Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer

Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang

PDF(6096 KB)
PDF(6096 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43304. DOI: 10.1007/s11467-023-1297-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer

Author information +
History +

Abstract

As a two-dimensional material with a hollow hexatomic ring structure, Néel-type anti-ferromagnetic (AFM) GdI3 can be used as a theoretical model to study the effect of electron doping. Based on first-principles calculations, we find that the Fermi surface nesting occurs when more than 1/3 electron per Gd is doped, resulting in the failure to obtain a stable ferromagnetic (FM) state. More interestingly, GdI3 with appropriate Mg/Ca doping (1/6 Mg/Ca per Gd) turns to be half-metallic FM state. This AFM−FM transition results from the transfer of doped electrons to the spatially expanded Gd-5d orbital, which leads to the FM coupling of local half-full Gd-4f electrons through 5d−4f hybridization. Moreover, the shortened Gd−Gd length is the key to the formation of the stable ferromagnetic coupling. Our method provides new insights into obtaining stable FM materials from AFM materials.

Graphical abstract

Keywords

two-dimensional materials / electronic structure / magnetism

Cite this article

Download citation ▾
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304 https://doi.org/10.1007/s11467-023-1297-z

References

[1]
C. Gong , L. Li , Z. L. Li , H. W. Ji , A. Stern , Y. Xia , T. Cao , W. Bao , C. Z. Wang , Y. A. Wang , Z. Q. Qiu , R. J. Cava , S. G. Louie , J. Xia , X. Zhang . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef ADS Google scholar
[2]
B. Huang , G. Clark , E. Navarro-Moratalla , D. R. Klein , R. Cheng , K. L. Seyler , D. Zhong , E. Schmidgall , M. A. McGuire , D. H. Cobden , W. Yao , D. Xiao , P. Jarillo-Herrero , X. D. Xu . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef ADS Google scholar
[3]
M. An , S. Dong . Ferroic orders in two-dimensional transition/rare-earth metal halides. APL Mater., 2020, 8(11): 110704
CrossRef ADS Google scholar
[4]
X. Cheng , Z. X. Cheng , C. Wang , M. L. Li , P. F. Gu , S. Q. Yang , Y. P. Li , K. Watanabe , T. Taniguchi , W. Ji , L. Dai . Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun., 2021, 12(1): 6874
CrossRef ADS Google scholar
[5]
N. Ding , J. Chen , S. Dong , A. Stroppa . Ferroelectricity and ferromagnetism in a VOI2 monolayer: Role of the Dzyaloshinskii−Moriya interaction. Phys. Rev. B, 2020, 102(16): 165129
CrossRef ADS Google scholar
[6]
C. Gong , X. Zhang . Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
CrossRef ADS Google scholar
[7]
R. Hidalgo-Sacoto , R. I. Gonzalez , E. E. Vogel , S. Allende , J. D. Mella , C. Cardenas , R. E. Troncoso , F. Munoz . Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205425
CrossRef ADS Google scholar
[8]
C. X. Huang , Y. P. Du , H. P. Wu , H. J. Xiang , K. M. Deng , E. J. Kan . Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett., 2018, 120(14): 147601
CrossRef ADS Google scholar
[9]
S. Y. Kim , T. Y. Kim , L. J. Sandilands , S. Sinn , M. C. Lee , J. Son , S. Lee , K. Y. Choi , W. Kim , B. G. Park , C. Jeon , H. D. Kim , C. H. Park , J. G. Park , S. J. Moon , T. W. Noh . Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett., 2018, 120(13): 136402
CrossRef ADS Google scholar
[10]
M. A. McGuire , V. O. Garlea , S. Kc , V. R. Cooper , J. Yan , H. Cao , B. C. Sales . Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B, 2017, 95(14): 144421
CrossRef ADS Google scholar
[11]
Q. L. Sun , N. Kioussis . Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B, 2018, 97(9): 094408
CrossRef ADS Google scholar
[12]
X. Tang , L. Z. Kou . Two-dimensional ferroics and multiferroics: Platforms for new physics and applications. J. Phys. Chem. Lett., 2019, 10(21): 6634
CrossRef ADS Google scholar
[13]
M. H. Wu , P. Jena . The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(5): e1365
CrossRef ADS Google scholar
[14]
S. Zhou , L. You , H. L. Zhou , Y. Pu , Z. G. Gui , J. L. Wang . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
CrossRef ADS Google scholar
[15]
X.Y. HeF.T. LinF.LiuW.Shi, 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
[16]
J. Leng , J. Peng , A. Jin , D. Cao , D. J. Liu , X. Y. He , F. T. Lin , F. Liu . Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
CrossRef ADS Google scholar
[17]
J. Peng , X. Y. He , C. Y. Y. Shi , J. Leng , F. T. Lin , F. Liu , H. Zhang , W. Z. Shi . Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
CrossRef ADS Google scholar
[18]
X.Y. HeF.LiuF.T. LinW.Shi, 3D Dirac semimetal supported tunable TE modes, Ann. Phys. 534(4), 2100355 (2022)
[19]
H. L. L. Zhuang , P. R. C. Kent , R. G. Hennig . Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
CrossRef ADS Google scholar
[20]
B. Wang , Y. H. Zhang , L. Ma , Q. S. Wu , Y. L. Guo , X. W. Zhang , J. L. Wang , MnX (X = P . As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11(10): 4204
CrossRef ADS Google scholar
[21]
B. Wang , X. W. Zhang , Y. H. Zhang , S. J. Yuan , Y. Guo , S. Dong , J. L. Wang . Prediction of a two-dimensional high-Tc f-electron ferromagnetic semiconductor. Mater. Horiz., 2020, 7(6): 1623
CrossRef ADS Google scholar
[22]
Y. Guo , Y. H. Zhang , S. H. Lu , X. W. Zhang , Q. H. Zhou , S. J. Yuan , J. L. Wang . Coexistence of semiconducting ferromagnetics and piezoelectrics down 2D limit from non van der Waals antiferromagnetic LiNbO3-type FeTiO3. J. Phys. Chem. Lett., 2022, 13(8): 1991
CrossRef ADS Google scholar
[23]
D. A. Broadway , S. C. Scholten , C. Tan , N. Dontschuk , S. E. Lillie , B. C. Johnson , G. L. Zheng , Z. H. Wang , A. R. Oganov , S. J. Tian , C. H. Li , H. C. Lei , L. Wang , L. C. L. Hollenberg , J. P. Tetienne . Imaging domain reversal in an ultrathin van der Waals ferromagnet. Adv. Mater., 2020, 32(39): 2003314
CrossRef ADS Google scholar
[24]
M. A. McGuire , G. Clark , S. Kc , W. M. Chance , G. E. Jellison , V. R. Cooper , X. Xu , B. C. Sales . Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater., 2017, 1(1): 014001
CrossRef ADS Google scholar
[25]
S. J. Tian , J. F. Zhang , C. H. Li , T. P. Ying , S. Y. Li , X. Zhang , K. Liu , H. C. Lei . Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
CrossRef ADS Google scholar
[26]
Z. W. Zhang , J. Z. Shang , C. Y. Jiang , A. Rasmita , W. B. Gao , T. Yu . Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
CrossRef ADS Google scholar
[27]
E. Dagotto . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
CrossRef ADS Google scholar
[28]
L. B. Asprey , T. K. Keenan , F. H. Kruse . Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem., 1964, 3(8): 1137
CrossRef ADS Google scholar
[29]
H. P. You , Y. Zhang , J. Chen , N. Ding , M. An , L. Miao , S. Dong . Peierls transition driven ferroelasticity in the two-dimensional df hybrid magnets. Phys. Rev. B, 2021, 103(16): L161408
CrossRef ADS Google scholar
[30]
H. P. You , N. Ding , J. Chen , X. Y. Yao , S. Dong . Gadolinium halide monolayers: A fertile family of two-dimensional 4f magnets. ACS Appl. Electron. Mater., 2022, 4(7): 3168
CrossRef ADS Google scholar
[31]
G. Kresse , J. Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef ADS Google scholar
[32]
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef ADS Google scholar
[33]
P. Larson , W. R. L. Lambrecht , A. Chantis , M. van Schilfgaarde . Electronic structure of rare-earth nitrides using the LSDA plus U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75(4): 045114
CrossRef ADS Google scholar
[34]
Y.H. ZhangB.WangY.GuoQ.LiJ.N. Wang, A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature, Comput. Mater. Sci. 197, 110638 (2021)

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFB3807203), the National Natural Science Foundation of China (Nos. 22033002 and 21973011). The authors thank the computational resources from the Big Data Center of Southeast University and National Supercomputing Center of Tianjin. S. Yuan thanks S. Dong for useful discussions.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(6096 KB)

Accesses

Citations

Detail

Sections
Recommended

/