Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles
Fuqiang Niu, Hengfei Zhang, Jinpeng Yuan, Liantuan Xiao, Suotang Jia, Lirong Wang
Photonic graphene with reconfigurable geometric structures in coherent atomic ensembles
Photonic graphene, possesses a honeycomb-like geometric structure, provides a superior platform for simulating photonic bandgap, Dirac physics, and topological photonics. Here, the photonic graphene with reconfigurable geometric structures is demonstrated in a 5S1/2 − 5P3/2 − 5D5/2 cascade-type 85Rb atomic ensembles. A strong hexagonal-coupling field, formed by the interference of three identical coupling beams, is responsible for optically inducing photonic graphene in atomic vapor. The incident weak probe beam experiences discrete diffraction, and the observed pattern at the output plane of vapor cell exhibits a clear hexagonal intensity distribution. The complete photonic graphene geometries from transversely stretched to longitudinally stretched are conveniently constructed by varying the spatial arrangement of three coupling beams, and the corresponding diffraction patterns are implemented theoretically and experimentally to map these distorted geometric structures. Moreover, the distribution of lattice sites intensity in photonic graphene is further dynamically adjusted by two-photon detuning and the coupling beams power. This work paves the way for further investigation of light transport and graphene dynamics.
atomic ensembles / photonic graphene / geometric structures / discrete diffraction
[1] |
I. V. Shadrivov , A. A. Sukhorukov , Y. S. Kivshar . Complete band gaps in one dimensional left-handed periodic structures. Phys. Rev. Lett., 2005, 95(19): 193903
CrossRef
ADS
Google scholar
|
[2] |
T. Baba . Slow light in photonic crystals. Nat. Photonics, 2008, 2(8): 465
CrossRef
ADS
Google scholar
|
[3] |
P. Lodahl , A. Floris van Driel , I. S. Nikolaev , A. Irman , K. Overgaag , D. Vanmaekelbergh , W. L. Vos . Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nature, 2004, 430(7000): 654
CrossRef
ADS
Google scholar
|
[4] |
P. Longo , P. Schmitteckert , K. Busch . Few-photon transport in low-dimensional systems: Interaction-induced radiation trapping. Phys. Rev. Lett., 2010, 104(2): 023602
CrossRef
ADS
Google scholar
|
[5] |
Y. J. Yang , G. Thirunavukkarasu , M. Babiker , J. Yuan . Orbital−angular-momentum mode selection by rotationally symmetric superposition of chiral states with application to electron vortex beams. Phys. Rev. Lett., 2017, 119(9): 094802
CrossRef
ADS
Google scholar
|
[6] |
X. D. Wang , H. B. Yu , P. W. Li , Y. Z. Zhang , Y. D. Wen , Y. Qiu , Z. Liu , Y. P. Li , L. Q. Liu . Femtosecond laser-based processing methods and their applications in optical device manufacturing: A review. Opt. Laser Technol., 2021, 135: 106687
CrossRef
ADS
Google scholar
|
[7] |
T. Ochiai , M. Onoda . Photonic analog of graphene model and its extension: Dirac cone, symmetry, and edge states. Phys. Rev. B, 2009, 80(15): 155103
CrossRef
ADS
Google scholar
|
[8] |
Z. Y. Zhang , Y. Feng , S. N. Ning , G. Malpuech , D. D. Solnyshkov , Z. F. Xu , Y. P. Zhang , M. Xiao . Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene. Photon. Res., 2022, 10(4): 958
CrossRef
ADS
Google scholar
|
[9] |
Y. Plotnik , M. C. Rechtsman , D. H. Song , M. Heinrich , J. M. Zeuner , S. Nolte , Y. Lumer , N. Malkova , J. J. Xu , A. Szameit , Z. G. Chen , M. Segev . Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater., 2014, 13(1): 57
CrossRef
ADS
Google scholar
|
[10] |
L. Allen , M. W. Beijersbergen , R. J. C. Spreeuw , J. P. Woerdman . Orbital angular momentum of light and the transformation of Laguerre−Gaussian laser modes. Phys. Rev. A, 1992, 45(11): 8185
CrossRef
ADS
Google scholar
|
[11] |
P. Avouris , F. Xia . Graphene applications in electronics and photonics. MRS Bull., 2012, 37(12): 1225
CrossRef
ADS
Google scholar
|
[12] |
F. S. Deng , Y. Sun , L. J. Dong , Y. H. Liu , Y. L. Shi . Valley-dependent beam manipulators based on photonic graphene. J. Appl. Phys., 2017, 121(7): 074501
CrossRef
ADS
Google scholar
|
[13] |
K. M. Davis , K. Miura , N. Sugimoto , K. Hirao . Writing waveguides in glass with a femtosecond laser. Opt. Lett., 1996, 21(21): 1729
CrossRef
ADS
Google scholar
|
[14] |
K. Miura , J. R. Qiu , H. Inouye , T. Mitsuyu , K. Hirao . Photowritten optical waveguides in various glasses with ultrashort pulse laser. Appl. Phys. Lett., 1997, 71(23): 3329
CrossRef
ADS
Google scholar
|
[15] |
R. R. Gattass , E. Mazur . Femtosecond laser micromachining in transparent materials. Nat. Photonics, 2008, 2(4): 219
CrossRef
ADS
Google scholar
|
[16] |
D. Z. Tan , Z. Wang , B. B. Xu , J. R. Qiu . Photonic circuits written by femtosecond laser in glass: Improved fabrication and recent progress in photonic devices. Adv. Photonics, 2021, 3(2): 024002
CrossRef
ADS
Google scholar
|
[17] |
F. Wen , X. Zhang , H. P. Ye , W. Wang , H. X. Wang , Y. P. Zhang , Z. P. Dai , C. W. Qiu . Efficient and tunable photoinduced honeycomb lattice in an atomic ensemble. Laser Photonics Rev., 2018, 12(9): 1800050
CrossRef
ADS
Google scholar
|
[18] |
S. E. Harris . Electromagnetically induced transparency. Phys. Today, 1997, 50(7): 36
CrossRef
ADS
Google scholar
|
[19] |
H. Y. Ling , Y. Q. Li , M. Xiao . Electromagnetically induced grating: Homogeneously broadened medium. Phys. Rev. A, 1998, 57(2): 1338
CrossRef
ADS
Google scholar
|
[20] |
J. P. Yuan , Y. H. Li , S. H. Li , C. Y. Li , L. R. Wang , L. T. Xiao , S. T. Jia . Experimental study of discrete diffraction behavior in a coherent atomic system. Laser Phys. Lett., 2017, 14(12): 125206
CrossRef
ADS
Google scholar
|
[21] |
J. P. Yuan , C. H. Wu , Y. H. Li , L. R. Wang , Y. Zhang , L. T. Xiao , S. T. Jia . Controllable electromagnetically induced grating in a cascade-type atomic system. Front. Phys., 2019, 14(5): 52603
CrossRef
ADS
Google scholar
|
[22] |
S. D. Wang , J. P. Yuan , L. R. Wang , L. T. Xiao , S. T. Jia . Investigation on the Cs 6S1/2 to 7D electric quadrupole transition via monochromatic two-photon process at 767 nm. Front. Phys., 2021, 16(1): 12502
CrossRef
ADS
Google scholar
|
[23] |
J. P. Yuan , S. C. Dong , C. H. Wu , L. R. Wang , L. T. Xiao , S. T. Jia . Optically tunable grating in a V + Ξ configuration involving a Rydberg state. Opt. Express, 2020, 28(16): 23820
CrossRef
ADS
Google scholar
|
[24] |
H. F. Zhang , J. P. Yuan , S. C. Dong , C. H. Wu , L. R. Wang , L. T. Xiao , S. T. Jia . All-optical tunable high-order Gaussian beam splitter based on a periodic dielectric atomic structure. Opt. Express, 2021, 29(16): 25439
CrossRef
ADS
Google scholar
|
[25] |
J. P. Yuan , C. H. Wu , L. R. Wang , G. Chen , S. T. Jia . Observation of diffraction pattern in two-dimensional optically induced atomic lattice. Opt. Lett., 2019, 44(17): 4123
CrossRef
ADS
Google scholar
|
[26] |
J. P. Yuan , H. F. Zhang , C. H. Wu , L. R. Wang , L. T. Xiao , S. T. Jia . Tunable optical vortex array in a two-dimensional electromagnetically induced atomic lattice. Opt. Lett., 2021, 46(17): 4184
CrossRef
ADS
Google scholar
|
[27] |
J.P. YuanH.F. ZhangC.H. WuG.ChenL.R. WangL.T. XiaoS.T. Jia, Creation and control of vortex beam arrays in atomic vapor, Laser Photonics Rev. 2200667, (2023)
|
[28] |
T. Shui , W. X. Yang , L. Li , X. Wang . Lop-sided Raman−Nath diffraction in PT-antisymmetric atomic lattices. Opt. Lett., 2019, 44(8): 2089
CrossRef
ADS
Google scholar
|
[29] |
Z. Y. Zhang , S. H. Ning , H. Zhong , M. R. Belić , Y. Q. Zhang , Y. Feng , S. Liang , Y. P. Zhang , M. Xiao . Experimental demonstration of optical Bloch oscillation in electromagnetically induced photonic lattices. Fundam. Res., 2022, 2(3): 401
CrossRef
ADS
Google scholar
|
[30] |
Y. Q. Zhang , D. Zhang , Z. Y. Zhang , C. B. Li , Y. P. Zhang , F. L. Li , M. R. Belić , M. Xiao . Optical Bloch oscillation and Zener tunneling in an atomic system. Optica, 2017, 4(5): 571
CrossRef
ADS
Google scholar
|
[31] |
J. Gao , C. Hang , G. X. Huang . Linear and nonlinear Bragg diffraction by electromagnetically induced gratings with PT symmetry and their active control in a Rydberg atomic gas. Phys. Rev. A, 2022, 105(6): 063511
CrossRef
ADS
Google scholar
|
[32] |
J. P. Yuan , S. C. Dong , H. F. Zhang , C. H. Wu , L. R. Wang , L. T. Xiao , S. T. Jia . Efficient all-optical modulator based on a periodic dielectric atomic lattice. Opt. Express, 2021, 29(2): 2712
CrossRef
ADS
Google scholar
|
[33] |
A. W. Brown , M. Xiao . All-optical switching and routing based on an electromagnetically induced absorption grating. Opt. Lett., 2005, 30(7): 699
CrossRef
ADS
Google scholar
|
[34] |
A. Alù , N. Engheta . All optical metamaterial circuit board at the nanoscale. Phys. Rev. Lett., 2009, 103(14): 143902
CrossRef
ADS
Google scholar
|
[35] |
M. C. Rechtsman , J. M. Zeuner , Y. Plotnik , Y. Lumer , D. Podolsky , F. Dreisow , S. Nolte , M. Segev , A. Szameit . Photonic Floquet topological insulators. Nature, 2013, 496(7444): 196
CrossRef
ADS
Google scholar
|
[36] |
Y. Q. Zhang , Z. K. Wu , M. R. Belić , H. B. Zheng , Z. G. Wang , M. Xiao , Y. P. Zhang . Photonic Floquet topological insulators in atomic ensembles. Laser Photonics Rev., 2015, 9(3): 331
CrossRef
ADS
Google scholar
|
[37] |
Z. Y. Zhang , F. Li , G. Malpuech , Y. Q. Zhang , O. Bleu , S. Koniakhin , C. B. Li , Y. P. Zhang , M. Xiao , D. D. Solnyshkov . Particle-like behavior of topological defects in linear wave packets in photonic graphene. Phys. Rev. Lett., 2019, 122(23): 233905
CrossRef
ADS
Google scholar
|
[38] |
Z. Y. Zhang , R. Wang , Y. Q. Zhang , Y. V. Kartashov , F. Li , H. Zhong , H. Guan , K. L. Gao , F. L. Li , Y. P. Zhang , M. Xiao . Observation of edge solitons in photonic graphene. Nat. Commun., 2020, 11(1): 1902
CrossRef
ADS
Google scholar
|
[39] |
Z. Y. Zhang , S. Liang , F. Li , S. H. Ning , Y. M. Li , G. Malpuech , Y. P. Zhang , M. Xiao , D. Solnyshkov . Spin−orbit coupling in photonic graphene. Optica, 2020, 7(5): 455
CrossRef
ADS
Google scholar
|
[40] |
Z. Y. Zhang , Y. Feng , F. Li , S. Koniakhin , C. B. Li , F. Liu , Y. P. Zhang , M. Xiao , G. Malpuech , D. Solnyshkov . Angular-dependent Klein tunneling in photonic graphene. Phys. Rev. Lett., 2022, 129(23): 233901
CrossRef
ADS
Google scholar
|
[41] |
Q. Tang , B. Q. Ren , V. O. Kompanets , Y. V. Kartashov , Y. D. Li , Y. Q. Zhang . Valley Hall edge solitons in a photonic graphene. Opt. Express, 2021, 29(24): 39755
CrossRef
ADS
Google scholar
|
[42] |
F. S. Deng , Y. M. Li , Y. Sun , X. Wang , Z. W. Guo , Y. L. Shi , H. T. Jiang , K. Chang , H. Chen . Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene. Opt. Lett., 2015, 40(14): 3380
CrossRef
ADS
Google scholar
|
[43] |
F. Lederer , G. I. Stegeman , D. N. Christodoulides , G. Assanto , M. Segev , Y. Silberberg . Discrete solitons in optics. Phys. Rep., 2008, 463(1−3): 1
CrossRef
ADS
Google scholar
|
[44] |
A. Szameit , I. L. Garanovich , M. Heinrich , A. A. Sukhorukov , F. Dreisow , T. Pertsch , S. Nolte , A. Tünnermann , S. Longhi , Y. S. Kivshar . Observation of two-dimensional dynamic localization of light. Phys. Rev. Lett., 2010, 104(22): 223903
CrossRef
ADS
Google scholar
|
[45] |
S. E. Skipetrov , P. Wulles . Topological transitions and Anderson localization of light in disordered atomic arrays. Phys. Rev. A, 2022, 105(4): 043514
CrossRef
ADS
Google scholar
|
[46] |
D. H. Song , D. Leykam , J. Su , X. Y. Liu , L. Q. Tang , S. Liu , J. L. Zhao , N. K. Efremidis , J. J. Xu , Z. G. Chen . Valley vortex states and degeneracy lifting via photonic higher-band excitation. Phys. Rev. Lett., 2019, 122(12): 123903
CrossRef
ADS
Google scholar
|
[47] |
D. H. Song , V. Paltoglou , S. Liu , Y. Zhu , D. Gallardo , L. Q. Tang , J. J. Xu , M. Ablowitz , N. K. Efremidis , Z. G. Chen . Unveiling pseudospin and angular momentum in photonic graphene. Nat. Commun., 2015, 6(1): 6272
CrossRef
ADS
Google scholar
|
[48] |
F. Wen , H. P. Ye , X. Zhang , W. Wang , S. K. Li , H. X. Wang , Y. P. Zhang , C. W. Qiu . Optically induced atomic lattice with tunable near-field and far-field diffraction patterns. Photon. Res., 2017, 5(6): 676
CrossRef
ADS
Google scholar
|
[49] |
H. F. Zhang , J. P. Yuan , L. T. Xiao , S. T. Jia , L. R. Wang . Geometric pattern evolution of photonic graphene in coherent atomic medium. Opt. Express, 2023, 31(7): 11335
CrossRef
ADS
Google scholar
|
[50] |
F.PampaloniJ.Enderlein, Gaussian, Hermite-Gaussian, and Laguerre−Gaussian beams: A primer, arXiv: physics/0410021 (2004)
|
/
〈 | 〉 |