Defect repairing in two-dimensional transition metal dichalcogenides

Shiyan Zeng, Fang Li, Chao Tan, Lei Yang, Zegao Wang

PDF(10203 KB)
PDF(10203 KB)
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53604. DOI: 10.1007/s11467-023-1290-6
TOPICAL REVIEW
TOPICAL REVIEW

Defect repairing in two-dimensional transition metal dichalcogenides

Author information +
History +

Abstract

Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have stimulated enormous research interest due to rich phase structure, high theoretical carrier mobility and layer-dependent bandgap. In view of the close correlation between defects and properties in 2D TMDCs, more attentions have been paid on the defect engineering in recent years, however the mechanism is still unclear. Herein, we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects. To insight into the defect engineering, we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce. Then, various methods to improve point defects and grain boundaries during the period of growth are discussed intensively, with the assistance of which more large-area TMDCs films can be obtained. Considering the defects in TMDCs are inevitable regardless of concentration, we also highlight strategies to heal the defects after growth. Through dry methods or wet methods, the chalcogen vacancies can be repaired and thus, the performance of electronic device would be significantly enhanced. Finally, we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.

Graphical abstract

Keywords

defect / repairing / two-dimensional transition metal / dichalcogenides

Cite this article

Download citation ▾
Shiyan Zeng, Fang Li, Chao Tan, Lei Yang, Zegao Wang. Defect repairing in two-dimensional transition metal dichalcogenides. Front. Phys., 2023, 18(5): 53604 https://doi.org/10.1007/s11467-023-1290-6

References

[1]
A. K. Geim . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
CrossRef ADS Google scholar
[2]
K.S. NovoselovV.I. Fal′koL.ColomboP.R. GellertM.G. SchwabK.Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
[3]
K. M. Wyss , D. X. Luong , J. M. Tour . Large-scale syntheses of 2D materials: Flash Joule heating and other methods. Adv. Mater., 2022, 34(8): 2106970
CrossRef ADS Google scholar
[4]
J. Li , M. Chen , A. Samad , H. Dong , A. Ray , J. Zhang , X. Jiang , U. Schwingenschlögl , J. Domke , C. Chen , Y. Han , T. Fritz , R. S. Ruoff , B. Tian , X. Zhang . Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater., 2022, 21(7): 740
CrossRef ADS Google scholar
[5]
Y. Zhang , W. Shen , S. Wu , W. Tang , Y. Shu , K. Ma , B. Zhang , P. Zhou , S. Wang . High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication. ACS Nano, 2022, 16(11): 19187
CrossRef ADS Google scholar
[6]
L. Hou , X. Cui , B. Guan , S. Wang , R. Li , Y. Liu , D. Zhu , J. Zheng . Synthesis of a monolayer fullerene network. Nature, 2022, 606(7914): 507
CrossRef ADS Google scholar
[7]
G.MuraliJ.K. R. ModiguntaY.H. ParkJ.H. LeeJ.RawalS.Y. LeeI.InS.J. Park, A review on MXene synthesis, stability, and photocatalytic applications, ACS Nano 16(9), 13370 (2022)
[8]
A.E. NaclerioP.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications, Adv. Mater. 35(6), 2207374 (2023)
[9]
Z. Zhang , P. Yang , M. Hong , S. Jiang , G. Zhao , J. Shi , Q. Xie , Y. Zhang . Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology, 2019, 30(18): 182002
CrossRef ADS Google scholar
[10]
H. Ma , Q. Qian , B. Qin , Z. Wan , R. Wu , B. Zhao , H. Zhang , Z. Zhang , J. Li , Z. Zhang , B. Li , L. Wang , X. Duan . Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. (Weinh.), 2022, 9(1): 2103507
CrossRef ADS Google scholar
[11]
Y.WangJ.C. KimY.LiK.Y. MaS.HongM.KimH.S. ShinH.Y. JeongM.Chhowalla, P-type electrical contacts for 2D transition-metal dichalcogenides, Nature 610(7930), 61 (2022)
[12]
F. Li , R. Tao , B. Cao , L. Yang , Z. Wang . Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection. Adv. Funct. Mater., 2021, 31(36): 2104367
CrossRef ADS Google scholar
[13]
S.ManzeliD.OvchinnikovD.PasquierO.V. YazyevA.Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
[14]
L. Pi , L. Li , K. Liu , Q. Zhang , H. Li , T. Zhai . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
CrossRef ADS Google scholar
[15]
Q. Liang , Z. Chen , Q. Zhang , A. T. S. Wee . Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater., 2022, 32(38): 2203555
CrossRef ADS Google scholar
[16]
B. Cao , Z. Ye , L. Yang , L. Gou , Z. Wang . Recent progress in van der Waals 2D PtSe2. Nanotechnology, 2021, 32(41): 412001
CrossRef ADS Google scholar
[17]
Y. Gao , S. Wang , B. Wang , Z. Jiang , T. Fang . Recent progress in phase regulation, functionalization, and biosensing applications of polyphase MoS2. Small, 2022, 18(34): 2202956
CrossRef ADS Google scholar
[18]
X. Zhu , Y. Chen , Z. Liu , Y. Han , Z. Qiao . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
CrossRef ADS Google scholar
[19]
Y. Y. Wang , F. P. Li , W. Wei , B. B. Huang , Y. Dai . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef ADS Google scholar
[20]
Q. Liang , Q. Zhang , X. Zhao , M. Liu , A. T. S. Wee . Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano, 2021, 15(2): 2165
CrossRef ADS Google scholar
[21]
Y. Gong , Z. Lin , Y. X. Chen , Q. Khan , C. Wang , B. Zhang , G. Nie , N. Xie , D. Li , Two-dimensional platinum diselenide:Synthesis . Emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
CrossRef ADS Google scholar
[22]
E. Norouzzadeh , S. Mohammadi , M. Moradinasab . Tunneling FET based on defect-free, vacancy-defected, and passivated monolayer PtSe2 channel: A first principles study. Mater. Sci. Semicond. Process., 2022, 138: 106258
CrossRef ADS Google scholar
[23]
A. Mahmood , G. Lu , X. Wang , Y. Wang , X. Xie , J. Sun . Investigating the stability and role of defects in vertically aligned WS2/MoS2 heterojunctions on OER activity using first principles study. J. Power Sources, 2022, 551: 232208
CrossRef ADS Google scholar
[24]
P. M. M. C. de Melo , Z. Zanolli , M. J. Verstraete . Optical signatures of defect centers in transition metal dichalcogenide monolayers. Adv. Quant. Technol., 2021, 4(3): 2000118
CrossRef ADS Google scholar
[25]
Y. Yu , X. Zhang , Z. Zhou , Z. Zhang , Y. Bao , H. Xu , L. Lin , Y. Zhang , X. Wang . Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides. Photon. Res., 2019, 7(7): 711
CrossRef ADS Google scholar
[26]
K. Wu , H. Zhong , Q. Guo , J. Tang , Z. Yang , L. Qian , S. Yuan , S. Zhang , H. Xu . Revealing the competition between defect-trapped exciton and band-edge exciton photoluminescence in monolayer hexagonal WS2. Adv. Opt. Mater., 2022, 10(6): 2101971
CrossRef ADS Google scholar
[27]
D. H. Lien , S. Z. Uddin , M. Yeh , M. Amani , H. Kim , J. W. III Ager , E. Yablonovitch , A. Javey . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468
CrossRef ADS Google scholar
[28]
P. C. Shen , Y. Lin , C. Su , C. McGahan , A. Y. Lu , X. Ji , X. Wang , H. Wang , N. Mao , Y. Guo , J. H. Park , Y. Wang , W. Tisdale , J. Li , X. Ling , K. E. Aidala , T. Palacios , J. Kong . Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron., 2021, 5(1): 28
CrossRef ADS Google scholar
[29]
B. Wen , D. N. Luo , L. L. Zhang , X. L. Li , X. Wang , L. L. Huang , X. Zhang , D. F. Diao . Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges. Front. Phys., 2023, 18(3): 33306
CrossRef ADS Google scholar
[30]
J. Li , T. Joseph , M. Ghorbani-Asl , S. Kolekar , A. V. Krasheninnikov , M. Batzill . Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2. Adv. Funct. Mater., 2022, 32(18): 2110428
CrossRef ADS Google scholar
[31]
P.LiY.BuL.WangC.WangJ.HuangK.TongY.ChenJ.HeZ.ZhaoB.XuZ.LiuG.GaoA.NieH.WangY.Tian, In situ observation of fracture along twin boundaries in boron carbide, Adv. Mater., doi: 10.1002/adma.202204375 (2022)
[32]
H. Yun , M. Topsakal , A. Prakash , B. Jalan , J. S. Jeong , T. Birol , K. A. Mkhoyan . Metallic line defect in wide-bandgap transparent perovskite BaSnO3. Sci. Adv., 2021, 7(3): eabd4449
CrossRef ADS Google scholar
[33]
S. Feng , J. Tan , S. Zhao , S. Zhang , U. Khan , L. Tang , X. Zou , J. Lin , H. M. Cheng , B. Liu . Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small, 2020, 16(35): 2003357
CrossRef ADS Google scholar
[34]
J. Li , S. Wang , Q. Jiang , H. Qian , S. Hu , H. Kang , C. Chen , X. Zhan , A. Yu , S. Zhao , Y. Zhang , Z. Chen , Y. Sui , S. Qiao , G. Yu , S. Peng , Z. Jin , X. Liu . Single-crystal MoS2 monolayer wafer grown on Au(111) film substrates. Small, 2021, 17(30): 2100743
CrossRef ADS Google scholar
[35]
P. Yang , Y. Shan , J. Chen , G. Ekoya , J. Han , Z. J. Qiu , J. Sun , F. Chen , H. Wang , W. Bao , L. Hu , R. J. Zhang , R. Liu , C. Cong . Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale, 2020, 12(3): 1958
CrossRef ADS Google scholar
[36]
F. J. Urbanos , S. Gullace , P. Samorì . MoS2 defect healing for high-performance chemical sensing of polycyclic aromatic hydrocarbons. ACS Nano, 2022, 16(7): 11234
CrossRef ADS Google scholar
[37]
T. Liu , N. Peng , X. Zhang , R. Zheng , M. Xia , H. Yu , M. Shui , Y. Xie , J. Shu . Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy, 2021, 79: 105460
CrossRef ADS Google scholar
[38]
G. Chilkoor , N. Shrestha , A. Kutana , M. Tripathi , F. C. Robles Hernández , B. I. Yakobson , M. Meyyappan , A. B. Dalton , P. M. Ajayan , M. M. Rahman , V. Gadhamshetty . Atomic layers of graphene for microbial corrosion prevention. ACS Nano, 2021, 15(1): 447
CrossRef ADS Google scholar
[39]
C. Z. Zerger , L. K. Rodenbach , Y. T. Chen , B. Safvati , M. Z. Brubaker , S. Tran , T. A. Chen , M. Y. Li , L. J. Li , D. Goldhaber-Gordon , H. C. Manoharan . Nanoscale electronic transparency of wafer-scale hexagonal boron nitride. Nano Lett., 2022, 22(11): 4608
CrossRef ADS Google scholar
[40]
R. Tao , X. Qu , Z. Wang , F. Li , L. Yang , J. Li , D. Wang , K. Zheng , M. Dong . Tune the electronic structure of MoS2 homojunction for broadband photodetection. J. Mater. Sci. Technol., 2022, 119: 61
CrossRef ADS Google scholar
[41]
D. Wang , Z. Wang , Z. Yang , S. Wang , C. Tan , L. Yang , X. Hao , Z. Ke , M. Dong . Facile damage-free double exposure for high-performance 2D semiconductor based transistors. Mater. Today Phys., 2022, 24: 100678
CrossRef ADS Google scholar
[42]
K. Fujisawa , B. R. Carvalho , T. Zhang , N. Perea-López , Z. Lin , V. Carozo , S. L. L. M. Ramos , E. Kahn , A. Bolotsky , H. Liu , A. L. Elías , M. Terrones . Quantification and healing of defects in atomically thin molybdenum disulfide: Beyond the controlled creation of atomic defects. ACS Nano, 2021, 15(6): 9658
CrossRef ADS Google scholar
[43]
C. Zhang , C. Wang , F. Yang , J. K. Huang , L. J. Li , W. Yao , W. Ji , C. K. Shih . Engineering point-defect states in monolayer WSe2. ACS Nano, 2019, 13(2): 1595
CrossRef ADS Google scholar
[44]
K. Wang , L. Zhang , G. D. Nguyen , X. Sang , C. Liu , Y. Yu , W. Ko , R. R. Unocic , A. A. Puretzky , C. M. Rouleau , D. B. Geohegan , L. Fu , G. Duscher , A. P. Li , M. Yoon , K. Xiao . Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W−Au alloy substrates. Adv. Mater., 2022, 34(3): 2106674
CrossRef ADS Google scholar
[45]
Z. Gan , I. Paradisanos , A. Estrada-Real , J. Picker , E. Najafidehaghani , F. Davies , C. Neumann , C. Robert , P. Wiecha , K. Watanabe , T. Taniguchi , X. Marie , J. Biskupek , M. Mundszinger , R. Leiter , U. Kaiser , A. V. Krasheninnikov , B. Urbaszek , A. George , A. Turchanin . Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater., 2022, 34(38): 2205226
CrossRef ADS Google scholar
[46]
T. Kang , T. W. Tang , B. Pan , H. Liu , K. Zhang , Z. Luo . Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au, 2022, 2(6): 665
CrossRef ADS Google scholar
[47]
Y. Zhang , Y. Yao , M. G. Sendeku , L. Yin , X. Zhan , F. Wang , Z. Wang , J. He . Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater., 2019, 31(41): 1901694
CrossRef ADS Google scholar
[48]
Y. Wan , E. Li , Z. Yu , J. K. Huang , M. Y. Li , A. S. Chou , Y. T. Lee , C. J. Lee , H. C. Hsu , Q. Zhan , A. Aljarb , J. H. Fu , S. P. Chiu , X. Wang , J. J. Lin , Y. P. Chiu , W. H. Chang , H. Wang , Y. Shi , N. Lin , Y. Cheng , V. Tung , L. J. Li . Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun., 2022, 13(1): 4149
CrossRef ADS Google scholar
[49]
A. Hassan , Z. Wang , Y. H. Ahn , M. Azam , A. A. Khan , U. Farooq , M. Zubair , Y. Cao . Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101: 107579
CrossRef ADS Google scholar
[50]
J. Xu , G. Shao , X. Tang , F. Lv , H. Xiang , C. Jing , S. Liu , S. Dai , Y. Li , J. Luo , Z. Zhou . Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun., 2022, 13(1): 2193
CrossRef ADS Google scholar
[51]
Y. Zuo , C. Liu , L. Ding , R. Qiao , J. Tian , C. Liu , Q. Wang , G. Xue , Y. You , Q. Guo , J. Wang , Y. Fu , K. Liu , X. Zhou , H. Hong , M. Wu , X. Lu , R. Yang , G. Zhang , D. Yu , E. Wang , X. Bai , F. Ding , K. Liu . Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun., 2022, 13(1): 1007
CrossRef ADS Google scholar
[52]
S. Barja , S. Refaely-Abramson , B. Schuler , D. Y. Qiu , A. Pulkin , S. Wickenburg , H. Ryu , M. M. Ugeda , C. Kastl , C. Chen , C. Hwang , A. Schwartzberg , S. Aloni , S. K. Mo , D. Frank Ogletree , M. F. Crommie , O. V. Yazyev , S. G. Louie , J. B. Neaton , A. Weber-Bargioni . Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3382
CrossRef ADS Google scholar
[53]
R. González-Hernández , W. López-Pérez , J. A. Rodríguez M . Nickel adsorption and incorporation on a 2×2-T4 GaN(0001) surface: A DFT study. Appl. Surf. Sci., 2013, 266: 205
CrossRef ADS Google scholar
[54]
T.TangZ.WangJ.Guan, A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction, Chin. J. Catal. 43(3), 636 (2022)
[55]
S. Liu , L. Zhou , W. Zhang , J. Jin , X. Mu , S. Zhang , C. Chen , S. Mu . Stabilizing sulfur vacancy defects by performing “click” chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2. Nanoscale, 2020, 12(18): 9943
CrossRef ADS Google scholar
[56]
M. Cheng , J. Yang , X. Li , H. Li , R. Du , J. Shi , J. He . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef ADS Google scholar
[57]
H. Bishara , S. Lee , T. Brink , M. Ghidelli , G. Dehm . Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure. ACS Nano, 2021, 15(10): 16607
CrossRef ADS Google scholar
[58]
J. Zhang , L. Lin , K. Jia , L. Sun , H. Peng , Z. Liu . Controlled growth of single-crystal graphene films. Adv. Mater., 2020, 32(1): 1903266
CrossRef ADS Google scholar
[59]
F. Bussolotti , J. Yang , H. Kawai , C. P. Y. Wong , K. E. J. Goh . Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer. ACS Nano, 2021, 15(2): 2686
CrossRef ADS Google scholar
[60]
Y. Chen , S. Huang , X. Ji , K. Adepalli , K. Yin , X. Ling , X. Wang , J. Xue , M. Dresselhaus , J. Kong , B. Yildiz . Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano, 2018, 12(3): 2569
CrossRef ADS Google scholar
[61]
Z. Hu , Y. Zhao , W. Zou , Q. Lu , J. Liao , F. Li , M. Shang , L. Lin , Z. Liu . Doping of graphene films: Open the way to applications in electronics and optoelectronics. Adv. Funct. Mater., 2022, 32(42): 2203179
CrossRef ADS Google scholar
[62]
S. Zhang , C. G. Wang , M. Y. Li , D. Huang , L. J. Li , W. Ji , S. Wu . Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett., 2017, 119(4): 046101
CrossRef ADS Google scholar
[63]
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef ADS Google scholar
[64]
M. Tebyetekerwa , Y. Cheng , J. Zhang , W. Li , H. Li , G. P. Neupane , B. Wang , T. N. Truong , C. Xiao , M. M. Al-Jassim , Z. Yin , Y. Lu , D. Macdonald , H. T. Nguyen . Emission control from transition metal dichalcogenide monolayers by aggregation-induced molecular rotors. ACS Nano, 2020, 14(6): 7444
CrossRef ADS Google scholar
[65]
J. Kim , Y. Oh , J. Shin , M. Yang , N. Shin , S. Shekhar , S. Hong . Nanoscale mapping of carrier mobilities in the ballistic transports of carbon nanotube networks. ACS Nano, 2022, 16(12): 21626
CrossRef ADS Google scholar
[66]
W. Wang , H. Shu , J. Wang , Y. Cheng , P. Liang , X. Chen . Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces, 2020, 12(8): 9563
CrossRef ADS Google scholar
[67]
B. Huang , M. Yoon , B. G. Sumpter , S. H. Wei , F. Liu . Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(12): 126806
CrossRef ADS Google scholar
[68]
M. Yarali , H. Brahmi , Z. Yan , X. Li , L. Xie , S. Chen , S. Kumar , M. Yoon , K. Xiao , A. Mavrokefalos . Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide. ACS Appl. Mater. Interfaces, 2018, 10(5): 4921
CrossRef ADS Google scholar
[69]
K.ZhangB.M. BerschJ.JoshiR.AddouC.R. CormierC.ZhangK.XuN.C. BriggsK.WangS.SubramanianK.ChoS.Fullerton-ShireyR.M. WallaceP.M. VoraJ.A. Robinson, Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping, Adv. Funct. Mater. 28(16) (2018)
[70]
X. Li , A. A. Puretzky , X. Sang , S. Kc , M. Tian , F. Ceballos , M. Mahjouri-Samani , K. Wang , R. R. Unocic , H. Zhao , G. Duscher , V. R. Cooper , C. M. Rouleau , D. B. Geohegan , K. Xiao . Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater., 2017, 27(19): 1603850
CrossRef ADS Google scholar
[71]
W. Chen , J. Zhao , J. Zhang , L. Gu , Z. Yang , X. Li , H. Yu , X. Zhu , R. Yang , D. Shi , X. Lin , J. Guo , X. Bai , G. Zhang . Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc., 2015, 137(50): 15632
CrossRef ADS Google scholar
[72]
Z. Wang , H. Yang , S. Zhang , J. Wang , K. Cao , Y. Lu , W. Hou , S. Guo , X. A. Zhang , L. Wang . An approach to high-throughput growth of submillimeter transition metal dichalcogenide single crystals. Nanoscale, 2019, 11(46): 22440
CrossRef ADS Google scholar
[73]
Z. Tu , G. Li , X. Ni , L. Meng , S. Bai , X. Chen , J. Lou , Y. Qin . Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett., 2016, 109(22): 223101
CrossRef ADS Google scholar
[74]
J. Chen , W. Tang , B. Tian , B. Liu , X. Zhao , Y. Liu , T. Ren , W. Liu , D. Geng , H. Y. Jeong , H. S. Shin , W. Zhou , K. P. Loh . Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. (Weinh.), 2016, 3(8): 1500033
CrossRef ADS Google scholar
[75]
H. G. Ji , Y. C. Lin , K. Nagashio , M. Maruyama , P. Solís-Fernández , A. Sukma Aji , V. Panchal , S. Okada , K. Suenaga , H. Ago . Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater., 2018, 30(2): 403
CrossRef ADS Google scholar
[76]
Y. Gong , G. Ye , S. Lei , G. Shi , Y. He , J. Lin , X. Zhang , R. Vajtai , S. T. Pantelides , W. Zhou , B. Li , P. M. Ajayan . Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater., 2016, 26(12): 2009
CrossRef ADS Google scholar
[77]
Z. Lin , Y. Zhao , C. Zhou , R. Zhong , X. Wang , Y. H. Tsang , Y. Chai . Controllable growth of large-size crystalline mos2 and resist-free transfer assisted with a Cu thin film. Sci. Rep., 2015, 5(1): 18596
CrossRef ADS Google scholar
[78]
S. Wang , M. Pacios , H. Bhaskaran , J. H. Warner . Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology, 2016, 27(8): 085604
CrossRef ADS Google scholar
[79]
P. Yang , X. Zou , Z. Zhang , M. Hong , J. Shi , S. Chen , J. Shu , L. Zhao , S. Jiang , X. Zhou , Y. Huan , C. Xie , P. Gao , Q. Chen , Q. Zhang , Z. Liu , Y. Zhang . Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
CrossRef ADS Google scholar
[80]
M. E. Pam , Y. Shi , J. Hu , X. Zhao , J. Dan , X. Gong , S. Huang , D. Geng , S. Pennycook , L. K. Ang , H. Y. Yang . Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers. Nanoscale Adv., 2019, 1(3): 953
CrossRef ADS Google scholar
[81]
Z. Zhang , X. Xu , J. Song , Q. Gao , S. Li , Q. Hu , X. Li , Y. Wu . High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett., 2018, 113(20): 202103
CrossRef ADS Google scholar
[82]
J. Chen , X. Zhao , S. J. R. Tan , H. Xu , B. Wu , B. Liu , D. Fu , W. Fu , D. Geng , Y. Liu , W. Liu , W. Tang , L. Li , W. Zhou , T. C. Sum , K. P. Loh . Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc., 2017, 139(3): 1073
CrossRef ADS Google scholar
[83]
P. Yang , S. Zhang , S. Pan , B. Tang , Y. Liang , X. Zhao , Z. Zhang , J. Shi , Y. Huan , Y. Shi , S. J. Pennycook , Z. Ren , G. Zhang , Q. Chen , X. Zou , Z. Liu , Y. Zhang . Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14(4): 5036
CrossRef ADS Google scholar
[84]
J. Shi , X. Zhang , D. Ma , J. Zhu , Y. Zhang , Z. Guo , Y. Yao , Q. Ji , X. Song , Y. Zhang , C. Li , Z. Liu , W. Zhu , Y. Zhang . Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano, 2015, 9(4): 4017
CrossRef ADS Google scholar
[85]
S. J. Yun , S. H. Chae , H. Kim , J. C. Park , J. H. Park , G. H. Han , J. S. Lee , S. M. Kim , H. M. Oh , J. Seok , M. S. Jeong , K. K. Kim , Y. H. Lee . Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano, 2015, 9(5): 5510
CrossRef ADS Google scholar
[86]
Y. Gao , Z. Liu , D. M. Sun , L. Huang , L. P. Ma , L. C. Yin , T. Ma , Z. Zhang , X. L. Ma , L. M. Peng , H. M. Cheng , W. Ren . Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun., 2015, 6(1): 8569
CrossRef ADS Google scholar
[87]
K. Godin , K. Kang , S. Fu , E. H. Yang . Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates. J. Phys. D Appl. Phys., 2016, 49(32): 325304
CrossRef ADS Google scholar
[88]
F. Lan , R. Yang , S. Hao , B. Zhou , K. Sun , H. Cheng , S. Zhang , L. Li , L. Jin . Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci., 2020, 504: 144378
CrossRef ADS Google scholar
[89]
G. Li , X. Wang , B. Han , W. Zhang , S. Qi , Y. Zhang , J. Qiu , P. Gao , S. Guo , R. Long , Z. Tan , X. Z. Song , N. Liu . Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate. J. Phys. Chem. Lett., 2020, 11(4): 1570
CrossRef ADS Google scholar
[90]
H. Kim , G. H. Han , S. J. Yun , J. Zhao , D. H. Keum , H. Y. Jeong , T. H. Ly , Y. Jin , J. H. Park , B. H. Moon , S. W. Kim , Y. H. Lee . Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28(36): 36LT01
CrossRef ADS Google scholar
[91]
J. G. Song , G. Hee Ryu , Y. Kim , W. Je Woo , K. Yong Ko , Y. Kim , C. Lee , I. K. Oh , J. Park , Z. Lee , H. Kim . Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology, 2017, 28(46): 465103
CrossRef ADS Google scholar
[92]
H. Kim , D. Ovchinnikov , D. Deiana , D. Unuchek , A. Kis . Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett., 2017, 17(8): 5056
CrossRef ADS Google scholar
[93]
Y. Shi , P. Yang , S. Jiang , Z. Zhang , Y. Huan , C. Xie , M. Hong , J. Shi , Y. Zhang . Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology, 2019, 30(3): 034002
CrossRef ADS Google scholar
[94]
B. J. Modtland , E. Navarro-Moratalla , X. Ji , M. Baldo , J. Kong . Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport. Small, 2017, 13(33): 1701232
CrossRef ADS Google scholar
[95]
P. Yang , A. G. Yang , L. Chen , J. Chen , Y. Zhang , H. Wang , L. Hu , R. J. Zhang , R. Liu , X. P. Qu , Z. J. Qiu , C. Cong . Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res., 2019, 12(4): 823
CrossRef ADS Google scholar
[96]
X. Ling , Y. H. Lee , Y. Lin , W. Fang , L. Yu , M. S. Dresselhaus , J. Kong . Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett., 2014, 14(2): 464
CrossRef ADS Google scholar
[97]
Y. F. Lim , K. Priyadarshi , F. Bussolotti , P. K. Gogoi , X. Cui , M. Yang , J. Pan , S. W. Tong , S. Wang , S. J. Pennycook , K. E. J. Goh , A. T. S. Wee , S. L. Wong , D. Chi . Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano, 2018, 12(2): 1339
CrossRef ADS Google scholar
[98]
J. Zhu , H. Xu , G. Zou , W. Zhang , R. Chai , J. Choi , J. Wu , H. Liu , G. Shen , H. Fan . MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc., 2019, 141(13): 5392
CrossRef ADS Google scholar
[99]
G. U. Özküçük , C. Odacı , E. Şahin , F. Ay , N. K. Perkgöz . Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater. Sci. Semicond. Process., 2020, 105: 104679
CrossRef ADS Google scholar
[100]
J.JiangQ.ZhangA.WangY.ZhangF.MengC.ZhangX.FengY.FengL.GuH.LiuL.Han, A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment, Small 15(36), 1901791 (2019)
[101]
H. Nan , Z. Wang , W. Wang , Z. Liang , Y. Lu , Q. Chen , D. He , P. Tan , F. Miao , X. Wang , J. Wang , Z. Ni . Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738
CrossRef ADS Google scholar
[102]
D. Pierucci , H. Henck , Z. Ben Aziza , C. H. Naylor , A. Balan , J. E. Rault , M. G. Silly , Y. J. Dappe , F. Bertran , P. Le Fevre , F. Sirotti , A. T. Johnson , A. Ouerghi . Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano, 2017, 11(2): 1755
CrossRef ADS Google scholar
[103]
Y. Zhu , H. Yi , Q. Hao , J. Liu , Y. Ke , Z. Wang , D. Fan , W. Zhang . Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence. Appl. Surf. Sci., 2019, 485: 101
CrossRef ADS Google scholar
[104]
S. Hu , J. Li , S. Wang , Y. Liang , H. Kang , Y. Zhang , Z. Chen , Y. Sui , G. Yu , S. Peng , Z. Jin , X. Liu . Detecting the repair of sulfur vacancies in CVD-grown MoS2 domains via hydrogen etching. J. Electron. Mater., 2020, 49(4): 2547
CrossRef ADS Google scholar
[105]
M. Liu , J. Shi , Y. Li , X. Zhou , D. Ma , Y. Qi , Y. Zhang , Z. Liu . Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small, 2017, 13(40): 1602967
CrossRef ADS Google scholar
[106]
S. V. Sivaram , A. T. Hanbicki , M. R. Rosenberger , G. G. Jernigan , H. J. Chuang , K. M. McCreary , B. T. Jonker . Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces, 2019, 11(17): 16147
CrossRef ADS Google scholar
[107]
A. Bera , D. V. S. Muthu , A. K. Sood . Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc., 2018, 49(1): 100
CrossRef ADS Google scholar
[108]
A. Venkatakrishnan , H. Chua , P. Tan , Z. Hu , H. Liu , Y. Liu , A. Carvalho , J. Lu , C. H. Sow . Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano, 2017, 11(1): 713
CrossRef ADS Google scholar
[109]
D. Kiriya , Y. Hijikata , J. Pirillo , R. Kitaura , A. Murai , A. Ashida , T. Yoshimura , N. Fujimura . Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment. Langmuir, 2018, 34(35): 10243
CrossRef ADS Google scholar
[110]
X. Dai , X. Zhang , I. M. Kislyakov , L. Wang , J. Huang , S. Zhang , N. Dong , J. Wang . Enhanced two-photon absorption and two-photon luminescence in monolayer MoS2 and WS2 by defect repairing. Opt. Express, 2019, 27(10): 13744
CrossRef ADS Google scholar
[111]
S. Roy , W. Choi , S. Jeon , D. H. Kim , H. Kim , S. J. Yun , Y. Lee , J. Lee , Y. M. Kim , J. Kim . Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett., 2018, 18(7): 4523
CrossRef ADS Google scholar
[112]
K. P. Dhakal , S. Roy , S. J. Yun , G. Ghimire , C. Seo , J. Kim . Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(27): 6820
CrossRef ADS Google scholar
[113]
Y. Kim , Y. Lee , H. Kim , S. Roy , J. Kim . Near-field exciton imaging of chemically treated MoS2 monolayers. Nanoscale, 2018, 10(18): 8851
CrossRef ADS Google scholar
[114]
M. Amani , D. H. Lien , D. Kiriya , J. Xiao , A. Azcatl , J. Noh , S. R. Madhvapathy , R. Addou , S. Kc , M. Dubey , K. Cho , R. M. Wallace , S. C. Lee , J. H. He , J. W. Ager , X. Zhang , E. Yablonovitch , A. Javey . Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350(6264): 1065
CrossRef ADS Google scholar
[115]
H. Kim , D. H. Lien , M. Amani , J. W. Ager , A. Javey . Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment. ACS Nano, 2017, 11(5): 5179
CrossRef ADS Google scholar
[116]
A. Alharbi , P. Zahl , D. Shahrjerdi . Material and device properties of superacid-treated monolayer molybdenum disulfide. Appl. Phys. Lett., 2017, 110(3): 033503
CrossRef ADS Google scholar
[117]
P. Lin , L. Zhu , D. Li , Z. L. Wang . Defect repair for enhanced piezo-phototronic MoS2 flexible phototransistors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(46): 14731
CrossRef ADS Google scholar
[118]
X. Zhang , Q. Liao , S. Liu , Z. Kang , Z. Zhang , J. Du , F. Li , S. Zhang , J. Xiao , B. Liu , Y. Ou , X. Liu , L. Gu , Y. Zhang . Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun., 2017, 8(1): 15881
CrossRef ADS Google scholar
[119]
X. Zhang , Q. Liao , Z. Kang , B. Liu , Y. Ou , J. Du , J. Xiao , L. Gao , H. Shan , Y. Luo , Z. Fang , P. Wang , Z. Sun , Z. Zhang , Y. Zhang . Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano, 2019, 13(3): 3280
CrossRef ADS Google scholar
[120]
Z. Yu , Y. Pan , Y. Shen , Z. Wang , Z. Y. Ong , T. Xu , R. Xin , L. Pan , B. Wang , L. Sun , J. Wang , G. Zhang , Y. W. Zhang , Y. Shi , X. Wang . Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun., 2014, 5(1): 5290
CrossRef ADS Google scholar
[121]
L.ZhouS.YanL.PanX.WangY.WangY.Shi, A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries, Nano Res. 9(3), 857 (2016)
[122]
S. Bertolazzi , S. Bonacchi , G. Nan , A. Pershin , D. Beljonne , P. Samori . Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater., 2017, 29(18): 1606760
CrossRef ADS Google scholar
[123]
M. Makarova , Y. Okawa , M. Aono . Selective adsorption of thiol molecules at sulfur vacancies on MoS2(0001), followed by vacancy repair via S–C dissociation. J. Phys. Chem. C, 2012, 116(42): 22411
CrossRef ADS Google scholar
[124]
M. El Garah , S. Bertolazzi , S. Ippolito , M. Eredia , I. Janica , G. Melinte , O. Ersen , G. Marletta , A. Ciesielski , P. Samorì . MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem, 2018, 9: 33
CrossRef ADS Google scholar
[125]
K. Cho , M. Min , T. Y. Kim , H. Jeong , J. Pak , J. K. Kim , J. Jang , S. J. Yun , Y. H. Lee , W. K. Hong , T. Lee . Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano, 2015, 9(8): 8044
CrossRef ADS Google scholar
[126]
Q. Ding , K. J. Czech , Y. Zhao , J. Zhai , R. J. Hamers , J. C. Wright , S. Jin . Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12734
CrossRef ADS Google scholar
[127]
D. M. Sim , M. Kim , S. Yim , M. J. Choi , J. Choi , S. Yoo , Y. S. Jung . Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano, 2015, 9(12): 12115
CrossRef ADS Google scholar
[128]
S. Wei , C. Ge , L. Zhou , S. Zhang , M. Dai , F. Gao , Y. Sun , Y. Qiu , Z. Wang , J. Zhang , P. Hu . Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA. ACS Appl. Electron. Mater., 2019, 1(11): 2380
CrossRef ADS Google scholar
[129]
J. H. Park , A. Sanne , Y. Guo , M. Amani , K. Zhang , H. C. P. Movva , J. A. Robinson , A. Javey , J. Robertson , S. K. Banerjee , A. C. Kummel . Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv., 2017, 3(10): e1701661
CrossRef ADS Google scholar
[130]
W. Ding , X. Li , F. Jiang , P. Liu , P. Liu , S. Zhu , G. Zhang , C. Liu , J. Xu . Defect modification engineering on a laminar MoS2 film for optimizing thermoelectric properties. J. Mater. Chem. C, 2020, 8(6): 1909
CrossRef ADS Google scholar
[131]
A. O. A. Tanoh , J. Alexander-Webber , J. Xiao , G. Delport , C. A. Williams , H. Bretscher , N. Gauriot , J. Allardice , R. Pandya , Y. Fan , Z. Li , S. Vignolini , S. D. Stranks , S. Hofmann , A. Rao . Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett., 2019, 19(9): 6299
CrossRef ADS Google scholar
[132]
D. H. Luong , H. S. Lee , G. Ghimire , J. Lee , H. Kim , S. J. Yun , G. H. An , Y. H. Lee . Enhanced light–matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors. Small, 2018, 14(47): 1802949
CrossRef ADS Google scholar
[133]
T. L. Atallah , J. Wang , M. Bosch , D. Seo , R. A. Burke , O. Moneer , J. Zhu , M. Theibault , L. E. Brus , J. Hone , X. Y. Zhu . Electrostatic screening of charged defects in monolayer MoS2. J. Phys. Chem. Lett., 2017, 8(10): 2148
CrossRef ADS Google scholar
[134]
J. Jiang , C. Ling , T. Xu , W. Wang , X. Niu , A. Zafar , Z. Yan , X. Wang , Y. You , L. Sun , J. Lu , J. Wang , Z. Ni . Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater., 2018, 30(40): e1804332
CrossRef ADS Google scholar
[135]
X. Xu , Z. Chen , B. Sun , Y. Zhao , L. Tao , J. B. Xu . Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals. Sci. Bull. (Beijing), 2019, 64(22): 1700
CrossRef ADS Google scholar
[136]
S. Mouri , Y. Miyauchi , K. Matsuda . Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
CrossRef ADS Google scholar
[137]
L. Yang , K. Majumdar , H. Liu , Y. Du , H. Wu , M. Hatzistergos , P. Y. Hung , R. Tieckelmann , W. Tsai , C. Hobbs , P. D. Ye . Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett., 2014, 14(11): 6275
CrossRef ADS Google scholar
[138]
J. Lu , A. Carvalho , X. K. Chan , H. Liu , B. Liu , E. S. Tok , K. P. Loh , A. H. Castro Neto , C. H. Sow . Atomic healing of defects in transition metal dichalcogenides. Nano Lett., 2015, 15(5): 3524
CrossRef ADS Google scholar
[139]
L. Wang , M. Schmid , Z. N. Nilsson , M. Tahir , H. Chen , J. B. Sambur . Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes. ACS Appl. Mater. Interfaces, 2019, 11(21): 19207
CrossRef ADS Google scholar
[140]
H. V. Han , A. Y. Lu , L. S. Lu , J. K. Huang , H. Li , C. L. Hsu , Y. C. Lin , M. H. Chiu , K. Suenaga , C. W. Chu , H. C. Kuo , W. H. Chang , L. J. Li , Y. Shi . Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1): 1454
CrossRef ADS Google scholar
[141]
Y. Meng , C. Ling , R. Xin , P. Wang , Y. Song , H. Bu , S. Gao , X. Wang , F. Song , J. Wang , X. Wang , B. Wang , G. Wang . Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. npj Quant. Mater., 2017, 2(1): 16
CrossRef ADS Google scholar
[142]
H. Ahn , Y. C. Huang , C. W. Lin , Y. L. Chiu , E. C. Lin , Y. Y. Lai , Y. H. Lee . Efficient defect healing of transition metal dichalcogenides by metallophthalocyanine. ACS Appl. Mater. Interfaces, 2018, 10(34): 29145
CrossRef ADS Google scholar
[143]
Y. Li , M. Yang , Y. Lu , D. Cao , X. Chen , H. Shu . Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures. Front. Phys., 2023, 18(3): 33307
CrossRef ADS Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52002254 and 52272160), the Sichuan Science and Technology Foundation (Nos. 2020YJ0262, 2021YFH0127, 2023YFSY0002, and 2022YFS0045), the Chunhui Plan of the Ministry of Education, Fundamental Research Funds for the Central Universities, China (No. YJ201893), and the Open-Foundation of Key Laboratory of Laser Device Technology, China North Industries Group Corporation Limited (Grant No. KLLDT202104).

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(10203 KB)

Accesses

Citations

Detail

Sections
Recommended

/