
Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer
Rong Guo, Yilv Guo, Yehui Zhang, Xiaoshu Gong, Tingbo Zhang, Xing Yu, Shijun Yuan, Jinlan Wang
Front. Phys. ›› 2023, Vol. 18 ›› Issue (4) : 43304.
Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer
As a two-dimensional material with a hollow hexatomic ring structure, Néel-type anti-ferromagnetic (AFM) GdI3 can be used as a theoretical model to study the effect of electron doping. Based on first-principles calculations, we find that the Fermi surface nesting occurs when more than 1/3 electron per Gd is doped, resulting in the failure to obtain a stable ferromagnetic (FM) state. More interestingly, GdI3 with appropriate Mg/Ca doping (1/6 Mg/Ca per Gd) turns to be half-metallic FM state. This AFM−FM transition results from the transfer of doped electrons to the spatially expanded Gd-5d orbital, which leads to the FM coupling of local half-full Gd-4f electrons through 5d−4f hybridization. Moreover, the shortened Gd−Gd length is the key to the formation of the stable ferromagnetic coupling. Our method provides new insights into obtaining stable FM materials from AFM materials.
two-dimensional materials / electronic structure / magnetism
Fig.1 (a) Top and side view, (b) density of states (DOS) and (c) band structure of monolayer (GdI3)2Li in FM |
Tab.1 Optimized structures of (GdI3)6Mg with different magnetic orders. Lattice constants (a and b) and three sorts of nearest-neighbor Gd−Gd distances (d1<d2<d3) are in units of Å. The configuration of |
Order | a | b | Energy | |||
---|---|---|---|---|---|---|
FM | 13.079 | 26.369 | 3.824 | 4.064 | 4.527 | 0.0 |
Néel | 13.269 | 26.572 | 4.174 | 4.549 | 4.560 | 345.8 |
Zigzag | 13.350 | 26.246 | 3.817 | 4.400 | 4.629 | 11.3 |
Stripy1 | 13.080 | 26.582 | 3.773 | 4.258 | 4.594 | 143.1 |
Stripy2 | 13.084 | 26.398 | 3.841 | 4.104 | 4.597 | 30.5 |
GdI3 | 7.785 | 7.785 | 4.494 | − | − | − |
(GdI3)2Mg | 7.787 | 12.416 | 3.407 | 4.832 | − | − |
Fig.3 (a−d) Magnetic configurations of Néel-type AFM, zigzag-type AFM, stripy1-type AFM, and stripy2-type AFM (GdI3)6Mg monolayer. Red/blue atoms represent Gd atoms with spin-up/down electron configurations, respectively. (e) Magnetic configuration of FM. The bidirectional arrows correspond to three sorts of Gd−Gd nearest neighbor exchange parameters: J1, J2, and J3. (f) Exchange parameters with different Gd−Gd distances. (g) Angular dependence of the magnetic anisotropy energy (MAE) of the (GdI3)6Mg. (h) Average magnetic moment per Gd atom (blue) and magnetic susceptibility (red) concerning temperature for (GdI3)6Mg monolayer. |
Fig.4 (a) Electronic band structures of (GdI3)6Mg monolayer. The insert shows the energy difference between the valence band Ev and the Fermi level in the 2D Brillouin zone. (b) DOS for the spin majority (↑) and spin minority (↓). The Fermi level is set as zero. (c) Spin-resolved projected DOS around the Fermi level. |
Fig.5 (a) Three orbital-resolved projected bands with SOC effect near the Fermi level. The inset presents the schematic representation of the distance of Gd−Gd and the angle of Gd−I−Gd. (b, c) The electrons density from −0.05 eV to 0.00 eV (from −0.35 eV to −0.10 eV) of (GdI3)6Mg monolayer. The value of the isosurface is 0.0004 e/Å3. |
Fig.6 (a) Doping Mg atoms with a homogeneous configuration and (b) inhomogeneous configuration in 3 × 3 × 1 supercell (GdI3)6Mg monolayer. (c) Total energy as a function of biaxial strain for FM and AFM-zigzag (GdI3)6Mg. (d) Band structure and DOS of (GdI3)6Ca monolayer. The inset presents the crystal structure. The Fermi level is set as zero. |
[1] |
C. Gong , L. Li , Z. L. Li , H. W. Ji , A. Stern , Y. Xia , T. Cao , W. Bao , C. Z. Wang , Y. A. Wang , Z. Q. Qiu , R. J. Cava , S. G. Louie , J. Xia , X. Zhang . Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546(7657): 265
CrossRef
ADS
Google scholar
|
[2] |
B. Huang , G. Clark , E. Navarro-Moratalla , D. R. Klein , R. Cheng , K. L. Seyler , D. Zhong , E. Schmidgall , M. A. McGuire , D. H. Cobden , W. Yao , D. Xiao , P. Jarillo-Herrero , X. D. Xu . Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
CrossRef
ADS
Google scholar
|
[3] |
M. An , S. Dong . Ferroic orders in two-dimensional transition/rare-earth metal halides. APL Mater., 2020, 8(11): 110704
CrossRef
ADS
Google scholar
|
[4] |
X. Cheng , Z. X. Cheng , C. Wang , M. L. Li , P. F. Gu , S. Q. Yang , Y. P. Li , K. Watanabe , T. Taniguchi , W. Ji , L. Dai . Light helicity detector based on 2D magnetic semiconductor CrI3. Nat. Commun., 2021, 12(1): 6874
CrossRef
ADS
Google scholar
|
[5] |
N. Ding , J. Chen , S. Dong , A. Stroppa . Ferroelectricity and ferromagnetism in a VOI2 monolayer: Role of the Dzyaloshinskii−Moriya interaction. Phys. Rev. B, 2020, 102(16): 165129
CrossRef
ADS
Google scholar
|
[6] |
C. Gong , X. Zhang . Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 2019, 363(6428): eaav4450
CrossRef
ADS
Google scholar
|
[7] |
R. Hidalgo-Sacoto , R. I. Gonzalez , E. E. Vogel , S. Allende , J. D. Mella , C. Cardenas , R. E. Troncoso , F. Munoz . Magnon valley Hall effect in CrI3-based van der Waals heterostructures. Phys. Rev. B, 2020, 101(20): 205425
CrossRef
ADS
Google scholar
|
[8] |
C. X. Huang , Y. P. Du , H. P. Wu , H. J. Xiang , K. M. Deng , E. J. Kan . Prediction of intrinsic ferromagnetic ferroelectricity in a transition-metal halide monolayer. Phys. Rev. Lett., 2018, 120(14): 147601
CrossRef
ADS
Google scholar
|
[9] |
S. Y. Kim , T. Y. Kim , L. J. Sandilands , S. Sinn , M. C. Lee , J. Son , S. Lee , K. Y. Choi , W. Kim , B. G. Park , C. Jeon , H. D. Kim , C. H. Park , J. G. Park , S. J. Moon , T. W. Noh . Charge-spin correlation in van der Waals antiferromagnet NiPS3. Phys. Rev. Lett., 2018, 120(13): 136402
CrossRef
ADS
Google scholar
|
[10] |
M. A. McGuire , V. O. Garlea , S. Kc , V. R. Cooper , J. Yan , H. Cao , B. C. Sales . Antiferromagnetism in the van der Waals layered spin-lozenge semiconductor CrTe3. Phys. Rev. B, 2017, 95(14): 144421
CrossRef
ADS
Google scholar
|
[11] |
Q. L. Sun , N. Kioussis . Prediction of manganese trihalides as two-dimensional Dirac half-metals. Phys. Rev. B, 2018, 97(9): 094408
CrossRef
ADS
Google scholar
|
[12] |
X. Tang , L. Z. Kou . Two-dimensional ferroics and multiferroics: Platforms for new physics and applications. J. Phys. Chem. Lett., 2019, 10(21): 6634
CrossRef
ADS
Google scholar
|
[13] |
M. H. Wu , P. Jena . The rise of two-dimensional van der Waals ferroelectrics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(5): e1365
CrossRef
ADS
Google scholar
|
[14] |
S. Zhou , L. You , H. L. Zhou , Y. Pu , Z. G. Gui , J. L. Wang . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
CrossRef
ADS
Google scholar
|
[15] |
X.Y. HeF.T. LinF.LiuW.Shi, 3D Dirac semimetals supported tunable terahertz BIC metamaterials, Nanophotonics 11(21), 4705 (2022)
|
[16] |
J. Leng , J. Peng , A. Jin , D. Cao , D. J. Liu , X. Y. He , F. T. Lin , F. Liu . Investigation of terahertz high Q-factor of all-dielectric metamaterials. Opt. Laser Technol., 2022, 146: 107570
CrossRef
ADS
Google scholar
|
[17] |
J. Peng , X. Y. He , C. Y. Y. Shi , J. Leng , F. T. Lin , F. Liu , H. Zhang , W. Z. Shi . Investigation of graphene supported terahertz elliptical metamaterials. Physica E, 2020, 124: 114309
CrossRef
ADS
Google scholar
|
[18] |
X.Y. HeF.LiuF.T. LinW.Shi, 3D Dirac semimetal supported tunable TE modes, Ann. Phys. 534(4), 2100355 (2022)
|
[19] |
H. L. L. Zhuang , P. R. C. Kent , R. G. Hennig . Strong anisotropy and magnetostriction in the two-dimensional Stoner ferromagnet Fe3GeTe2. Phys. Rev. B, 2016, 93(13): 134407
CrossRef
ADS
Google scholar
|
[20] |
B. Wang , Y. H. Zhang , L. Ma , Q. S. Wu , Y. L. Guo , X. W. Zhang , J. L. Wang , MnX (X = P . As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy. Nanoscale, 2019, 11(10): 4204
CrossRef
ADS
Google scholar
|
[21] |
B. Wang , X. W. Zhang , Y. H. Zhang , S. J. Yuan , Y. Guo , S. Dong , J. L. Wang . Prediction of a two-dimensional high-Tc f-electron ferromagnetic semiconductor. Mater. Horiz., 2020, 7(6): 1623
CrossRef
ADS
Google scholar
|
[22] |
Y. Guo , Y. H. Zhang , S. H. Lu , X. W. Zhang , Q. H. Zhou , S. J. Yuan , J. L. Wang . Coexistence of semiconducting ferromagnetics and piezoelectrics down 2D limit from non van der Waals antiferromagnetic LiNbO3-type FeTiO3. J. Phys. Chem. Lett., 2022, 13(8): 1991
CrossRef
ADS
Google scholar
|
[23] |
D. A. Broadway , S. C. Scholten , C. Tan , N. Dontschuk , S. E. Lillie , B. C. Johnson , G. L. Zheng , Z. H. Wang , A. R. Oganov , S. J. Tian , C. H. Li , H. C. Lei , L. Wang , L. C. L. Hollenberg , J. P. Tetienne . Imaging domain reversal in an ultrathin van der Waals ferromagnet. Adv. Mater., 2020, 32(39): 2003314
CrossRef
ADS
Google scholar
|
[24] |
M. A. McGuire , G. Clark , S. Kc , W. M. Chance , G. E. Jellison , V. R. Cooper , X. Xu , B. C. Sales . Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater., 2017, 1(1): 014001
CrossRef
ADS
Google scholar
|
[25] |
S. J. Tian , J. F. Zhang , C. H. Li , T. P. Ying , S. Y. Li , X. Zhang , K. Liu , H. C. Lei . Ferromagnetic van der Waals crystal VI3. J. Am. Chem. Soc., 2019, 141(13): 5326
CrossRef
ADS
Google scholar
|
[26] |
Z. W. Zhang , J. Z. Shang , C. Y. Jiang , A. Rasmita , W. B. Gao , T. Yu . Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett., 2019, 19(5): 3138
CrossRef
ADS
Google scholar
|
[27] |
E. Dagotto . Complexity in strongly correlated electronic systems. Science, 2005, 309(5732): 257
CrossRef
ADS
Google scholar
|
[28] |
L. B. Asprey , T. K. Keenan , F. H. Kruse . Preparation and crystal data for lanthanide and actinide triiodides. Inorg. Chem., 1964, 3(8): 1137
CrossRef
ADS
Google scholar
|
[29] |
H. P. You , Y. Zhang , J. Chen , N. Ding , M. An , L. Miao , S. Dong . Peierls transition driven ferroelasticity in the two-dimensional d−f hybrid magnets. Phys. Rev. B, 2021, 103(16): L161408
CrossRef
ADS
Google scholar
|
[30] |
H. P. You , N. Ding , J. Chen , X. Y. Yao , S. Dong . Gadolinium halide monolayers: A fertile family of two-dimensional 4f magnets. ACS Appl. Electron. Mater., 2022, 4(7): 3168
CrossRef
ADS
Google scholar
|
[31] |
G. Kresse , J. Furthmuller . Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 54(16): 11169
CrossRef
ADS
Google scholar
|
[32] |
J. P. Perdew , K. Burke , M. Ernzerhof . Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77(18): 3865
CrossRef
ADS
Google scholar
|
[33] |
P. Larson , W. R. L. Lambrecht , A. Chantis , M. van Schilfgaarde . Electronic structure of rare-earth nitrides using the LSDA plus U approach: Importance of allowing 4f orbitals to break the cubic crystal symmetry. Phys. Rev. B, 2007, 75(4): 045114
CrossRef
ADS
Google scholar
|
[34] |
Y.H. ZhangB.WangY.GuoQ.LiJ.N. Wang, A universal framework for metropolis Monte Carlo simulation of magnetic Curie temperature, Comput. Mater. Sci. 197, 110638 (2021)
|
Part of a collection:
/
〈 |
|
〉 |