Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy

Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters, Qingqing Chen

PDF(5767 KB)
PDF(5767 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53303. DOI: 10.1007/s11467-023-1295-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy

Author information +
History +

Abstract

Bilayer (BL) molybdenum disulfide (MoS2) is one of the most important electronic structures not only in valleytronics but also in realizing twistronic systems on the basis of the topological mosaics in moiré superlattices. In this work, BL MoS2 on sapphire substrate with 2H-stacking structure is fabricated. We apply the terahertz (THz) time-domain spectroscopy (TDS) for examining the basic optoelectronic properties of this kind of BL MoS2. The optical conductivity of BL MoS2 is obtained in temperature regime from 80 K to 280 K. Through fitting the experimental data with the theoretical formula, the key sample parameters of BL MoS2 can be determined, such as the electron density, the electronic relaxation time and the electronic localization factor. The temperature dependence of these parameters is examined and analyzed. We find that, similar to monolayer (ML) MoS2, BL MoS2 with 2H-stacking can respond strongly to THz radiation field and show semiconductor-like optoelectronic features. The theoretical calculations using density functional theory (DFT) can help us to further understand why the THz optoelectronic properties of BL MoS2 differ from those observed for ML MoS2. The results obtained from this study indicate that the THz TDS can be applied suitably to study the optoelectronic properties of BL MoS2 based twistronic systems for novel applications as optical and optoelectronic materials and devices.

Graphical abstract

Keywords

terahertz time-domain spectroscopy / bilayer MoS2 / optoelectronics

Cite this article

Download citation ▾
Xingjia Cheng, Wen Xu, Hua Wen, Jing Zhang, Heng Zhang, Haowen Li, Francois M. Peeters, Qingqing Chen. Electronic properties of 2H-stacking bilayer MoS2 measured by terahertz time-domain spectroscopy. Front. Phys., 2023, 18(5): 53303 https://doi.org/10.1007/s11467-023-1295-1

References

[1]
K. S. Novoselov , A. K. Geim , S. V. Morozov , D. Jiang , Y. Zhang , S. V. Dubonos , I. V. Grigorieva , A. A. Firsov . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
C. Castellani , C. DiCastro , P. A. Lee . Metallic phase and metal-insulator transition in two-dimensional electronic systems. Phys. Rev. B, 1998, 57(16): R9381
CrossRef ADS Google scholar
[3]
K. F. Mak , D. Xiao , J. Shan . Light-valley interactions in 2D semiconductors. Nat. Photonics, 2018, 12(8): 451
CrossRef ADS Google scholar
[4]
J. W. Jiang . Graphene versus MoS2: A short review. Front. Phys., 2015, 10(3): 287
CrossRef ADS Google scholar
[5]
H. M. Hill , A. F. Rigosi , C. Roquelet , A. Chernikov , T. C. Berkelbach , D. R. Reichman , M. S. Hybertsen , L. E. Brus , T. F. Heinz . Observation of excitonic Rydberg states in mono-layer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett., 2015, 15(5): 2992
CrossRef ADS Google scholar
[6]
D. Xiao , G. B. Liu , W. Feng , X. Xu , W. Yao . Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett., 2012, 108(19): 196802
CrossRef ADS Google scholar
[7]
Q. Tong , H. Yu , Q. Zhu , Y. Wang , X. Xu , W. Yao . Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys., 2017, 13(4): 356
CrossRef ADS Google scholar
[8]
Y. Cao , V. Fatemi , S. Fang , K. Watanabe , T. Taniguchi , E. Kaxiras , P. Jarillo-Herrero . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
CrossRef ADS Google scholar
[9]
K. Seyler , P. Rivera , H. Yu , N. Wilson , E. Ray , D. Mandrus , J. Yan , W. Yao , X. Xu . Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature, 2019, 567(7746): 66
CrossRef ADS Google scholar
[10]
T. Cai , S. A. Yang , X. Li , F. Zhang , J. Shi , W. Yao , Q. Niu . Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B, 2013, 88(11): 115140
CrossRef ADS Google scholar
[11]
K. F. Mak , C. Lee , J. Hone , J. Shan , T. F. Heinz . Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett., 2010, 105(13): 136805
CrossRef ADS Google scholar
[12]
C. Lee , H. Yan , L. E. Brus , T. F. Heinz , J. Hone , S. Ryu . Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano, 2010, 4(5): 2695
CrossRef ADS Google scholar
[13]
J.E. PadilhaH.PeelaersA.JanottiC.G. Van de Walle, Nature and evolution of the band-edge states in MoS2: From monolayer to bulk, Phys. Rev. B 90(20), 205420 (2014)
[14]
H. M. Dong , S. D. Guo , Y. F. Duan , F. Huang , W. Xu , J. Zhang . Electronic and optical properties of single- layer MoS2. Front. Phys., 2018, 13(4): 137307
CrossRef ADS Google scholar
[15]
X. Z. Zhang , R. Y. Zhang , Y. Zhang , T. Jiang , C. Y. Deng , X. A. Zhang , S. Q. Qin . Tunable photoluminescence of bilayer MoS2 via interlayer twist. Opt. Mater., 2019, 94: 213
CrossRef ADS Google scholar
[16]
M. Xia , B. Li , K. Yin , G. Capellini , G. Niu , Y. Gong , W. Zhou , P. M. Ajayan , Y. H. Xie . Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano, 2015, 9(12): 12246
CrossRef ADS Google scholar
[17]
A. M. van der Zande , J. Kunstmann , A. Chernikov , D. A. Chenet , Y. M. You , X. X. Zhang , P. Y. Huang , T. C. Berkelbach , L. Wang , F. Zhang , M. S. Hybertsen , D. A. Muller , D. R. Reichman , T. F. Heinz , J. C. Hone . Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett., 2014, 14(7): 3869
CrossRef ADS Google scholar
[18]
C. Wang , W. Xu , H. Mei , H. Qin , X. Zhao , C. Zhang , H. F. Yuan , J. Zhang , Y. Xu , P. Li , M. Li . Substrate-induced electronic localization in monolayer MoS2 measured via terahertz spectroscopy. Opt. Lett., 2019, 44(17): 4139
CrossRef ADS Google scholar
[19]
H. Wen , W. Xu , C. Wang , D. Song , H. Y. Mei , J. Zhang , L. Ding . Magneto-optical properties of monolayer MoS2-SiO2/Si structure measured via terahertz time-domain spectroscopy. Nano Select, 2021, 2(1): 90
CrossRef ADS Google scholar
[20]
S. Kumar , A. Singh , S. Kumar , A. Nivedan , M. Tondusson , J. Degert , J. Oberle , S. J. Yun , Y. H. Lee , E. Freysz . Enhancement in optically induced ultrafast THz response of MoSe2−MoS2 heterobilayer. Opt. Express, 2021, 29(3): 4181
CrossRef ADS Google scholar
[21]
M. Bala Murali Krishna , J. Madéo , J. P. Urquizo , X. Zhu , S. Vinod , C. S. Tiwary , P. M. Ajayan , K. M. Dani . Terahertz photoconductivity and photocarrier dynamics in few-layer hBN/WS2 van der Waals heterostructure laminates. Semicond. Sci. Technol., 2018, 33(8): 084001
CrossRef ADS Google scholar
[22]
M. Liao , Z. Wei , L. Du , Q. Wang , J. Tang , H. Yu , F. Wu , J. Zhao , X. Xu , B. Han , K. Liu , P. Gao , T. Polcar , Z. Sun , D. Shi , R. Yang , G. Zhang . Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun., 2020, 11(1): 2153
CrossRef ADS Google scholar
[23]
H. Yu , M. Liao , W. Zhao , G. Liu , X. J. Zhou , Z. Wei , X. Xu , K. Liu , Z. Hu , K. Deng , S. Zhou , J. A. Shi , L. Gu , C. Shen , T. Zhang , L. Du , L. Xie , J. Zhu , W. Chen , R. Yang , D. Shi , G. Zhang . Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano, 2017, 11(12): 12001
CrossRef ADS Google scholar
[24]
Y. Yu , C. Li , Y. Liu , L. Su , Y. Zhang , L. Cao . Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep., 2013, 3(1): 1866
CrossRef ADS Google scholar
[25]
X. Wang , H. Feng , Y. Wu , L. Jiao . Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc., 2013, 135(14): 5304
CrossRef ADS Google scholar
[26]
Q. Q. Wang , J. Tang , X. M. Li , J. P. Tian , J. Liang , N. Li , D. P. Ji , L. D. Xian , Y. T. Guo , L. Li , Q. H. Zhang , Y. B. Chu , Z. Wei , Y. C. Zhao , L. J. Du , H. Yu , X. D. Bai , L. Gu , K. H. Liu , W. Yang , R. Yang , D. X. Shi , G. Y. Zhang . Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev., 2022, 9(6): nwac077
CrossRef ADS Google scholar
[27]
H. Sajjad , A. S. Muhmmad , V. Dhanasekaran , Z. I. Muhmmad , S. Jai , F. K. Muhmmad , E. Jonghwa , S. Yongho , J. Jongwan . Controlled synthesis and optical properties of polycrystalline molybdenum disulfide atomic layers grown by chemical vapor deposition. J. Alloys Compd., 2015, 653(25): 369
[28]
C. R. Zhu , G. Wang , B. L. Liu , X. Marie , X. F. Qiao , X. Zhang , X. X. Wu , H. Fan , P. H. Tan , T. Amand , B. Urbaszek . Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B, 2013, 88(12): 121301
CrossRef ADS Google scholar
[29]
F. Ullah , J. H. Lee , Z. Tahir , A. Samad , C. T. Le , J. Kim , D. Kim , M. U. Rashid , S. Lee , K. Kim , H. Cheong , J. I. Jang , M. J. Seong , Y. S. Kim . Selective growth and robust valley polarization of bilayer 3R-MoS2, ACS Appl. Mater. & Inter., 2021, 13(48): 57588
[30]
J. K. Ellis , M. J. Lucero , G. E. Scuseria . The indirect to direct band gap transition in multilayered MoS2 as predicted by screened hybrid density functional theory. Appl. Phys. Lett., 2011, 99(26): 261908
CrossRef ADS Google scholar
[31]
S. Bhattacharyya , A. K. Singh . Semiconductor-metal transition in semiconducting bilayer sheets of transition- metal dichalcogenides. Phys. Rev. B, 2012, 86(7): 075454
CrossRef ADS Google scholar
[32]
P.L. ChristiansenM.P. SrensenA.C. Scott, Nonlinear Science at the Dawn of the 21st Century, Berlin, Heidelberg: Springer, 2000
[33]
M. Hangyo , T. Nagashima , S. Nashima . Spectroscopy by pulsed terahertz radiation. Meas. Sci. Technol., 2002, 13(11): 1727
CrossRef ADS Google scholar
[34]
L.DuvillaretF.GaretJ.L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE J. Sel. Top. Quantum Electron. 2(3), 739 (1996)
[35]
S.NudelmanS.S. Mitra, Optical Properties of Solids, Springer, 1969
[36]
M. Tinkham . Energy gap interpretation of experiments on infrared transmission through superconducting films. Phys. Rev., 1956, 104(3): 845
CrossRef ADS Google scholar
[37]
J.D. Jackson, Classical Electrodynamics, 3rd Ed., Wiley, 1998
[38]
P. Drude . Bestimmung der optischen Constanten der Metalle. Annalen der Physik, 1890, 275(4): 481
CrossRef ADS Google scholar
[39]
N. V. Smith . Classical generalization of the Drude formula for the optical conductivity. Phys. Rev. B, 2001, 64(15): 155106
CrossRef ADS Google scholar
[40]
F.W. HanW.XuL.L. LiC.Zhang, A generalization of the Drude-Smith formula for magneto-optical conductivities in Faraday geometry, J. Appl. Phys. 119(24), 245706 (2016)
[41]
A. Mukhopadhyay , S. Kanungo , H. Rahaman . The effect of the stacking arrangement on the device behavior of bilayer MoS2 FETs. J. Comput. Electron., 2021, 20(1): 161
CrossRef ADS Google scholar
[42]
B. Baugher , H. Churchill , Y. Yang , P. Jarillo-Herrero . Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett., 2013, 13(9): 4212
CrossRef ADS Google scholar
[43]
D. Valerini , A. Cretí , M. Lomascolo , L. Manna , R. Cingolani , M. Anni . Temperature dependence of the photo-luminescence properties of colloidal CdSe/ZnS core/shell quantum dots embedded in a polystyrene matrix. Phys. Rev. B, 2005, 71(23): 235409
CrossRef ADS Google scholar
[44]
W. Xu , F. M. Peeters , T. C. Lu . Dependence of resistivity on electron density and temperature in graphene. Phys. Rev. B, 2009, 79(7): 073403
CrossRef ADS Google scholar
[45]
S. Kim , A. Konar , W. S. Hwang , J. H. Lee , J. Lee , J. Yang , C. Jung , H. Kim , J. B. Yoo , J. Y. Choi , Y. W. Jin , S. Y. Lee , D. Jena , W. Choi , K. Kim . High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun., 2012, 3(1): 1011
CrossRef ADS Google scholar
[46]
H.Schwarz, Laser Interaction and Related Plasma Phenomena, US: Springer, 1972
[47]
W. Xu , H. M. Dong , L. L. Li , J. Q. Yao , P. Vasilopoulos , F. M. Peeters . Optoelectronic properties of graphene in the presence of optical phonon scattering. Phys. Rev. B, 2010, 82(12): 125304
CrossRef ADS Google scholar
[48]
W. S. Yun , S. W. Han , S. C. Hong , I. G. Kim , J. D. Lee . Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M=Mo, W; X=S, Se, Te). Phys. Rev. B, 2012, 85(3): 033305
CrossRef ADS Google scholar
[49]
E. Scalise , M. Houssa , G. Pourtois , V. V. Afanas’ev , A. Stesmans . First-principles study of strained 2D MoS2. Physica E, 2014, 56: 416
CrossRef ADS Google scholar
[50]
H. M. Dong , Z. H. Tao , L. L. Li , F. Huang , W. Xu , F. M. Peeters . Substrate dependent terahertz response of monolayer WS2. Appl. Phys. Lett., 2020, 116(20): 203108
CrossRef ADS Google scholar
[51]
H. M. Dong , W. Xu , Z. Zeng , T. C. Lu , F. M. Peeters . Quantum and transport conductivities in monolayer graphene. Phys. Rev. B, 2008, 77(23): 235402
CrossRef ADS Google scholar
[52]
S. H. Zhang , W. Xu , S. M. Badalyan , F. M. Peeters . Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate. Phys. Rev. B, 2013, 87(7): 075443
CrossRef ADS Google scholar

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. U2230122 and U2067207) and Shenzhen Science and Technology Program (No. KQTD20190929173954826). The numerical calculations in this work were conducted at Hefei advanced computing center.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(5767 KB)

Accesses

Citations

Detail

Sections
Recommended

/