 89(1): 5
CrossRef ADS Google scholar
[35]
Y. F. Xu, C. M. Yue, H. M. Weng, X. Dai. Heavy Weyl fermion state in CeRu4Sn6. Phys. Rev. X, 2017, 7(1): 011027
CrossRef ADS Google scholar
[36]
V. N. Strocov. Intrinsic accuracy in 3-dimensional photoemission band mapping. J. Electron Spectrosc. Relat. Phenom., 2003, 130(1−3): 65
CrossRef ADS Google scholar
[37]
H. Wadati, T. Yoshida, A. Chikamatsu, H. Kumigashira, M. Oshima, H. Eisaki, Z. X. Shen, T. Mizokawa, A. Fujimori. Angle-resolved photoemission spectroscopy of perovskite-type transition-metal oxides and their analyses using tight-binding band structure. Phase Transit., 2006, 79(8): 617
CrossRef ADS Google scholar
[38]
Y. X. Duan, C. Zhang, J. Rusz, P. M. Oppeneer, T. Durakiewicz, Y. Sassa, O. Tjernberg, M. Mänsson, M. H. Berntsen, F. Y. Wu, Y. Z. Zhao, J. J. Song, Q. Y. Wu, Y. Luo, E. D. Bauer, J. D. Thompson, J. Q. Meng. Crystal electric field splitting and f-electron hybridization in heavy-fermion CePt2In7. Phys. Rev. B, 2019, 100(8): 085141
CrossRef ADS Google scholar
[39]
S. Fujimori, A. Fujimori, K. Shimada, T. Narimura, K. Kobayashi, H. Namatame, M. Taniguchi, H. Harima, H. Shishido, S. Ikeda, D. Aoki, Y. Tokiwa, Y. Haga, Y. Ōnuki. Direct observation of a quasiparticle band in CeIrIn5: An angle-resolved photoemission spectroscopy study. Phys. Rev. B, 2006, 73(22): 224517
CrossRef ADS Google scholar
[40]
Q. Y. Chen, D. F. Xu, X. H. Niu, R. Peng, H. C. Xu, C. H. P. Wen, X. Liu, L. Shu, S. Y. Tan, X. C. Lai, Y. J. Zhang, H. Lee, V. N. Strocov, F. Bisti, P. Dudin, J. X. Zhu, H. Q. Yuan, S. Kirchner, D. L. Feng. Band dependent interlayer f-electron hybridization in CeRhIn5. Phys. Rev. Lett., 2018, 120(6): 066403
CrossRef ADS Google scholar
[41]
J. Q. Meng, P. M. Oppeneer, J. A. Mydosh, P. S. Riseborough, K. Gofryk, J. J. Joyce, E. D. Bauer, Y. Li, T. Durakiewicz. Imaging the three-dimensional Fermi-surface pairing near the hidden-order transition in URu2Si2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett., 2013, 111(12): 127002
CrossRef ADS Google scholar
[42]
Y. Luo, C. Zhang, Q. Y. Wu, F. Y. Wu, J. J. Song, W. Xia, Y. F. Guo, J. Rusz, P. M. Oppeneer, T. Durakiewicz, Y. Z. Zhao, H. Liu, S. X. Zhu, Y. H. Yuan, X. F. Tang, J. He, S. Y. Tan, Y. B. Huang, Z. Sun, Y. Liu, H. Y. Liu, Y. X. Duan, J. Q. Meng. Three-dimensional and temperature-dependent electronic structure of the heavy-fermion compound CePt2In7 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2020, 101(11): 115129
CrossRef ADS Google scholar
[43]
Q. Yao, D. Kaczorowski, P. Swatek, D. Gnida, C. H. P. Wen, X. H. Niu, R. Peng, H. C. Xu, P. Dudin, S. Kirchner, Q. Y. Chen, D. W. Shen, D. L. Feng. Electronic structure and 4f-electron character in Ce2PdIn8 studied by angle-resolved photoemission spectroscopy. Phys. Rev. B, 2019, 99(8): 081107
CrossRef ADS Google scholar
[44]
Y. Wu, Y. J. Zhang, F. Du, B. Shen, H. Zheng, Y. Fang, M. Smidman, C. Cao, F. Steglich, H. Q. Yuan, J. D. Denlinger, Y. Liu. Anisotropic cf hybridization in the ferromagnetic quantum critical metal CeRh6Ge4. Phys. Rev. Lett., 2021, 126(21): 216406
CrossRef ADS Google scholar
[45]
R. Zhou, X. B. Luo, Z. F. Ding, L. Shu, X. Y. Ji, Z. H. Zhu, Y. B. Huang, D. W. Shen, Z. T. Liu, Z. H. Liu, Y. Zhang, Q. Y. Chen. Electronic structure of LaIrIn5 and f-electron character in its related Ce-115 compounds. Sci. China Phys. Mech. Astron., 2020, 63(11): 117012
CrossRef ADS Google scholar
[46]
J. J. Song, Y. Luo, C. Zhang, Q. Y. Wu, T. Durakiewicz, Y. Sassa, O. Tjernberg, M. Månsson, M. H. Berntsen, Y. Z. Zhao, H. Liu, S. X. Zhu, Z. T. Liu, F. Y. Wu, S. Y. Liu, E. D. Bauer, J. Rusz, P. M. Oppeneer, Y. H. Yuan, Y. X. Duan, J. Q. Meng. The 4f-hybridization strength in CemMnIn3m+2n heavy-fermion compounds studied by angle-resolved photoemission spectroscopy. Chin. Phys. Lett., 2021, 38(10): 107402
CrossRef ADS Google scholar
[47]
A. Koitzsch, S. V. Borisenko, D. Inosov, J. Geck, V. B. Zabolotnyy, H. Shiozawa, M. Knupfer, J. Fink, B. Büchner, E. D. Bauer, J. L. Sarrao, R. Follath. Hybridization effects in CeCoIn5 observed by angle-resolved photoemission. Phys. Rev. B, 2008, 77(15): 155128
CrossRef ADS Google scholar
[48]
Y. H. Yuan, Y. X. Duan, J. Rusz, C. Zhang, J. J. Song, Q. Y. Wu, Y. Sassa, O. Tjernberg, M. Månsson, M. H. Berntsen, F. Y. Wu, S. Y. Liu, H. Liu, S. X. Zhu, Z. T. Liu, Y. Z. Zhao, P. H. Tobash, E. D. Bauer, J. D. Thompson, P. M. Oppeneer, T. Durakiewicz, J. Q. Meng. Angle-resolved photoemission spectroscopy view on the nature of Ce 4f electrons in the antiferromagnetic Kondo lattice CePd5Al2. Phys. Rev. B, 2021, 103(12): 125122
CrossRef ADS Google scholar
[49]
Y. Zhang, W. Feng, X. Lou, T. L. Yu, X. G. Zhu, S. Y. Tan, B. K. Yuan, Y. Liu, H. Y. Lu, D. H. Xie, Q. Liu, W. Zhang, X. B. Luo, Y. B. Huang, L. Z. Luo, Z. J. Zhang, X. C. Lai, Q. Y. Chen. Direct observation of heavy quasiparticles in the Kondo-lattice compound CeIn3. Phys. Rev. B, 2018, 97(4): 045128
CrossRef ADS Google scholar
[50]
Y. F. Yang. Two-fluid model for heavy electron physics. Rep. Prog. Phys., 2016, 79(7): 074501
CrossRef ADS Google scholar
[51]
N.apRoberts-WarrenA.P. DioguardiA.C. ShockleyC.H. LinJ.CrockerP.Klavins D.PinesY. -F. YangN.J. Curro, Kondo liquid emergence and relocalization in the approach to antiferromagnetic ordering in CePt2In7, Phys. Rev. B 83, 060408(R) (2011)
[52]
K. R. Shirer, A. C. Shockley, A. P. Dioguardi, J. Crocker, C. H. Lin, N. apRoberts-Warren, D. M. Nisson, P. Klavins, J. C. Cooley, Y. F. Yang, N. J. Curro. Long range order and two-fluid behavior in heavy electron materials. Proc. Natl. Acad. Sci. USA, 2012, 109(45): E3067
CrossRef ADS Google scholar
[53]
P.LiH.Q. Ye Y.HuY.Fang Z.G. XiaoZ. Z. WuZ.Y. ShanR.P. SinghG.BalakrishnanD.W. ShenY.F. YangC.Cao N.C. PlumbM. SmidmanM.ShiJ.KrohaH.Q. Yuan F.SteglichY. Liu, ARPES signature of the competition between magnetic order and Kondo effect in CeCoGe3, Phys. Rev. B 107(20), L201104 (2023)

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12074436 and 11574402), the Science and Technology Innovation Program of Hunan Province (No. 2022RC3068), and the open project of Beijing National Laboratory for Condensed Matter Physics (Grant No. ZBJ2106110017). Some preliminary ARPES data were taken at the “Dreamline” beamline of the Shanghai Synchrotron Radiation Facility.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5708 KB)

Accesses

Citations

Detail

Sections
Recommended

/