
Defect repairing in two-dimensional transition metal dichalcogenides
Shiyan Zeng, Fang Li, Chao Tan, Lei Yang, Zegao Wang
Front. Phys. ›› 2023, Vol. 18 ›› Issue (5) : 53604.
Defect repairing in two-dimensional transition metal dichalcogenides
Atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDCs) have stimulated enormous research interest due to rich phase structure, high theoretical carrier mobility and layer-dependent bandgap. In view of the close correlation between defects and properties in 2D TMDCs, more attentions have been paid on the defect engineering in recent years, however the mechanism is still unclear. Herein, we review the critical progress of defect engineering and provide an extensive way to modulate the properties depressed by defects. To insight into the defect engineering, we firstly introduce two common kinds of defects during the growth progress of TMDCs and the possible distribution of energy levels those defects could induce. Then, various methods to improve point defects and grain boundaries during the period of growth are discussed intensively, with the assistance of which more large-area TMDCs films can be obtained. Considering the defects in TMDCs are inevitable regardless of concentration, we also highlight strategies to heal the defects after growth. Through dry methods or wet methods, the chalcogen vacancies can be repaired and thus, the performance of electronic device would be significantly enhanced. Finally, we propose the challenges and prospective for defect engineering in 2D TMDCs materials to support the optimization of device and lead them to wide applied fields.
defect / repairing / two-dimensional transition metal / dichalcogenides
Fig.2 (a) Top view and side view of point defects: Schottky vacancy, Frenkel defect, adatoms, interstitial atom and substitutional atom. (b) The diagram of edge defects. (c) The diagram of grain boundary: low-angle grain boundary and high-angle grain boundary. (d) The occupation of energy levels caused by different defects. |
Fig.3 (a) Schematic illustration of the CVD setup for the NaX-assisted (X = Cl, Br, and I) MoS2 growth, and Raman intensity mappings in two types of MoS2 samples with NaBr and without salt [66]. (b) Large area HAADF-STEM images of MoSe2, Mo0.98W0.02Se, and Mo0.82W0.18Se2 monolayers from left to right, respectively (above). Enlarged HAADF-STEM images from the regions contained by dashed squares in corresponding images above after Lucy–Richardson deconvolution (below). The Se vacancies with one missing Se atoms are labeled by V, and those with two missing Se atoms are labeled by H [70]. (c) Optical images of MoS2 grown on sapphire for 30 min with O2 flow rate ranging from 0 to 5 sccm. The insets are AFM height images of MoS2 grown on sapphire under different O2 flow rates (0−2 sccm) [71]. (d, e) Typical Raman (d) and photoluminescence (e) spectra of as-grown MoS2 with (red) and without (black) O2 carrier gas, respectively [71]. |
Fig.4 (a) Schematics of the improved CVD synthesis for the high-throughput growth of submillimeter monolayer TMDC single crystals [72]. (b) SEM images of WS2 crystals: on the substrate without self-stacking, on the self-stacked substrate for forming micro-reactors, and on the self-stacked substrate placed in the circumfluence CVD chamber, respectively. The insets show the typical WS2 flakes correspondingly [72]. (c) Corresponding OM images and Raman spectra of MoS2 synthesized using MoO3 powder (above) and Mo foil (below) as precursors [79]. (d) Optical images of the monolayer WS2 crystals that were grown from FWO3, PTWO3, AWO3, and PTAWO3 powders, respectively [80]. (e) Optical microscopy images and domain size distribution histogram of MoS2 grown on c-plane sapphire and molten glass, respectively [81]. (f) Typical optical images of monolayer MoS2 assisted grown by three different seeding promoters corresponding to PTAS, CuPc and CV, respectively [95]. (g) OM and AFM images of MoS2 grown on SiO2 without −OH (left) and with −OH (right), respectively [98]. |
Fig.5 (a) A 3D schematic plot of layered WS2, with the sulfur atoms shown in yellow, tungsten atoms in gray and the N atoms in blue [100]. (b) Atomic structures of WS2 without nitrogen plasma treatment (left) and with nitrogen plasma treatment (right) that were obtained via STEM. The insets are schematic diagram of sulfur atom (yellow round) and tungsten atom (brown round), as well as the corresponding SAED pattern [100]. (c) Schematic illustration of for hydrogen-doped MoS2 [102]. (d) Band diagram showing the evolution of MoS2 Fermi level: before hydrogenation, upon the first exposure to hydrogen, and after the complete hydrogenation, respectively [102]. (e) STM images of MoS2/G/Au after annealing at different temperature [105]. |
Fig.6 (a) PL images of a MoS2 monolayer before (above) and after treatment (below). Insets show optical micrographs [114]. (b) ADF-STEM images of five pristine 1L-MoS2 samples (top panels) and the distribution maps (bottom panels) of the V S (yellow dot) and VS2 (red dot) defects measured from the corresponding ADF-STEM images. Note that a noticeable antisite defect, MoS2, is observed and is denoted by an arrow on the ADF-STEM images [111]. (c) The HAADF images and Z-contrast mapping in the areas marked with yellow rectangles before (left) and after (right) PSS-induced SVSH, reveal that the sulfur vacancies (1S) are healed spontaneously by the sulfur adatom clusters on MoS2 surface through a PSS-induced hydrogenation process [118]. (d) Kinetics and transient states of the reaction between a single SV and MPS. There are two energy barriers, the first one (0.51 eV) is due to the S−H bond breaking, and the second one (0.22 eV) is due to S−C bond breaking. The inset shows the chemical structure of MPS [120]. (e) High-resolution aberration-corrected TEM images of as-exfoliated (left) and TS-treated (right) monolayer MoS2 sample, showing the significant reduction of SV by MPS treatment. The SVs are highlighted by red arrows. The overlaid blue and yellow symbols mark the position of Mo and S atoms, respectively [120]. (f) Series of STM images of MoS2 (0001) surface before and after adsorption of dodecanethiol molecules [123]. (g) Schematic of probable repairing processes [123]. |
Fig.7 (a) AFM characterization of partially laser modified WSe2 flakes. For each of these flakes, the portion on the right corresponds to laser modified region. (b) Proposed photo-induced chemical changes to the MoSe2 sample. (c) PL intensity mappings of an individual MoSe2 flake before and after HBr treatment. (d) Optical microscopic images of MoSe2 flakes on SiO2/Si (upper panel) and those of the same flakes after the deposition of ZnPc by SDC methods (lower panel). The second column shows the thickness of the as-grown and functionalized MoSe2 using the SDC method, analyzed by AFM. (e) PL intensity as a function of the excitation power for as-grown MoSe2 and MoSe2 + ZnPc. |
Tab.1 Summary of important defect repairing methods in TMDCs. |
Defect type | Repair stage | Properties | Repairing method | Refs. |
---|---|---|---|---|
Sulfur vacancies | Growth process | N-type doping | Introducing NaX | [66] |
Lower mobility | Oxygen-assisted CVD | [71] | ||
Post-treatment | Lower on/off current ratio | N2, O2, H2 plasma treatment | [100-102] | |
Annealing | [105] | |||
Weaker PL intensity | TFSI treatment | [110] | ||
PSS treatment | [119] | |||
MPS treatment | [120] | |||
Selenium vacancies | Growth process | N-type doping | Introducing other metallic oxide powder | [70] |
Post-treatment | Weaker PL intensity | Oxygen passivizationAnnealing | [138][139] | |
HBr treatment | [140] | |||
Lower mobility | MPc treatment | [135] | ||
Grain boundaries | Growth process | Higher domain density Small size | Space confinement effect | [72] |
Double-tube system with one-side sealed inner tube | [73] | |||
Lower mobility Lower on/off current | Two-stage (induction and growth stage) CVD method | [74] | ||
Selection and pretreatment of the substrate and source | [79-81] | |||
Introducing catalysts and additives | [88-99] | |||
Post-treatment | − |
[1] |
A. K. Geim . Graphene: Status and prospects. Science, 2009, 324(5934): 1530
CrossRef
ADS
Google scholar
|
[2] |
K.S. NovoselovV.I. Fal′koL.ColomboP.R. GellertM.G. SchwabK.Kim, A roadmap for graphene, Nature 490(7419), 192 (2012)
|
[3] |
K. M. Wyss , D. X. Luong , J. M. Tour . Large-scale syntheses of 2D materials: Flash Joule heating and other methods. Adv. Mater., 2022, 34(8): 2106970
CrossRef
ADS
Google scholar
|
[4] |
J. Li , M. Chen , A. Samad , H. Dong , A. Ray , J. Zhang , X. Jiang , U. Schwingenschlögl , J. Domke , C. Chen , Y. Han , T. Fritz , R. S. Ruoff , B. Tian , X. Zhang . Wafer-scale single-crystal monolayer graphene grown on sapphire substrate. Nat. Mater., 2022, 21(7): 740
CrossRef
ADS
Google scholar
|
[5] |
Y. Zhang , W. Shen , S. Wu , W. Tang , Y. Shu , K. Ma , B. Zhang , P. Zhou , S. Wang . High-speed transition-metal dichalcogenides based Schottky photodiodes for visible and infrared light communication. ACS Nano, 2022, 16(11): 19187
CrossRef
ADS
Google scholar
|
[6] |
L. Hou , X. Cui , B. Guan , S. Wang , R. Li , Y. Liu , D. Zhu , J. Zheng . Synthesis of a monolayer fullerene network. Nature, 2022, 606(7914): 507
CrossRef
ADS
Google scholar
|
[7] |
G.MuraliJ.K. R. ModiguntaY.H. ParkJ.H. LeeJ.RawalS.Y. LeeI.InS.J. Park, A review on MXene synthesis, stability, and photocatalytic applications, ACS Nano 16(9), 13370 (2022)
|
[8] |
A.E. NaclerioP.R. Kidambi, A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications, Adv. Mater. 35(6), 2207374 (2023)
|
[9] |
Z. Zhang , P. Yang , M. Hong , S. Jiang , G. Zhao , J. Shi , Q. Xie , Y. Zhang . Recent progress in the controlled synthesis of 2D metallic transition metal dichalcogenides. Nanotechnology, 2019, 30(18): 182002
CrossRef
ADS
Google scholar
|
[10] |
H. Ma , Q. Qian , B. Qin , Z. Wan , R. Wu , B. Zhao , H. Zhang , Z. Zhang , J. Li , Z. Zhang , B. Li , L. Wang , X. Duan . Controlled synthesis of ultrathin PtSe2 nanosheets with thickness-tunable electrical and magnetoelectrical properties. Adv. Sci. (Weinh.), 2022, 9(1): 2103507
CrossRef
ADS
Google scholar
|
[11] |
Y.WangJ.C. KimY.LiK.Y. MaS.HongM.KimH.S. ShinH.Y. JeongM.Chhowalla, P-type electrical contacts for 2D transition-metal dichalcogenides, Nature 610(7930), 61 (2022)
|
[12] |
F. Li , R. Tao , B. Cao , L. Yang , Z. Wang . Manipulating the light-matter interaction of PtS/MoS2 p–n junctions for high performance broadband photodetection. Adv. Funct. Mater., 2021, 31(36): 2104367
CrossRef
ADS
Google scholar
|
[13] |
S.ManzeliD.OvchinnikovD.PasquierO.V. YazyevA.Kis, 2D transition metal dichalcogenides, Nat. Rev. Mater. 2(8), 17033 (2017)
|
[14] |
L. Pi , L. Li , K. Liu , Q. Zhang , H. Li , T. Zhai . Recent progress on 2D noble-transition-metal dichalcogenides. Adv. Funct. Mater., 2019, 29(51): 1904932
CrossRef
ADS
Google scholar
|
[15] |
Q. Liang , Z. Chen , Q. Zhang , A. T. S. Wee . Pentagonal 2D transition metal dichalcogenides: PdSe2 and beyond. Adv. Funct. Mater., 2022, 32(38): 2203555
CrossRef
ADS
Google scholar
|
[16] |
B. Cao , Z. Ye , L. Yang , L. Gou , Z. Wang . Recent progress in van der Waals 2D PtSe2. Nanotechnology, 2021, 32(41): 412001
CrossRef
ADS
Google scholar
|
[17] |
Y. Gao , S. Wang , B. Wang , Z. Jiang , T. Fang . Recent progress in phase regulation, functionalization, and biosensing applications of polyphase MoS2. Small, 2022, 18(34): 2202956
CrossRef
ADS
Google scholar
|
[18] |
X. Zhu , Y. Chen , Z. Liu , Y. Han , Z. Qiao . Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials. Front. Phys., 2023, 18(2): 23302
CrossRef
ADS
Google scholar
|
[19] |
Y. Y. Wang , F. P. Li , W. Wei , B. B. Huang , Y. Dai . Interlayer coupling effect in van der Waals heterostructures of transition metal dichalcogenides. Front. Phys., 2021, 16(1): 13501
CrossRef
ADS
Google scholar
|
[20] |
Q. Liang , Q. Zhang , X. Zhao , M. Liu , A. T. S. Wee . Defect engineering of two-dimensional transition-metal dichalcogenides: Applications, challenges, and opportunities. ACS Nano, 2021, 15(2): 2165
CrossRef
ADS
Google scholar
|
[21] |
Y. Gong , Z. Lin , Y. X. Chen , Q. Khan , C. Wang , B. Zhang , G. Nie , N. Xie , D. Li , Two-dimensional platinum diselenide:Synthesis . Emerging applications, and future challenges. Nano-Micro Lett., 2020, 12(1): 174
CrossRef
ADS
Google scholar
|
[22] |
E. Norouzzadeh , S. Mohammadi , M. Moradinasab . Tunneling FET based on defect-free, vacancy-defected, and passivated monolayer PtSe2 channel: A first principles study. Mater. Sci. Semicond. Process., 2022, 138: 106258
CrossRef
ADS
Google scholar
|
[23] |
A. Mahmood , G. Lu , X. Wang , Y. Wang , X. Xie , J. Sun . Investigating the stability and role of defects in vertically aligned WS2/MoS2 heterojunctions on OER activity using first principles study. J. Power Sources, 2022, 551: 232208
CrossRef
ADS
Google scholar
|
[24] |
P. M. M. C. de Melo , Z. Zanolli , M. J. Verstraete . Optical signatures of defect centers in transition metal dichalcogenide monolayers. Adv. Quant. Technol., 2021, 4(3): 2000118
CrossRef
ADS
Google scholar
|
[25] |
Y. Yu , X. Zhang , Z. Zhou , Z. Zhang , Y. Bao , H. Xu , L. Lin , Y. Zhang , X. Wang . Microscopic pump-probe optical technique to characterize the defect of monolayer transition metal dichalcogenides. Photon. Res., 2019, 7(7): 711
CrossRef
ADS
Google scholar
|
[26] |
K. Wu , H. Zhong , Q. Guo , J. Tang , Z. Yang , L. Qian , S. Yuan , S. Zhang , H. Xu . Revealing the competition between defect-trapped exciton and band-edge exciton photoluminescence in monolayer hexagonal WS2. Adv. Opt. Mater., 2022, 10(6): 2101971
CrossRef
ADS
Google scholar
|
[27] |
D. H. Lien , S. Z. Uddin , M. Yeh , M. Amani , H. Kim , J. W. III Ager , E. Yablonovitch , A. Javey . Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science, 2019, 364(6439): 468
CrossRef
ADS
Google scholar
|
[28] |
P. C. Shen , Y. Lin , C. Su , C. McGahan , A. Y. Lu , X. Ji , X. Wang , H. Wang , N. Mao , Y. Guo , J. H. Park , Y. Wang , W. Tisdale , J. Li , X. Ling , K. E. Aidala , T. Palacios , J. Kong . Healing of donor defect states in monolayer molybdenum disulfide using oxygen-incorporated chemical vapour deposition. Nat. Electron., 2021, 5(1): 28
CrossRef
ADS
Google scholar
|
[29] |
B. Wen , D. N. Luo , L. L. Zhang , X. L. Li , X. Wang , L. L. Huang , X. Zhang , D. F. Diao . Excited state biexcitons in monolayer WSe2 driven by vertically grown graphene nanosheets with high-density electron trapping edges. Front. Phys., 2023, 18(3): 33306
CrossRef
ADS
Google scholar
|
[30] |
J. Li , T. Joseph , M. Ghorbani-Asl , S. Kolekar , A. V. Krasheninnikov , M. Batzill . Edge and point-defect induced electronic and magnetic properties in monolayer PtSe2. Adv. Funct. Mater., 2022, 32(18): 2110428
CrossRef
ADS
Google scholar
|
[31] |
P.LiY.BuL.WangC.WangJ.HuangK.TongY.ChenJ.HeZ.ZhaoB.XuZ.LiuG.GaoA.NieH.WangY.Tian, In situ observation of fracture along twin boundaries in boron carbide, Adv. Mater., doi: 10.1002/adma.202204375 (2022)
|
[32] |
H. Yun , M. Topsakal , A. Prakash , B. Jalan , J. S. Jeong , T. Birol , K. A. Mkhoyan . Metallic line defect in wide-bandgap transparent perovskite BaSnO3. Sci. Adv., 2021, 7(3): eabd4449
CrossRef
ADS
Google scholar
|
[33] |
S. Feng , J. Tan , S. Zhao , S. Zhang , U. Khan , L. Tang , X. Zou , J. Lin , H. M. Cheng , B. Liu . Synthesis of ultrahigh-quality monolayer molybdenum disulfide through in situ defect healing with thiol molecules. Small, 2020, 16(35): 2003357
CrossRef
ADS
Google scholar
|
[34] |
J. Li , S. Wang , Q. Jiang , H. Qian , S. Hu , H. Kang , C. Chen , X. Zhan , A. Yu , S. Zhao , Y. Zhang , Z. Chen , Y. Sui , S. Qiao , G. Yu , S. Peng , Z. Jin , X. Liu . Single-crystal MoS2 monolayer wafer grown on Au(111) film substrates. Small, 2021, 17(30): 2100743
CrossRef
ADS
Google scholar
|
[35] |
P. Yang , Y. Shan , J. Chen , G. Ekoya , J. Han , Z. J. Qiu , J. Sun , F. Chen , H. Wang , W. Bao , L. Hu , R. J. Zhang , R. Liu , C. Cong . Remarkable quality improvement of as-grown monolayer MoS2 by sulfur vapor pretreatment of SiO2/Si substrates. Nanoscale, 2020, 12(3): 1958
CrossRef
ADS
Google scholar
|
[36] |
F. J. Urbanos , S. Gullace , P. Samorì . MoS2 defect healing for high-performance chemical sensing of polycyclic aromatic hydrocarbons. ACS Nano, 2022, 16(7): 11234
CrossRef
ADS
Google scholar
|
[37] |
T. Liu , N. Peng , X. Zhang , R. Zheng , M. Xia , H. Yu , M. Shui , Y. Xie , J. Shu . Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy, 2021, 79: 105460
CrossRef
ADS
Google scholar
|
[38] |
G. Chilkoor , N. Shrestha , A. Kutana , M. Tripathi , F. C. Robles Hernández , B. I. Yakobson , M. Meyyappan , A. B. Dalton , P. M. Ajayan , M. M. Rahman , V. Gadhamshetty . Atomic layers of graphene for microbial corrosion prevention. ACS Nano, 2021, 15(1): 447
CrossRef
ADS
Google scholar
|
[39] |
C. Z. Zerger , L. K. Rodenbach , Y. T. Chen , B. Safvati , M. Z. Brubaker , S. Tran , T. A. Chen , M. Y. Li , L. J. Li , D. Goldhaber-Gordon , H. C. Manoharan . Nanoscale electronic transparency of wafer-scale hexagonal boron nitride. Nano Lett., 2022, 22(11): 4608
CrossRef
ADS
Google scholar
|
[40] |
R. Tao , X. Qu , Z. Wang , F. Li , L. Yang , J. Li , D. Wang , K. Zheng , M. Dong . Tune the electronic structure of MoS2 homojunction for broadband photodetection. J. Mater. Sci. Technol., 2022, 119: 61
CrossRef
ADS
Google scholar
|
[41] |
D. Wang , Z. Wang , Z. Yang , S. Wang , C. Tan , L. Yang , X. Hao , Z. Ke , M. Dong . Facile damage-free double exposure for high-performance 2D semiconductor based transistors. Mater. Today Phys., 2022, 24: 100678
CrossRef
ADS
Google scholar
|
[42] |
K. Fujisawa , B. R. Carvalho , T. Zhang , N. Perea-López , Z. Lin , V. Carozo , S. L. L. M. Ramos , E. Kahn , A. Bolotsky , H. Liu , A. L. Elías , M. Terrones . Quantification and healing of defects in atomically thin molybdenum disulfide: Beyond the controlled creation of atomic defects. ACS Nano, 2021, 15(6): 9658
CrossRef
ADS
Google scholar
|
[43] |
C. Zhang , C. Wang , F. Yang , J. K. Huang , L. J. Li , W. Yao , W. Ji , C. K. Shih . Engineering point-defect states in monolayer WSe2. ACS Nano, 2019, 13(2): 1595
CrossRef
ADS
Google scholar
|
[44] |
K. Wang , L. Zhang , G. D. Nguyen , X. Sang , C. Liu , Y. Yu , W. Ko , R. R. Unocic , A. A. Puretzky , C. M. Rouleau , D. B. Geohegan , L. Fu , G. Duscher , A. P. Li , M. Yoon , K. Xiao . Selective antisite defect formation in WS2 monolayers via reactive growth on dilute W−Au alloy substrates. Adv. Mater., 2022, 34(3): 2106674
CrossRef
ADS
Google scholar
|
[45] |
Z. Gan , I. Paradisanos , A. Estrada-Real , J. Picker , E. Najafidehaghani , F. Davies , C. Neumann , C. Robert , P. Wiecha , K. Watanabe , T. Taniguchi , X. Marie , J. Biskupek , M. Mundszinger , R. Leiter , U. Kaiser , A. V. Krasheninnikov , B. Urbaszek , A. George , A. Turchanin . Chemical vapor deposition of high-optical-quality large-area monolayer Janus transition metal dichalcogenides. Adv. Mater., 2022, 34(38): 2205226
CrossRef
ADS
Google scholar
|
[46] |
T. Kang , T. W. Tang , B. Pan , H. Liu , K. Zhang , Z. Luo . Strategies for controlled growth of transition metal dichalcogenides by chemical vapor deposition for integrated electronics. ACS Mater. Au, 2022, 2(6): 665
CrossRef
ADS
Google scholar
|
[47] |
Y. Zhang , Y. Yao , M. G. Sendeku , L. Yin , X. Zhan , F. Wang , Z. Wang , J. He . Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater., 2019, 31(41): 1901694
CrossRef
ADS
Google scholar
|
[48] |
Y. Wan , E. Li , Z. Yu , J. K. Huang , M. Y. Li , A. S. Chou , Y. T. Lee , C. J. Lee , H. C. Hsu , Q. Zhan , A. Aljarb , J. H. Fu , S. P. Chiu , X. Wang , J. J. Lin , Y. P. Chiu , W. H. Chang , H. Wang , Y. Shi , N. Lin , Y. Cheng , V. Tung , L. J. Li . Low-defect-density WS2 by hydroxide vapor phase deposition. Nat. Commun., 2022, 13(1): 4149
CrossRef
ADS
Google scholar
|
[49] |
A. Hassan , Z. Wang , Y. H. Ahn , M. Azam , A. A. Khan , U. Farooq , M. Zubair , Y. Cao . Recent defect passivation drifts and role of additive engineering in perovskite photovoltaics. Nano Energy, 2022, 101: 107579
CrossRef
ADS
Google scholar
|
[50] |
J. Xu , G. Shao , X. Tang , F. Lv , H. Xiang , C. Jing , S. Liu , S. Dai , Y. Li , J. Luo , Z. Zhou . Frenkel-defected monolayer MoS2 catalysts for efficient hydrogen evolution. Nat. Commun., 2022, 13(1): 2193
CrossRef
ADS
Google scholar
|
[51] |
Y. Zuo , C. Liu , L. Ding , R. Qiao , J. Tian , C. Liu , Q. Wang , G. Xue , Y. You , Q. Guo , J. Wang , Y. Fu , K. Liu , X. Zhou , H. Hong , M. Wu , X. Lu , R. Yang , G. Zhang , D. Yu , E. Wang , X. Bai , F. Ding , K. Liu . Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun., 2022, 13(1): 1007
CrossRef
ADS
Google scholar
|
[52] |
S. Barja , S. Refaely-Abramson , B. Schuler , D. Y. Qiu , A. Pulkin , S. Wickenburg , H. Ryu , M. M. Ugeda , C. Kastl , C. Chen , C. Hwang , A. Schwartzberg , S. Aloni , S. K. Mo , D. Frank Ogletree , M. F. Crommie , O. V. Yazyev , S. G. Louie , J. B. Neaton , A. Weber-Bargioni . Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides. Nat. Commun., 2019, 10(1): 3382
CrossRef
ADS
Google scholar
|
[53] |
R. González-Hernández , W. López-Pérez , J. A. Rodríguez M . Nickel adsorption and incorporation on a 2×2-T4 GaN(0001) surface: A DFT study. Appl. Surf. Sci., 2013, 266: 205
CrossRef
ADS
Google scholar
|
[54] |
T.TangZ.WangJ.Guan, A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction, Chin. J. Catal. 43(3), 636 (2022)
|
[55] |
S. Liu , L. Zhou , W. Zhang , J. Jin , X. Mu , S. Zhang , C. Chen , S. Mu . Stabilizing sulfur vacancy defects by performing “click” chemistry of ultrafine palladium to trigger a high-efficiency hydrogen evolution of MoS2. Nanoscale, 2020, 12(18): 9943
CrossRef
ADS
Google scholar
|
[56] |
M. Cheng , J. Yang , X. Li , H. Li , R. Du , J. Shi , J. He . Improving the device performances of two-dimensional semiconducting transition metal dichalcogenides: Three strategies. Front. Phys., 2022, 17(6): 63601
CrossRef
ADS
Google scholar
|
[57] |
H. Bishara , S. Lee , T. Brink , M. Ghidelli , G. Dehm . Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure. ACS Nano, 2021, 15(10): 16607
CrossRef
ADS
Google scholar
|
[58] |
J. Zhang , L. Lin , K. Jia , L. Sun , H. Peng , Z. Liu . Controlled growth of single-crystal graphene films. Adv. Mater., 2020, 32(1): 1903266
CrossRef
ADS
Google scholar
|
[59] |
F. Bussolotti , J. Yang , H. Kawai , C. P. Y. Wong , K. E. J. Goh . Impact of S-vacancies on the charge injection barrier at the electrical contact with the MoS2 monolayer. ACS Nano, 2021, 15(2): 2686
CrossRef
ADS
Google scholar
|
[60] |
Y. Chen , S. Huang , X. Ji , K. Adepalli , K. Yin , X. Ling , X. Wang , J. Xue , M. Dresselhaus , J. Kong , B. Yildiz . Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano, 2018, 12(3): 2569
CrossRef
ADS
Google scholar
|
[61] |
Z. Hu , Y. Zhao , W. Zou , Q. Lu , J. Liao , F. Li , M. Shang , L. Lin , Z. Liu . Doping of graphene films: Open the way to applications in electronics and optoelectronics. Adv. Funct. Mater., 2022, 32(42): 2203179
CrossRef
ADS
Google scholar
|
[62] |
S. Zhang , C. G. Wang , M. Y. Li , D. Huang , L. J. Li , W. Ji , S. Wu . Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett., 2017, 119(4): 046101
CrossRef
ADS
Google scholar
|
[63] |
R. Yang , J. Fan , M. Sun . Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys., 2022, 17(4): 43202
CrossRef
ADS
Google scholar
|
[64] |
M. Tebyetekerwa , Y. Cheng , J. Zhang , W. Li , H. Li , G. P. Neupane , B. Wang , T. N. Truong , C. Xiao , M. M. Al-Jassim , Z. Yin , Y. Lu , D. Macdonald , H. T. Nguyen . Emission control from transition metal dichalcogenide monolayers by aggregation-induced molecular rotors. ACS Nano, 2020, 14(6): 7444
CrossRef
ADS
Google scholar
|
[65] |
J. Kim , Y. Oh , J. Shin , M. Yang , N. Shin , S. Shekhar , S. Hong . Nanoscale mapping of carrier mobilities in the ballistic transports of carbon nanotube networks. ACS Nano, 2022, 16(12): 21626
CrossRef
ADS
Google scholar
|
[66] |
W. Wang , H. Shu , J. Wang , Y. Cheng , P. Liang , X. Chen . Defect passivation and photoluminescence enhancement of monolayer MoS2 crystals through sodium halide-assisted chemical vapor deposition growth. ACS Appl. Mater. Interfaces, 2020, 12(8): 9563
CrossRef
ADS
Google scholar
|
[67] |
B. Huang , M. Yoon , B. G. Sumpter , S. H. Wei , F. Liu . Alloy engineering of defect properties in semiconductors: Suppression of deep levels in transition-metal dichalcogenides. Phys. Rev. Lett., 2015, 115(12): 126806
CrossRef
ADS
Google scholar
|
[68] |
M. Yarali , H. Brahmi , Z. Yan , X. Li , L. Xie , S. Chen , S. Kumar , M. Yoon , K. Xiao , A. Mavrokefalos . Effect of metal doping and vacancies on the thermal conductivity of monolayer molybdenum diselenide. ACS Appl. Mater. Interfaces, 2018, 10(5): 4921
CrossRef
ADS
Google scholar
|
[69] |
K.ZhangB.M. BerschJ.JoshiR.AddouC.R. CormierC.ZhangK.XuN.C. BriggsK.WangS.SubramanianK.ChoS.Fullerton-ShireyR.M. WallaceP.M. VoraJ.A. Robinson, Tuning the electronic and photonic properties of monolayer MoS2 via in situ rhenium substitutional doping, Adv. Funct. Mater. 28(16) (2018)
|
[70] |
X. Li , A. A. Puretzky , X. Sang , S. Kc , M. Tian , F. Ceballos , M. Mahjouri-Samani , K. Wang , R. R. Unocic , H. Zhao , G. Duscher , V. R. Cooper , C. M. Rouleau , D. B. Geohegan , K. Xiao . Suppression of defects and deep levels using isoelectronic tungsten substitution in monolayer MoSe2. Adv. Funct. Mater., 2017, 27(19): 1603850
CrossRef
ADS
Google scholar
|
[71] |
W. Chen , J. Zhao , J. Zhang , L. Gu , Z. Yang , X. Li , H. Yu , X. Zhu , R. Yang , D. Shi , X. Lin , J. Guo , X. Bai , G. Zhang . Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc., 2015, 137(50): 15632
CrossRef
ADS
Google scholar
|
[72] |
Z. Wang , H. Yang , S. Zhang , J. Wang , K. Cao , Y. Lu , W. Hou , S. Guo , X. A. Zhang , L. Wang . An approach to high-throughput growth of submillimeter transition metal dichalcogenide single crystals. Nanoscale, 2019, 11(46): 22440
CrossRef
ADS
Google scholar
|
[73] |
Z. Tu , G. Li , X. Ni , L. Meng , S. Bai , X. Chen , J. Lou , Y. Qin . Synthesis of large monolayer single crystal MoS2 nanosheets with uniform size through a double-tube technology. Appl. Phys. Lett., 2016, 109(22): 223101
CrossRef
ADS
Google scholar
|
[74] |
J. Chen , W. Tang , B. Tian , B. Liu , X. Zhao , Y. Liu , T. Ren , W. Liu , D. Geng , H. Y. Jeong , H. S. Shin , W. Zhou , K. P. Loh . Chemical vapor deposition of high-quality large-sized MoS2 crystals on silicon dioxide substrates. Adv. Sci. (Weinh.), 2016, 3(8): 1500033
CrossRef
ADS
Google scholar
|
[75] |
H. G. Ji , Y. C. Lin , K. Nagashio , M. Maruyama , P. Solís-Fernández , A. Sukma Aji , V. Panchal , S. Okada , K. Suenaga , H. Ago . Hydrogen-assisted epitaxial growth of monolayer tungsten disulfide and seamless grain stitching. Chem. Mater., 2018, 30(2): 403
CrossRef
ADS
Google scholar
|
[76] |
Y. Gong , G. Ye , S. Lei , G. Shi , Y. He , J. Lin , X. Zhang , R. Vajtai , S. T. Pantelides , W. Zhou , B. Li , P. M. Ajayan . Synthesis of millimeter-scale transition metal dichalcogenides single crystals. Adv. Funct. Mater., 2016, 26(12): 2009
CrossRef
ADS
Google scholar
|
[77] |
Z. Lin , Y. Zhao , C. Zhou , R. Zhong , X. Wang , Y. H. Tsang , Y. Chai . Controllable growth of large-size crystalline mos2 and resist-free transfer assisted with a Cu thin film. Sci. Rep., 2015, 5(1): 18596
CrossRef
ADS
Google scholar
|
[78] |
S. Wang , M. Pacios , H. Bhaskaran , J. H. Warner . Substrate control for large area continuous films of monolayer MoS2 by atmospheric pressure chemical vapor deposition. Nanotechnology, 2016, 27(8): 085604
CrossRef
ADS
Google scholar
|
[79] |
P. Yang , X. Zou , Z. Zhang , M. Hong , J. Shi , S. Chen , J. Shu , L. Zhao , S. Jiang , X. Zhou , Y. Huan , C. Xie , P. Gao , Q. Chen , Q. Zhang , Z. Liu , Y. Zhang . Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun., 2018, 9(1): 979
CrossRef
ADS
Google scholar
|
[80] |
M. E. Pam , Y. Shi , J. Hu , X. Zhao , J. Dan , X. Gong , S. Huang , D. Geng , S. Pennycook , L. K. Ang , H. Y. Yang . Effects of precursor pre-treatment on the vapor deposition of WS2 monolayers. Nanoscale Adv., 2019, 1(3): 953
CrossRef
ADS
Google scholar
|
[81] |
Z. Zhang , X. Xu , J. Song , Q. Gao , S. Li , Q. Hu , X. Li , Y. Wu . High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett., 2018, 113(20): 202103
CrossRef
ADS
Google scholar
|
[82] |
J. Chen , X. Zhao , S. J. R. Tan , H. Xu , B. Wu , B. Liu , D. Fu , W. Fu , D. Geng , Y. Liu , W. Liu , W. Tang , L. Li , W. Zhou , T. C. Sum , K. P. Loh . Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc., 2017, 139(3): 1073
CrossRef
ADS
Google scholar
|
[83] |
P. Yang , S. Zhang , S. Pan , B. Tang , Y. Liang , X. Zhao , Z. Zhang , J. Shi , Y. Huan , Y. Shi , S. J. Pennycook , Z. Ren , G. Zhang , Q. Chen , X. Zou , Z. Liu , Y. Zhang . Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano, 2020, 14(4): 5036
CrossRef
ADS
Google scholar
|
[84] |
J. Shi , X. Zhang , D. Ma , J. Zhu , Y. Zhang , Z. Guo , Y. Yao , Q. Ji , X. Song , Y. Zhang , C. Li , Z. Liu , W. Zhu , Y. Zhang . Substrate facet effect on the growth of monolayer MoS2 on Au foils. ACS Nano, 2015, 9(4): 4017
CrossRef
ADS
Google scholar
|
[85] |
S. J. Yun , S. H. Chae , H. Kim , J. C. Park , J. H. Park , G. H. Han , J. S. Lee , S. M. Kim , H. M. Oh , J. Seok , M. S. Jeong , K. K. Kim , Y. H. Lee . Synthesis of centimeter-scale monolayer tungsten disulfide film on gold foils. ACS Nano, 2015, 9(5): 5510
CrossRef
ADS
Google scholar
|
[86] |
Y. Gao , Z. Liu , D. M. Sun , L. Huang , L. P. Ma , L. C. Yin , T. Ma , Z. Zhang , X. L. Ma , L. M. Peng , H. M. Cheng , W. Ren . Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun., 2015, 6(1): 8569
CrossRef
ADS
Google scholar
|
[87] |
K. Godin , K. Kang , S. Fu , E. H. Yang . Increased monolayer domain size and patterned growth of tungsten disulfide through controlling surface energy of substrates. J. Phys. D Appl. Phys., 2016, 49(32): 325304
CrossRef
ADS
Google scholar
|
[88] |
F. Lan , R. Yang , S. Hao , B. Zhou , K. Sun , H. Cheng , S. Zhang , L. Li , L. Jin . Controllable synthesis of millimeter-size single crystal WS2. Appl. Surf. Sci., 2020, 504: 144378
CrossRef
ADS
Google scholar
|
[89] |
G. Li , X. Wang , B. Han , W. Zhang , S. Qi , Y. Zhang , J. Qiu , P. Gao , S. Guo , R. Long , Z. Tan , X. Z. Song , N. Liu . Direct growth of continuous and uniform MoS2 film on SiO2/Si substrate catalyzed by sodium sulfate. J. Phys. Chem. Lett., 2020, 11(4): 1570
CrossRef
ADS
Google scholar
|
[90] |
H. Kim , G. H. Han , S. J. Yun , J. Zhao , D. H. Keum , H. Y. Jeong , T. H. Ly , Y. Jin , J. H. Park , B. H. Moon , S. W. Kim , Y. H. Lee . Role of alkali metal promoter in enhancing lateral growth of monolayer transition metal dichalcogenides. Nanotechnology, 2017, 28(36): 36LT01
CrossRef
ADS
Google scholar
|
[91] |
J. G. Song , G. Hee Ryu , Y. Kim , W. Je Woo , K. Yong Ko , Y. Kim , C. Lee , I. K. Oh , J. Park , Z. Lee , H. Kim . Catalytic chemical vapor deposition of large-area uniform two-dimensional molybdenum disulfide using sodium chloride. Nanotechnology, 2017, 28(46): 465103
CrossRef
ADS
Google scholar
|
[92] |
H. Kim , D. Ovchinnikov , D. Deiana , D. Unuchek , A. Kis . Suppressing nucleation in metal–organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett., 2017, 17(8): 5056
CrossRef
ADS
Google scholar
|
[93] |
Y. Shi , P. Yang , S. Jiang , Z. Zhang , Y. Huan , C. Xie , M. Hong , J. Shi , Y. Zhang . Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology, 2019, 30(3): 034002
CrossRef
ADS
Google scholar
|
[94] |
B. J. Modtland , E. Navarro-Moratalla , X. Ji , M. Baldo , J. Kong . Monolayer tungsten disulfide (WS2) via chlorine-driven chemical vapor transport. Small, 2017, 13(33): 1701232
CrossRef
ADS
Google scholar
|
[95] |
P. Yang , A. G. Yang , L. Chen , J. Chen , Y. Zhang , H. Wang , L. Hu , R. J. Zhang , R. Liu , X. P. Qu , Z. J. Qiu , C. Cong . Influence of seeding promoters on the properties of CVD grown monolayer molybdenum disulfide. Nano Res., 2019, 12(4): 823
CrossRef
ADS
Google scholar
|
[96] |
X. Ling , Y. H. Lee , Y. Lin , W. Fang , L. Yu , M. S. Dresselhaus , J. Kong . Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett., 2014, 14(2): 464
CrossRef
ADS
Google scholar
|
[97] |
Y. F. Lim , K. Priyadarshi , F. Bussolotti , P. K. Gogoi , X. Cui , M. Yang , J. Pan , S. W. Tong , S. Wang , S. J. Pennycook , K. E. J. Goh , A. T. S. Wee , S. L. Wong , D. Chi . Modification of vapor phase concentrations in MoS2 growth using a NiO foam barrier. ACS Nano, 2018, 12(2): 1339
CrossRef
ADS
Google scholar
|
[98] |
J. Zhu , H. Xu , G. Zou , W. Zhang , R. Chai , J. Choi , J. Wu , H. Liu , G. Shen , H. Fan . MoS2–OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc., 2019, 141(13): 5392
CrossRef
ADS
Google scholar
|
[99] |
G. U. Özküçük , C. Odacı , E. Şahin , F. Ay , N. K. Perkgöz . Glass-assisted CVD growth of large-area MoS2, WS2 and MoSe2 monolayers on Si/SiO2 substrate. Mater. Sci. Semicond. Process., 2020, 105: 104679
CrossRef
ADS
Google scholar
|
[100] |
J.JiangQ.ZhangA.WangY.ZhangF.MengC.ZhangX.FengY.FengL.GuH.LiuL.Han, A facile and effective method for patching sulfur vacancies of WS2 via nitrogen plasma treatment, Small 15(36), 1901791 (2019)
|
[101] |
H. Nan , Z. Wang , W. Wang , Z. Liang , Y. Lu , Q. Chen , D. He , P. Tan , F. Miao , X. Wang , J. Wang , Z. Ni . Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano, 2014, 8(6): 5738
CrossRef
ADS
Google scholar
|
[102] |
D. Pierucci , H. Henck , Z. Ben Aziza , C. H. Naylor , A. Balan , J. E. Rault , M. G. Silly , Y. J. Dappe , F. Bertran , P. Le Fevre , F. Sirotti , A. T. Johnson , A. Ouerghi . Tunable doping in hydrogenated single layered molybdenum disulfide. ACS Nano, 2017, 11(2): 1755
CrossRef
ADS
Google scholar
|
[103] |
Y. Zhu , H. Yi , Q. Hao , J. Liu , Y. Ke , Z. Wang , D. Fan , W. Zhang . Scalable synthesis and defect modulation of large monolayer WS2 via annealing in H2S atmosphere/thiol treatment to enhance photoluminescence. Appl. Surf. Sci., 2019, 485: 101
CrossRef
ADS
Google scholar
|
[104] |
S. Hu , J. Li , S. Wang , Y. Liang , H. Kang , Y. Zhang , Z. Chen , Y. Sui , G. Yu , S. Peng , Z. Jin , X. Liu . Detecting the repair of sulfur vacancies in CVD-grown MoS2 domains via hydrogen etching. J. Electron. Mater., 2020, 49(4): 2547
CrossRef
ADS
Google scholar
|
[105] |
M. Liu , J. Shi , Y. Li , X. Zhou , D. Ma , Y. Qi , Y. Zhang , Z. Liu . Temperature-triggered sulfur vacancy evolution in monolayer MoS2/graphene heterostructures. Small, 2017, 13(40): 1602967
CrossRef
ADS
Google scholar
|
[106] |
S. V. Sivaram , A. T. Hanbicki , M. R. Rosenberger , G. G. Jernigan , H. J. Chuang , K. M. McCreary , B. T. Jonker . Spatially selective enhancement of photoluminescence in MoS2 by exciton-mediated adsorption and defect passivation. ACS Appl. Mater. Interfaces, 2019, 11(17): 16147
CrossRef
ADS
Google scholar
|
[107] |
A. Bera , D. V. S. Muthu , A. K. Sood . Enhanced Raman and photoluminescence response in monolayer MoS2 due to laser healing of defects. J. Raman Spectrosc., 2018, 49(1): 100
CrossRef
ADS
Google scholar
|
[108] |
A. Venkatakrishnan , H. Chua , P. Tan , Z. Hu , H. Liu , Y. Liu , A. Carvalho , J. Lu , C. H. Sow . Microsteganography on WS2 monolayers tailored by direct laser painting. ACS Nano, 2017, 11(1): 713
CrossRef
ADS
Google scholar
|
[109] |
D. Kiriya , Y. Hijikata , J. Pirillo , R. Kitaura , A. Murai , A. Ashida , T. Yoshimura , N. Fujimura . Systematic study of photoluminescence enhancement in monolayer molybdenum disulfide by acid treatment. Langmuir, 2018, 34(35): 10243
CrossRef
ADS
Google scholar
|
[110] |
X. Dai , X. Zhang , I. M. Kislyakov , L. Wang , J. Huang , S. Zhang , N. Dong , J. Wang . Enhanced two-photon absorption and two-photon luminescence in monolayer MoS2 and WS2 by defect repairing. Opt. Express, 2019, 27(10): 13744
CrossRef
ADS
Google scholar
|
[111] |
S. Roy , W. Choi , S. Jeon , D. H. Kim , H. Kim , S. J. Yun , Y. Lee , J. Lee , Y. M. Kim , J. Kim . Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett., 2018, 18(7): 4523
CrossRef
ADS
Google scholar
|
[112] |
K. P. Dhakal , S. Roy , S. J. Yun , G. Ghimire , C. Seo , J. Kim . Heterogeneous modulation of exciton emission in triangular WS2 monolayers by chemical treatment. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2017, 5(27): 6820
CrossRef
ADS
Google scholar
|
[113] |
Y. Kim , Y. Lee , H. Kim , S. Roy , J. Kim . Near-field exciton imaging of chemically treated MoS2 monolayers. Nanoscale, 2018, 10(18): 8851
CrossRef
ADS
Google scholar
|
[114] |
M. Amani , D. H. Lien , D. Kiriya , J. Xiao , A. Azcatl , J. Noh , S. R. Madhvapathy , R. Addou , S. Kc , M. Dubey , K. Cho , R. M. Wallace , S. C. Lee , J. H. He , J. W. Ager , X. Zhang , E. Yablonovitch , A. Javey . Near-unity photoluminescence quantum yield in MoS2. Science, 2015, 350(6264): 1065
CrossRef
ADS
Google scholar
|
[115] |
H. Kim , D. H. Lien , M. Amani , J. W. Ager , A. Javey . Highly stable near-unity photoluminescence yield in monolayer MoS2 by fluoropolymer encapsulation and superacid treatment. ACS Nano, 2017, 11(5): 5179
CrossRef
ADS
Google scholar
|
[116] |
A. Alharbi , P. Zahl , D. Shahrjerdi . Material and device properties of superacid-treated monolayer molybdenum disulfide. Appl. Phys. Lett., 2017, 110(3): 033503
CrossRef
ADS
Google scholar
|
[117] |
P. Lin , L. Zhu , D. Li , Z. L. Wang . Defect repair for enhanced piezo-phototronic MoS2 flexible phototransistors. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2019, 7(46): 14731
CrossRef
ADS
Google scholar
|
[118] |
X. Zhang , Q. Liao , S. Liu , Z. Kang , Z. Zhang , J. Du , F. Li , S. Zhang , J. Xiao , B. Liu , Y. Ou , X. Liu , L. Gu , Y. Zhang . Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode. Nat. Commun., 2017, 8(1): 15881
CrossRef
ADS
Google scholar
|
[119] |
X. Zhang , Q. Liao , Z. Kang , B. Liu , Y. Ou , J. Du , J. Xiao , L. Gao , H. Shan , Y. Luo , Z. Fang , P. Wang , Z. Sun , Z. Zhang , Y. Zhang . Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes. ACS Nano, 2019, 13(3): 3280
CrossRef
ADS
Google scholar
|
[120] |
Z. Yu , Y. Pan , Y. Shen , Z. Wang , Z. Y. Ong , T. Xu , R. Xin , L. Pan , B. Wang , L. Sun , J. Wang , G. Zhang , Y. W. Zhang , Y. Shi , X. Wang . Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat. Commun., 2014, 5(1): 5290
CrossRef
ADS
Google scholar
|
[121] |
L.ZhouS.YanL.PanX.WangY.WangY.Shi, A scalable sulfuration of WS2 to improve cyclability and capability of lithium-ion batteries, Nano Res. 9(3), 857 (2016)
|
[122] |
S. Bertolazzi , S. Bonacchi , G. Nan , A. Pershin , D. Beljonne , P. Samori . Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater., 2017, 29(18): 1606760
CrossRef
ADS
Google scholar
|
[123] |
M. Makarova , Y. Okawa , M. Aono . Selective adsorption of thiol molecules at sulfur vacancies on MoS2(0001), followed by vacancy repair via S–C dissociation. J. Phys. Chem. C, 2012, 116(42): 22411
CrossRef
ADS
Google scholar
|
[124] |
M. El Garah , S. Bertolazzi , S. Ippolito , M. Eredia , I. Janica , G. Melinte , O. Ersen , G. Marletta , A. Ciesielski , P. Samorì . MoS2 nanosheets via electrochemical lithium-ion intercalation under ambient conditions. FlatChem, 2018, 9: 33
CrossRef
ADS
Google scholar
|
[125] |
K. Cho , M. Min , T. Y. Kim , H. Jeong , J. Pak , J. K. Kim , J. Jang , S. J. Yun , Y. H. Lee , W. K. Hong , T. Lee . Electrical and optical characterization of MoS2 with sulfur vacancy passivation by treatment with alkanethiol molecules. ACS Nano, 2015, 9(8): 8044
CrossRef
ADS
Google scholar
|
[126] |
Q. Ding , K. J. Czech , Y. Zhao , J. Zhai , R. J. Hamers , J. C. Wright , S. Jin . Basal-plane ligand functionalization on semiconducting 2H-MoS2 monolayers. ACS Appl. Mater. Interfaces, 2017, 9(14): 12734
CrossRef
ADS
Google scholar
|
[127] |
D. M. Sim , M. Kim , S. Yim , M. J. Choi , J. Choi , S. Yoo , Y. S. Jung . Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano, 2015, 9(12): 12115
CrossRef
ADS
Google scholar
|
[128] |
S. Wei , C. Ge , L. Zhou , S. Zhang , M. Dai , F. Gao , Y. Sun , Y. Qiu , Z. Wang , J. Zhang , P. Hu . Performance improvement of multilayered SnS2 field effect transistors through synergistic effect of vacancy repairing and electron doping introduced by EDTA. ACS Appl. Electron. Mater., 2019, 1(11): 2380
CrossRef
ADS
Google scholar
|
[129] |
J. H. Park , A. Sanne , Y. Guo , M. Amani , K. Zhang , H. C. P. Movva , J. A. Robinson , A. Javey , J. Robertson , S. K. Banerjee , A. C. Kummel . Defect passivation of transition metal dichalcogenides via a charge transfer van der Waals interface. Sci. Adv., 2017, 3(10): e1701661
CrossRef
ADS
Google scholar
|
[130] |
W. Ding , X. Li , F. Jiang , P. Liu , P. Liu , S. Zhu , G. Zhang , C. Liu , J. Xu . Defect modification engineering on a laminar MoS2 film for optimizing thermoelectric properties. J. Mater. Chem. C, 2020, 8(6): 1909
CrossRef
ADS
Google scholar
|
[131] |
A. O. A. Tanoh , J. Alexander-Webber , J. Xiao , G. Delport , C. A. Williams , H. Bretscher , N. Gauriot , J. Allardice , R. Pandya , Y. Fan , Z. Li , S. Vignolini , S. D. Stranks , S. Hofmann , A. Rao . Enhancing photoluminescence and mobilities in WS2 monolayers with oleic acid ligands. Nano Lett., 2019, 19(9): 6299
CrossRef
ADS
Google scholar
|
[132] |
D. H. Luong , H. S. Lee , G. Ghimire , J. Lee , H. Kim , S. J. Yun , G. H. An , Y. H. Lee . Enhanced light–matter interactions in self-assembled plasmonic nanoparticles on 2D semiconductors. Small, 2018, 14(47): 1802949
CrossRef
ADS
Google scholar
|
[133] |
T. L. Atallah , J. Wang , M. Bosch , D. Seo , R. A. Burke , O. Moneer , J. Zhu , M. Theibault , L. E. Brus , J. Hone , X. Y. Zhu . Electrostatic screening of charged defects in monolayer MoS2. J. Phys. Chem. Lett., 2017, 8(10): 2148
CrossRef
ADS
Google scholar
|
[134] |
J. Jiang , C. Ling , T. Xu , W. Wang , X. Niu , A. Zafar , Z. Yan , X. Wang , Y. You , L. Sun , J. Lu , J. Wang , Z. Ni . Defect engineering for modulating the trap states in 2D photoconductors. Adv. Mater., 2018, 30(40): e1804332
CrossRef
ADS
Google scholar
|
[135] |
X. Xu , Z. Chen , B. Sun , Y. Zhao , L. Tao , J. B. Xu . Efficient passivation of monolayer MoS2 by epitaxially grown 2D organic crystals. Sci. Bull. (Beijing), 2019, 64(22): 1700
CrossRef
ADS
Google scholar
|
[136] |
S. Mouri , Y. Miyauchi , K. Matsuda . Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett., 2013, 13(12): 5944
CrossRef
ADS
Google scholar
|
[137] |
L. Yang , K. Majumdar , H. Liu , Y. Du , H. Wu , M. Hatzistergos , P. Y. Hung , R. Tieckelmann , W. Tsai , C. Hobbs , P. D. Ye . Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett., 2014, 14(11): 6275
CrossRef
ADS
Google scholar
|
[138] |
J. Lu , A. Carvalho , X. K. Chan , H. Liu , B. Liu , E. S. Tok , K. P. Loh , A. H. Castro Neto , C. H. Sow . Atomic healing of defects in transition metal dichalcogenides. Nano Lett., 2015, 15(5): 3524
CrossRef
ADS
Google scholar
|
[139] |
L. Wang , M. Schmid , Z. N. Nilsson , M. Tahir , H. Chen , J. B. Sambur . Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes. ACS Appl. Mater. Interfaces, 2019, 11(21): 19207
CrossRef
ADS
Google scholar
|
[140] |
H. V. Han , A. Y. Lu , L. S. Lu , J. K. Huang , H. Li , C. L. Hsu , Y. C. Lin , M. H. Chiu , K. Suenaga , C. W. Chu , H. C. Kuo , W. H. Chang , L. J. Li , Y. Shi . Photoluminescence enhancement and structure repairing of monolayer MoSe2 by hydrohalic acid treatment. ACS Nano, 2016, 10(1): 1454
CrossRef
ADS
Google scholar
|
[141] |
Y. Meng , C. Ling , R. Xin , P. Wang , Y. Song , H. Bu , S. Gao , X. Wang , F. Song , J. Wang , X. Wang , B. Wang , G. Wang . Repairing atomic vacancies in single-layer MoSe2 field-effect transistor and its defect dynamics. npj Quant. Mater., 2017, 2(1): 16
CrossRef
ADS
Google scholar
|
[142] |
H. Ahn , Y. C. Huang , C. W. Lin , Y. L. Chiu , E. C. Lin , Y. Y. Lai , Y. H. Lee . Efficient defect healing of transition metal dichalcogenides by metallophthalocyanine. ACS Appl. Mater. Interfaces, 2018, 10(34): 29145
CrossRef
ADS
Google scholar
|
[143] |
Y. Li , M. Yang , Y. Lu , D. Cao , X. Chen , H. Shu . Reversible doping polarity and ultrahigh carrier density in two-dimensional van der Waals ferroelectric heterostructures. Front. Phys., 2023, 18(3): 33307
CrossRef
ADS
Google scholar
|
Part of a collection:
/
〈 |
|
〉 |